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Abstract. This paper deals with the detection of a crack in a spinning beam (rotor) by means
of the measured frequencies method. This technique as a crack detection criterion has been
extensively applied in the last decade meanly due to the fact that frequencies are, among other
dynamical parameters, easily measured. However the inverse problem of determination of the
crack parameters (location and depth) for a given set of measured frequencies is not simple. An
efficient numerical technique has to been employed so as to obtain acceptable results. In this
study the effect of the crack is modeled through the introduction of intermediate flexional springs
in a spinning beam of circular cross section and rotating around its longitudinal axis with con-
stant angular velocity. The beam-springs analytical model is first stated and the power series
method is employed to obtain the solution for a given set of data, say the springs constants, the
crack location or the frequency. It should be noted that the springs and the crack depth may be
related by some expression from Fracture Mechanics. Here a systematization of the series gives
rise to an efficient numerical method. An algorithm is then written and prepared to solve the
inverse problem. Then experimental frequencies are measured in a cracked spinning beam. At
this stage, this experiment is performed numerically, with a spinning beam with a notch. The
flexural frequencies are obtained. These are the input for the previous numerical algorithm to
find the solution of the inverse problem: i.e. predict the crack depth and location resp., given
the measured frequencies. Numerical examples are included with an evaluation of the errors
in the results. The methodology has been tested previously in an non spinning Euler-Bernoulli
beam with very promising results.

Mecánica Computacional Vol. XXIII, pp. 843-854
G.Buscaglia, E.Dari, O.Zamonsky (Eds.)

Bariloche, Argentina, November 2004

843



1 INTRODUCTION

Cracks in structural elements may indicate a fatigue problem, mechanical defects or others faults
from the manufacturing process. In any case they represent a threat to the reliable behaviour of
this part or structural element. Then its detection is an important issue.

It is well known that a structural element shows changes in its behaviour due to the presence
of a crack. Many detection methods are based in some structural parameters as the mass, the
stiffness, the Young’s modulus and in modal parameters such as the frequencies, the mode
shapes, the mode damping.

Several researchers have tackled the problem with diverse techniques. Many works are avail-
able on crack detection in beams1–6 . The cracked rotor (or spinning beam) has been also dealt
with in several works. See for instance.7,8

The location and depth estimation of a crack using the changes in the measured frequencies
of a cracked member has been an extended criterion in the last years. One of the reasons is
that frequencies are, among other dynamic parameters, easily obtained from measurements. So
their experimental determination for a given cracked element is rather direct.

However the inverse problem of determination of the crack parameters (location and depth)
for a given set of frequencies, in a damaged element, is not as simple. So in order to obtain
meaningful results an acceptable model and an efficient numerical technique have to be adopted.

In this work the crack detection of a damaged spinning beam (“rotor”) is presented. The
authors have dealt with the vibrations of spinning beams with various complexities before.9–11

These papers addressed the cases of a beam with different principal moment of inertia of the
cross section.

This study tackles the detection problem by modelling the crack in the spinning beam with
two intermediate springs in each principal plane. The algebra for the spinning beam with inter-
mediate springs is first stated. The resulting differential system is solved by means of a power
series technique.

In the direct problem, if the springs constants and their location were known, one would be
able to obtain the natural frequencies of this structural system.

Since the aim of the crack detection is the determination of both its location and depth, an
inverse problem has to be stated. The above-mentioned algorithm is used as follows. The
measured frequencies of the damaged element are input as data. Once solved, the location and
springs constant are obtained. The Fracture Mechanics equivalence12,13will allow to find the
depth of the crack.

The power series technique are a useful means to have an efficient numerical tool. The
authors have solved several ordinary nonlinear problems using a similar approach.14–17 Also
boundary value problems were approached with power series.18–20

The methodology is shown with an illustration. The natural frequencies have to be experi-
mentally measured. However, in this stage, the damaged spinning beam (a rotor) is modeled as
a stepped beam of three spans, the intermediate one representing the notch. This problem was
solved using the equations of the spinning beam9 and its algebra is included in the Appendix.
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From its solution three frequencies are obtained which are then input in the detection algorithm
to solve the inverse problem. A numerical example illustrates the methodology and the errors
are evaluated. These results along with the ones obtained in a previous work on a Bernouilli-
Euler beam21 are encoraging. At present the authors are addressing the same spinning beam
problem with other crack configurations and complexities.

2 STATEMENT OF THE SPINNING BEAM VIBRATIONAL PROBLEM

As stated in a previous work of the authors9 the transverse, vibrational behaviour of a beam
rotating with constant spin about its longitudinal axis, assuming that its cross section possesses
only one axis of symmetry, is governed by the following partial differential equations:

u′′′′ + a2(ü− Ω2u− 2Ωv̇) = 0 (1)

v′′′′ + A2(v̈ − Ω2v + 2Ωu̇) = 0 (2)

whereu(Z, t) (in x direction) andv(Z, t) (in y direction) are the transverse displacements of
the beam in planexy of the cross section,a2 ≡ ρF

EJx
, A2 = ρF

EJy
, ρ is the mass density of

the beam,F is the cross-sectional area of the beam,Jx andJy are the moments of inertia with
respect to thex andy axes, respectively,E is the Young’s modulus,Ω is the constant angular
velocity around the longitudinal axisZ. Dots denote time differentiation and primes denote
differentiation with respect toZ. If normal modes are assumed equations (1) and (2) may be
written as

H ′′′′ − a2((λ2 + Ω2)H + 2Ωλf) = 0 (3)

f ′′′′ − A2((λ2 + Ω2)f + 2ΩλH) = 0 (4)

whereH(Z) andf(Z) are the mode shapes, unknowns of the problem.λ are the circular
natural frequencies

On the other hand the detection algorithm is based in a spinning beam with a intermediate
springs which will be stated in the next section.

3 SPINNING BEAM WITH INTERMEDIATE SPRINGS

The spinning beam with intermediate springs is depicted in Figure 1.
The governing equations (3) and (4) stand for each part of the beam:H1(z1) andf1(z1)

for the first part andH2(z2) andf2(z2) for the second one,0 ≤ zj ≤ 1, zj : are the non-
dimenssionalized variable(j = 1, 2). The boundary conditions forH1(z1) and H2(z2) are
(assuming a simply supported beam)

H1(0) = 0 H2(1) = 0 (5)

H ′′
1 (0) = 0 H ′′

2 (1) = 0 (6)

and the continuity conditions are the following
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Figure 1: Spinning beam with intermediate springs

H1(1) = H2(0) (7)
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− H ′
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L3
2

H ′′′
2 (0) = 0 (10)

Similar expressions are found forf1(z1) andf2(z2). As mentioned before the power series
is a well-known technique to solve differential problems.

The basic unknowns in the direct problem are the mode shapesH1(z1), H2(z2), f1(z1) and
f2(z2). They are expanded in power series as follows:

Hj(zj) =
∞∑
i0

A(j,i)z
i
j (11)

fj(zj) =
∞∑
i0

B(j,i)z
i
j (12)

0 ≤ zj ≤ 1; j = 1, 2

wherei0 denotesi = 0.
After the replacement of the expansions (11) and (12) in the differential system (3) and (4),

the following recurrence system is obtained.

A(j,i+4) =
Λyj

[(1 + η2)A(j,i) − 2ηB(j,i)]

ϕ4i

B(j,i+4) =
Λxj

[(1 + η2)B(j,i) − 2ηA(j,i)]

ϕ4i

(13)
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where:

Λxj
=

ρFL4
jλ

2

EJx

Λyj
=

ρFL4
jλ

2

EJy

η =
Ω

λ

ϕ4i = (i + 1)(i + 2)(i + 3)(i + 4)

So this way, the eigenproblem may be solved and the natural frequencies and mode shapes
are found.

The above-described algorithm is appropiate to solve the direct problem; i.e.: given a spin-
ning beam with intermediate springs, the natural frequencies and mode shapes may be obtained.

The same algorithm will be used to solve the inverse problem as will be described in the next
section.

4 CRACK DETECTION IN A SPINNING BEAM

If one is able to measure the natural frequencies in a damaged spinning beam, then the previous
algorithm gives a means to detect a crack, its location and its magnitude.

At this stage of the study and to validate the methodology, a numerical experiment is carried
out in order to simulate it. A three-span beam is employed as a model of a cracked beam (Ap-
pendix). The crack was assumed symmetric. Although this situation is not the most frequent, it
is valid to test the methodology. The non-symmetric crack is under study at present.

The spinning beam has a particular behaviour as reported by Bauer22 and Filipichet al.9

among other authors. For a given spin (angular velocity) the sequence of natural frequencies
(ordered numerically), in general, alternate modes. Thus, if we choose an example (see Filipich

et al.9) (Jx=Jy=J , ΩND=70, where ΩND=Ω
√

ρF
EJ

) the first frequency corresponds to the
third mode, the second frequency to the second and so on.

5 NUMERICAL EXAMPLE

As mentioned before, the physical experiment is replaced here with a computational experiment.
The simply-supported spinning beam has a circular cross-section (Jx=Jy=J) of 0.05 m

of radius and length 1.00 m. The mass density isρ=7850 kg/m3 and the Young’s modulus
E=2.1x1011 N/m2. The angular velocity is set toΩ=3879.15 rad/seg andΩ=9051.34 rad/seg
(which corresponds to nondimensional velocitiesΩND=30 andΩND=70 respectively).

The cracked zone is modeled by a very short span 5x10−4m wide and a circular cross-section
with radius 0.03m (i.e. a crack witha = 0.02 m of depth), located at Z=0.3 m.

The values of frequencies of the “damaged” beam obtained for the present example are
depicted in Tables 1 and 2 found withΩND=30 andΩND=70 respectively.
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Table 1: First four natural frequencies of a cracked beam.ΩND=30

i λi Mode shape Used

1 1211.71722951021 Yes

2 2605.48654642698 Yes

3 5152.80468312496 No

4 7603.25283041748 Yes

Table 2: First four natural frequencies of a cracked beam.ΩND=70

i λ Mode shape Used

1 2431.05867738177 Yes

2 3960.47692352495 Yes

3 7777.68069946014 Yes

4 10324.9988361644 No

For each example the first three values of frequencies are input in the beam-springs algo-
rithm. As is observed in the Tables 1 and 2, there are two different frequencies (among the first
four ones) which correspond to a one semi-wave mode. It was found that both values lead to the
same result in crack detection. Then, the three selected frequencies are each one correspond-
ing to one semi-wave, two semi-waves and three semi-waves. In this particular problem of the
spinning beam they are not in sequential order.

After the frequencies are input in the computational program, three curvesL1 (crack loca-
tion) vs. k (argument stiffness) (Figures 2 and 3) are obtained. The intersection of the three
curves is the solution of the crack detection problem. It may be observed that due to the sym-
metry of the problem, two locations are found. In this caseL1=0.3 m andL1 =0.7 m (both at
0.3 m from the ends).

The intersection points are depicted in Table 3.
As may be observed in Table 3, the location were found with very small errors (negligible)

with ΩND = 30 andΩND = 70.

Table 3: Values of location and springs constants found with the crack detection algorithm.

ΩND L1 (m) Error % k (=kx=ky) (Nm)
30 0.3001 0.033 3.3985x108

70 0.3001 0.033 3.3985x108
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Figure 2: Curves corresponding to frequenciesλ1, λ2 andλ4. ΩND = 30

Table 4: Crack depth found with equivalence with flexibility.

ΩND k (Nm) a (m) Error %
30 3.3985x108 0.0181 -9.5
70 3.3985x108 0.0181 -9.5

In order to obtain the depth a equivalence between the springs constants and the crack depth
should be used. However to the authors knowledge no such relationship is reported for a sym-
metric crack as the one studied here. Consequently the stepped model of the Appendix was
employed to tabulate different values of crack depths and the equivalency of a springs. This
appears as an alternative way to find the depth. The results are summarized in Table 4

6 FINAL COMMENTS

A crack detection method in a damaged spinning beam (rotor) was presented.
The detection criterion employed is that of the measured frequencies.
The inverse problem is solved by means of an algorithm developed with a spinning beam

having intermediate springs to simulate the crack. A power series technique is employed to
tackle the solution. This well-known tool provides an efficient and accurate numerical method
necessary in order to obtain meaningful results.
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Figure 3: Curves corresponding to frequenciesλ1, λ2 andλ3. ΩND=70

The case of a spinning beam presents certain particularities that increases the complexity in
any crack detection method based in measured frequencies.

Its vibrational behaviour shows an alternation of mode shapes that changes with the angular
velocity values.

In the present work, a numerical experiment replaces the cracked spinning beam. Although
this is not the real situation, it is useful to validate the inverse solution.

The results are excellent in the location value an with acceptable errors in the depth. It
was observed that the width of the crack (in theZ direction) affects the accuracy of the depth
resulting value. Also, as was expected, the angular velocity value does not affect the crack
detection.

The authors are at present improving the numerical experiment simulation considering a
nonsymmetric crack.
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APPENDIX

The vibrational problem of a stepped spinning beam of three spans (Figure 4 ) is governed by
equations (1) and (2), valid for each span. Once normal modes are assumed, equations (3) and
(4) must be solved for each span, whereH1(z1), f1(z1), H2(z2), f2(z2), H3(z3), f3(z3) are the
mode shapes;0 ≤ zj ≤; j = 1, 2, 3.

Figure 4: Three span stepped beam with constant angular velocityΩ

The boundary conditions are:
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H1(0) = 0; H3(1) = 0

H ′′
1 (0) = 0; H ′′

3 (1) = 0
(A.1)

and the continuity conditions are:

H1(1) = H2(0)

H2(1) = H3(0)

H ′
1(1)

L1

=
H ′

2(0)

L2

H ′
2(1)

L2

=
H ′

3(0)

L3

EJ1
y

L2
1

H ′′
1 (1) =

EJ2
y

L2
2

H ′′
2 (0) (A.2)

EJ2
y

L2
2

H ′′
2 (1) =

EJ3
y

L2
3

H ′′
3 (0)

EJ1
y

L3
1

H ′′′
1 (1) =

EJ2
y

L3
2

H ′′′
2 (0)

EJ2
y

L3
2

H ′′′
2 (1) =

EJ3
y

L3
3

H ′′′
3 (0)

Governing equations (3) and (4) are written in terms of the unknowns (mode shapesHj and
fj with j = 1, 2, 3). The system is then solved after proposing the following expansions in
power series:

Hj(zj) =
∞∑
i0

A(j,i)z
i
j

fj(zj) =
∞∑
i0

B(j,i)z
i
j

j = 1, 2, 3

(A.3)

The natural frequencies and the corresponding mode shapes are then obtained for the desired
geometry .

In the present crack detection problem, the intermediate span represents the cracked section
and consequentlyL2 is assumed small.

On the other hand, the equivalent spring constant of second span (cracked section) may be
found as follows:

EJ2
y

L3
2

∫ 1

0

[H ′′
2 ]

2
dz2 = keq

[H ′
2(1)−H ′

2(0)]2

L2
2
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Then for each value of crack deptha, i.e. d2 = d1 − a, it is possible to find the equivalent
spring constantkeq. Inversely, given a constantk one is able to find the value ofJ (=Jx=Jy)
and from it, the corresponding radius of the intermediate span. The value ofa is then derived
directly.
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