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Abstract. The dynamic stability behavior of thin-walled rotating composite beams is studied by means 

of the finite element method. The analysis is based on the Bolotin’s work on parametric instability for 

an axial periodic load. The influence of fiber orientation and rotating speeds on the natural frequencies 

and the unstable regions is studied. The regions of instability are obtained and expressed in non-

dimensional terms. The “modal crossing” phenomenon arising in rotating beams is described. The 

dynamic stability problem is formulated by means of linearizing a geometrically non-linear Total 

Lagrangean finite element with seven degrees of freedom per node. This finite element formulation is 

based on a thin-walled beam theory that takes into account several non-classical effects such as 

anisotropy, shear flexibility and warping inhibition. 
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1    INTRODUCTION 

In the study of the dynamic behavior of structures, the characterization of the stability of 

motion plays a crucial role. With the recent technological advances in composite materials, 
the use of composite structures in the design of mechanical systems has been increasing fast 

during the last years. Due to their outstanding engineering properties, such as high 
strength/stiffness to weight ratios and favorable fatigue characteristics, thin-walled beams 

made of composite materials are widely used in the design of aircraft wings, helicopter rotor 

blades, wind turbine blades and the like. The structural configuration possibilities provided by 

fiber reinforced composite materials are vital to enhance the dynamic behavior of rotating 

beams operating in complex environmental conditions. As a result of the mentioned advances 

in composite materials, the structural design concepts have changed substantially. Thus, a 

complete understanding of the behavior of structures that work under dynamical load 

conditions is essential. 

The problem of dynamic instability of elastic structural elements, such as rods, beams and 

columns, induced by parametric excitation has been addressed by many researchers. Early 

work on this subject was made by Evan-Iwanowski (1965) and Nayfeh and Mook (1979). 

Bolotin (1964) provided an extensive introduction to the analysis of dynamic stability 

problems of various structural elements. 

Solving the parametric vibration problem of a beam subjected to a compressive dynamic 
force leads to the well known Mathieu-Hill equation (Bolotin , 1964; Evan-Iwanowski, 1965). 

Nayfeh and Mook (1979) used a perturbation method to solve this equation, in order to 
analyze the behavior of an elastic system under parametric excitation, establishing a criterion 

to obtain the transition curves by determining the characteristic exponents in the solution. 
In relation to thin-walled beams, Goldenblat (1947) investigated the problem of the 

stability of a compressed thin-walled rod presenting symmetry about one axis. The problem 
was reduced to a system of two differential equations. Tso (1968) studied the problem of 

longitudinal-torsional stability, while Mettler (1962)  and Ghobarah and Tso (1972)  analyzed 

the problem of bending-torsional stability of thin-walled beams. Bolotin (1953; 1964) and 

Popelar (1972) discussed the dynamic stability of thin-walled beams; typical I and H sections 

were considered. Hasan and Barr (1974) evaluated regions of instability of thin-walled beams 

of equal angle-section, considering axial and transverse excitation in a cantilever beam.  

The effect of rotation on the dynamic stability behavior of beams was first analyzed by 

Abbas (1986). He takes into account the effect of rotary inertia and shear deformation on the 

stability dynamic response of the beam. Also, Chen and Peng (1995) studied the stability 

behavior of a rotating blade subjected to axial load. Sakar and Sabuncu (2003) studied the 

coupling effects in the dynamic stability of rotating asymmetric cross-section blades. 

In relation to composite materials, Chen and Peng (1998) investigated the dynamic 

stability of rotating composite shafts under axial periodic loads.   

Although a number of authors have investigated the problem of dynamic stability of 

beams, a few works were focused on rotating thin-walled beams. In spite of the practical 

interest and future potential of the thin-walled composite beam structures, particularly in the 

context of aerospace and mechanical applications, the main body of the available 

investigations has been devoted to study the dynamic stability of isotropic beams. To our 

knowledge, no work has been done about composite rotating thin-walled beams. This problem 

is addressed in this paper. 

The influence of rotation in the dynamic stability behavior of composite thin-walled 

beams subjected to axial periodic excitation is investigated. In order to determine the 

instability regions, the Bolotin method is employed. The effect of the rotation speed and the 
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static load parameter on the unstable regions is analyzed for different laminate stacking 

sequences. The modal crossing phenomenon arising when considering rotation stiffening 

effects is studied as well.  

A geometrically nonlinear Total Lagrangean finite element with linear interpolation and 

seven degrees of freedom is formulated. The numerical formulation of the dynamic stability 

problem is obtained by linearizing the proposed nonlinear finite element. The element 

matrices are obtained from a thin-walled beam theory that assumes a linear displacement field 

and a nonlinear strain field (Cortínez and Piovan, 2002) and considers shear and warping 

deformations and rotary inertia effects. This formulation is easily extendable to a full 
nonlinear thin-walled beams theory developed from the proposition of full nonlinear 

displacement field (Machado and Cortínez, 2005 and 2007). 

2    KINEMATICS 

2.1  Displacement Field 

The present structural model is based on the following assumptions: 

1) The cross-section contour is rigid in its own plane. 

2) The warping distribution is assumed to be given by the Saint-Venant function for 

isotropic beams. 

3) Shell force and moment resultants corresponding to the circumferential stress ��� and the force resultant corresponding to ��� are neglected.  

4) The curvature at any point of the shell is neglected. 

5) Twisting linear curvature of the shell is expressed according to the classical plate 
theory. 

6) The laminate stacking sequence is assumed to be symmetric and balanced, or 
especially orthotropic (Barbero,  1999). 

Consider two states of the beam, an undeformed reference state and a deformed state as 
shown in Fig. 1.  

 
 

 

 

 

 

 

 

 

 

 

Figure 1 – Beam deformation schematic 

The displacement of any point in the deformed beam measured with respect to the 
undeformed reference state can be expressed in a global coordinate system (x,y,z) in terms of 
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three components. A second coordinate system (X,Y,Z), where X is a running length 

coordinate along the reference line of the beam, is fixed to the beam cross-section.  For 

convenience, we choose the reference line to be the locus of cross-sectional inertia centroids. 

The origin of (X,Y,Z) (O) is located on the reference line of the beam and is called: pole. The 

cross-section of the beam is arbitrary and initially located perpendicular to reference line of 

the beam. 

The kinematic behavior of the 3D beam is represented by the superposition of two 

movements; a translation � of the pole O (also de origin of (X,Y,Z)) measured with respect to 

the reference state and a rigid rotation of the cross-section about the pole (see Figure 2).  
Thus, the resulting displacements of a point P in the cross-section will be the sum of the 

displacement � 
 ��, �, �� generated by the translation of the pole plus the additional 
displacements generated by the rotation of the cross-section about the pole (see Figure 2). 

Thus, when the cross-section rotates about the pole the coordinate system (X,Y,Z) transforms 
to (X’,Y’,Z’). Also, an extra displacement in the longitudinal direction caused by warping is 

considered.  
 

 

 

 

 

 

 

 
 

 

 

Figure 2 –Curvilinear Transformation Schematic 

The geometry of the cross-section of the beam is defined in a curvilinear coordinate system 

(n,s) as: 

 ���, �� 
 ����� � � ����� ,       ���, �� 
 ����� � � ����� , (1) 

where the subscript m denotes a midsurface variable. 

Introducing variables for the rotations of the cross-section about the pole and the warping 

displacements along the reference axis of the beam, the displacement in the curvilinear system 

takes the form:  

 ����, �, �� 
 � � ��  � � �� � 
 � � ��  �� � ����� � ��  �� � ����� � !"  

 ����, �, �� 
 � � ��  � 
 � � ��  �� � � ����  (2) 

 ����, �, �� 
 � � �� � 
 � � ��  �� � � ����   

where  �� ,  ��  , �� and � represent rotations about the X, Y and Z axes and warping. 

The warping function F of the thin-walled cross-section may be defined as: 

 !��, �� 
 !&��� � !'��, �� (3) 

where !&��� and !'��� are the contour warping function and the thickness warping function, 
respectively. They are defined in the form (Cortínez and Piovan, 2002): 

� 

� 

( ) 
* 

� � 
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!& 
 1,- .- �*��� �/���� ���
�0 1  ��'

2 �- �*��� � /���� ���
�0  

!'��, �� 
 �� )���, (4) 

where σ is a dummy variable, and: 

  *��� 
 ��������� � �������� 

(5) 

 )��� 
 ���� ���� � ���� ����  

*��� represents the perpendicular distance from the shear center (SC) to the tangent at any 

point of the mid-surface contour, and )��� represents the perpendicular distance from the shear 

center (SC) to the normal at any point of the mid-surface contour, as shown in Fig. 2.  

In the Eq. (4) / is the shear strain at the middle line, obtained by means of the Saint-

Venant theory of pure torsion for isotropic beams, and normalized with respect to �3 ��⁄  . For 

the case of open sections / 
 0. 

3   STRESS AND STRAIN FIELDS 

3.1  Strain Field 

The displacements with respect to the curvilinear system (x, s, n) are obtained by means of the 

following expressions:  

 6 
 ����, �, ��   

 7 
 ����, �, ������ � ����, �, ������  
(6) 

 8 
 �����, �, ������ � ����, �, �� ����  

The three non-zero components εxx, εxs, εxn of the Green’s strain tensor are given by: 

 ε�� 
 :6:� � 12 <�:6:� 
= � �:7:� 

= � �:8:�  =>   

 ε�� 
 12 ?:6:� � :7:� � :6:� :6:� � :7:� :7:� � :8:� :8:� @ (7) 

 ε�A 
 12 ?:6:� � :8:� � :6:� :6:� � :7:� :7:� � :8:� :8:� @  

Substituting Eq. (2) first into Eq. (6), the resulting expression  into Eq. (7) and employing 

the relations expressed in Eq. (1) and Eqs. (3-5) (after simplifying some higher order terms) 

the components of the strain tensor are expressed in the following form: 

 ε�� 
 B�� � �C��   

 ε�� 
 2B�� 
 ��� � �C��  (8) 

 ε�A 
 2B�A 
 ��A   

Where 
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 D�� 
 �E � ���E � ���E �!&"E � F= G�E= ��E=H � F= ��E=��= � �=�  

 C�� 
 ���� ��E � ���� ��E � ) "E � * ��E=  

 ��� 
 ���� ��E � ��� � ���� G�E � ��H � �* � /��"E � ��� �/ "E
 (9) 

 C�� 
 �2 "E
  

 ��A 
 ���� ��E � ��� � ���� G�E � ��H � ) �"E � ���  

The prime symbol denotes derivation with respect to the longitudinal coordinate. Keeping 

from the above equations only the nonlinear terms corresponding to the axial-bending and 

axial-torsion couplings we can express the Green Lagrange Strain in vector form is: 

 IJ��, ��  
 KB�� , ��� , ��A, L�A , L�AMN (10) 

In the derivation of the finite element matrices we split in two parts the deformation field 

obtained below by separating the geometric parameters related to the cross-section from Eqns. 
(9). Thus we can express the strain field in matrix form as:  

 

OP
PP
QD�������AL�AL�ARS

SS
T 


OP
PP
Q1 0 0 �� �� 0 0 !U �= � �=0 �E �E 0 0 / * � / 0 00 ��E �E 0 0 0 ) 0 00 0 0 ��E �E 0 0 �) �2 *0 0 0 0 0 �2 0 0 0 RS

SS
T  

OP
PP
PP
PP
PP
PQ�

E � F=��E= ��E=��E � θW�E � θXθXEθWE��E��E � ""E
F= ��E= RS

SS
SS
SS
SS
ST

 (11) 

This is:  

 IJ��, ��  
 Y��� IZ��� (12) 

where IZ is the generalized strain vector, a function of the longitudinal coordinate of the 

beam, and Y is the cross-sectional matrix 
3.2   Stresses 

The shell stress resultants are defined in terms of constitutive equations of symmetrically 

balanced laminates (Barbero, 1999) as: 

 

OP
PP
Q[��[��[�A\��\�� RS

SS
T 


OP
PP
Q]FF 0 0 0 00 ]== 0 0 00 0 ]^^ 0 00 0 0 ]__ 00 0 0 0 ]``RS

SS
T  
OP
PP
QD�������AL��L��RS

SS
T
 (13) 

We can express the above relation in matrix form as: 

 aY 
 b IJ  (14) 
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where b is the composite shell constitutive tensor.  

4    VARIATIONAL FORMULATION 

To derive the equilibrium equations of the problem at hand we make use of the principle of 
D’Alembert (Meirovitch, 1997). Including the D’Alembert forces and ignoring material 

damping forces the principle of virtual work for dynamical systems takes the form: 

 cd 
 c7 � cef�g � ch 
 0 (15) 

where c7 is the virtual strain energy, cef�g is the virtual work of the external forces and ch is 

the virtual work of the inertia forces. 

4.1   Virtual Strain Energy 

Replacing Eq. (12) into Eq. (14) we can express the virtual strain energy as: 

 c7 
 - cIJi aY �j 
k - cIJi Gb Y��� IZ���H �jk  (16) 

Therefore: 

 c7 
 - �Y cIZ�i b Y IZ �j 
 - cIZN  Yib Y IZ k �j   k  (17) 

We define now the following cross-sectional matrix: 

 lm 
 Yib Y (18) 

Replacing Eq. (17) into Eq. (16) and separating the integral we have: 

 c7 
 - cIZN  .- lm �� ' 1 IZn  �� 
 - cIZN  l IZn �� (19) 

being: 

 l 
 - Yib Y ��m  (20) 

4.2   D’Alembert Forces Virtual work 

The D’Alembert forces virtual work expression is: 

 ch 
 - o2 Jp NcJ �7 q  (21) 

In which J is the position vector of any point in the beam, let’s note that J is a function of 
both the geometry and the instantaneous displacement field. In order to simplify the 

derivation of Jp  we express the displacement field (Eq (2) as) as: 

 r 
 Ys rZ (22) 

where the matrix of generalized displacements  rZ is defined as: 

  rZ 
 t���, u�, ���, u�, ���, u�, ����, u�, ����, u�, ����, u�, "��, u� vi (23) 

and the cross-sectional matrix is: 
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 Ys 
 w1 0 0 0 ����, �� ����, �� !��, ��0 1 0 ����, �� 0 0 00 0 1 ���, �� 0 0 0 x (24) 

The instantaneous position vector of a point in the deformed configuration can be written as: 

 J 
 Jy � Ys rZ  (25) 

where Jy is the point of the beam in the undeformed configuration, this is: 

 Jy 
 K (  �  � MN (26) 

 

 

 

 

 

 

 

Figure 3 – Rotating beam  

Before proceeding with the formulation of the D’Alembert forces we will introduce the 

spinor of the angular velocity vector in order to replace the standard cross product for an 

equivalent matrix product. Being the angular velocity vector: 

   z 
 G{� , {� , {�H, (27) 

its spinor is the following anti-symmetric matrix: 

   | 
  w 0 �{� {�{� 0 �{��{� {� 0 x (28) 

Now, for the general case of a structural element that is rotating in space (see Figure 3) we 

can write the absolute velocity and acceleration of a point of the beam as: 

 J} 
 ~��, �, �, u� 
 ~y� � ~J �| �Jy � Ys rZ� (29) 

 Jp 
 ���, �, �, u� 
 |  G| �Jy � Ys rZ�H � �J � 2|  ~J (30) 

where ~J represents the relative velocity, �J the relative acceleration and z the angular 

velocity vector, readily: 

 ~J 
 Ys ~Z (31) 

 �J 
 Ys �Z (32) 

The generalized velocities and accelerations are defined as:  

  ~Z 
 t�} ��, u�, �} ��, u�, �} ��, u�, ��} ��, u�, ��} ��, u�, ��} ��, u�, "} ��, u� vi (33) 
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  �Z 
 t�p ��, u�, �p ��, u�, �p ��, u�, ��p ��, u�, ��p ��, u�, ��p ��, u�, "p ��, u�  vi (34) 

For simplicity, we will consider the velocity of the origin of the rotating coordinate system, 

namely ~y�, to be zero 
On the other hand, the variation of the position vector is: 

 cJ 
 c�Jy � Ys rZ� 
 Ys crZ  (35) 

Replacing Eqs. (31) and (32) into Eq. (30), using Eq. (35) and recalling the expression of 

the virtual work of the inertia forces in Eq. (21) we have: 

 ch 
 - o2t| G| �Jy � Ys  rZ�H � Ys �Z � 2| �Ys ~Z�vi Ys crZ �7 q  (36) 

Reordering and grouping terms we have: 

 

 ch 
 o2 <- | | Jy �7 � - | | Ys rZ �7q  q �- 2| �Ys ~Z�~  �7
� - Ys �Zq  �7>i  Ys crZ 

(37) 

4.3   Virtual Work of the External Forces 

The virtual work of external forces can be expressed as: 

  cef�g 
 crZN��  (38) 

where �� is a column vector that represents the external forces. 

5    FINITE ELEMENT FORMULATION 

5.1    Tangent Stiffness 

Introducing the finite element discretization we can map the generalized strains in 

generalized nodal displacements. The finite element approximation is: 

  rZ 
 � r�  (39) 

Being; � a matrix of linear shape functions, � the displacement-deformation matrix according 
to the Green`s strain tensor, �� the nodal coordinates and r�  the nodal displacements, we can 

express the generalized strains matrix IZ as: 

 IZ 
 � r�  (40) 

Introducing Eq. (40) in the virtual strain energy expression (Eq. (19)) we obtain:  

 c7 
 - Gc�� r�� Hil �� r�� �� 
 - cr�iG�il �H r� ��� �- r�ic�ia� ����   (41) 

where we have implicitly defined the beam forces vector as: 

 a� 
 l � r� 
 l IZ (42) 

 a� 
 t[�, ��, ��, \� , \� , ���, ��, �,8vN (43) 
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To get a closed form expression for the last term of Eq. (39) it is convenient to pass to indicial 

notation, reverting to matrix notation later upon “index contraction”. This is: 

 - r�ic�ia� �� 
 �� - :���:�� c��[����n�  (44) 

whence: 

 h��� 
 - :���:�� [����n  (45) 

Equation (39) can now be rewritten as: 

  c7 
 cr�i�s r� � cr�i�Z r� 
 cr�i��s ��Z� r�  (46) 

being �s and �Z the material and geometric stiffness matrices, which are nonlinear functions 

of the nodal displacements. The term between parentheses is the already known tangent 

stiffness matrix, readily: 

   �i 
 �s � �Z (47) 

5.2   Dynamic Matrices 

Introducing the finite element approximation in Eqns. (26), (33) and (34): 

 Jy 
 � ��,      ~Z 
 a ~�,      �Z 
 a ��   (48) 

being r�, ~� and �� the nodal displacements, velocities and accelerations respectively. a is the 

inertia shape functions matrix. We can write the expression (37) as: 

 

ch 
 o2 <- |  �| G� ��H��7 �- |  G| �Ys rZ�H�7q �- 2|  GYs a ~�H�7~
�- Ys a ��q  �7> Ys a cr�  

(49) 

Using Eq. (23) we have: 

 

ch 
 o2 <- | | � �� �7q �- | | Ysa r� �7q �- 2| Ys a ~� �7q
�- ,� [ �� �7 q >i Ys a cr�  (50) 

Reordering terms we can express Eq. (50) as: 

 

ch 
 o2 <- ��i�i| | �7 �- r�iaiYsi  | | �7q �- ~�iaiYsi  2| �7~q
�- ��iaiYsi �7q  >  Ys a cr�  

(51) 

Finally:            

 

ch 
 o2 <- ��i�i| | Ysa �7 � - r�iaiYsi  | | Ysa �7q  q
�- ~�iaiYsi  2| Ysa~  �7 � - ��iaiYsiq Ysa �7> cr�   (52) 

C.M. SARAVIA, S.P. MACHADO, V.H. CORTINEZ3306

Copyright © 2009 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Since the nodal values are not a function of the longitudinal coordinate, the last expression 

can be rewritten for an element as: 

   chf 
 G �b �� �  �J  r� �  bb~� �s ��H cr�  (53) 

It must be noted that  �b is the centrifugal load vector,  �J is the rotation stiffness matrix,  bb 

is the Coriolis matrix and s is the consistent mass matrix: 

   �b 
 o2-  �i| |  Ys a �7f   q�   

(54) 

    �J 
 o2 - aiYsi  | |  Ys a �7fq�  

   bb 
 o2- aiYsi  2| Ys a~  �7 

 s 
 o2- aiYsiq  Ys a�7   
The centrifugal load vector can be treated as an external load.  

6    DYNAMIC STABILITY 

6.1   Equations of motion 

Introducing the finite element version of Eqn. (37) and Eqns. (44) and (53) into Eq. (15), 

assuming conservative loading and using the arbitrariness condition of the virtual magnitudes, 
as well as the satisfaction of the boundary conditions, we can formulate the equations of 

motion in matrix form as: 

  ��s ��Z ��J�r� � bb~� �  s �� 
 ��b � ��  (55) 

Ignoring Coriolis forces the equations of motion reduce to: 

   ��s ��Z ��J�r� �s �� 
 ��b � �� (56) 

Although the vector of centrifugal loads �b is obtained from the D’Alembert forces it can 

be thought as an external static force (function of the longitudinal coordinate), for that reason 

it has been written in the right hand side of the equation above. Although defined positive for 

simplicity, it’s very important to note that the rotation stiffness matrix actually plays the role 

of a negative stiffness. The negative sign in the diagonal terms of �J appears from the spinor 

product | |, the same occurs with the centrifugal load vector. 
In this paper the dynamic stability of a beam subjected to axial loads is studied. Since for 

the analyzed beam the axial natural frequencies are very high compared with those exited 
parametrically we will neglect the axial inertia forces when calculating the axial beam force. 

Thus, the resultant axial beam force equals to the axial external load.  
We will consider the problem to be an initial stress problem. Following the steps of 

section 5.1 for the derivation of the geometric stiffness matrix we found that it is possible to 
express the geometric stiffness matrix as: 

   �Z 
 � �Zr (57) 

where � is the axial beam force at the element centroid and �Zr is a unit geometrical stiffness 

matrix. For a seven DOF per node element with linear shape functions �Zr    yields: 
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   �Zr 


OP
PP
PP
PP
PP
PP
PQ
0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 �1 0 0 0 0 00 0 1 0 0 0 0 0 0 �1 0 0 0 00 0 0 �� 0 0 0 0 0 0 ��� 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 �1 0 0 0 0 0 0 1 0 0 0 0 00 0 �1 0 0 0 0 0 0 1 0 0 0 00 0 0 ��� 0 0 0 0 0 0 �� 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0RS

SS
SS
SS
SS
SS
ST

 (58) 

Where �� is the polar moment of inertia divided by the area, that is: 

   �� 
 � ��2 � �2��jj j  
(59) 

6.2   Dynamic Stability 

We derive in this section the equation of motion of a rotating cantilever beam subjected to 
an axial excitation of the form:  

   e�u� 
 e� � e�  cos �� u� (60) 

where � is the excitation frequency, e� 
 ¡e¢£ and e� 
 ¤e¢£ , α is the static load factor, β is 

the dynamic load factor and e¢£ is the critical load of the beam.  

Since both external forces acting on the beam are longitudinal and having in mind Eq. (60) 

and Eq. (57), we write the equations of motion (Eq. 56) as: 

 G�s ��J��[§ � e�u�� �ZrHr� � s �� 
  0  (61) 

being ¨̂ the versor representing the axial degree of freedom. [§ represents the axial force in the 

element caused by the rotation. For a finite element of constant cross-sectional area, and being �¢  the element centroid coordinate (measured from the origin of the axis of rotation), we have: 

   [§ 
 o jf  |z|= F=G«f= � �¢=H (62) 

Here the axis of rotation intersects the beam’s reference line. 

When the beam is excited in the axial (longitudinal) direction, and the interaction of this 

movement with the other motions is studied, the coupling of these various motions depends 

on the symmetry of the cross-section. 

 

6.3   Principal Parametric Resonance 

In the classification of parametric resonance, if � is the excitation frequency and {F the 

natural frequency of the ith mode, parametric resonance of “first kind” is said to occur when � 2{F ¬ 1 *⁄ , * 
 1,2…⁄  , while parametric resonance of the “second kind” is said to occur 

when � G{� ®{�H ¬ 1 *⁄ , * 
 1,2…�¯ ° ±�⁄ . In both cases the situation where r = 1 is 

generally the only one of practical importance. Usually the parametric resonance of the first 
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kind is termed “parametric resonance”, whereas the second kind is referred as “combination 

resonance”, because it involves two different frequencies. In this paper the study is only 

concentrated in the case of parametric resonance.    

The process of finding the boundaries of the regions of instability consist on the 

determination of the conditions under which the differential equation of the system, namely 

Eq. (35), has periodic solutions with period 2² �⁄  and 4² �⁄ . For the principal region, which 

is a half subharmonic, one looks for a solution with a period which is twice the forcing 

frequency: i.e., 4π/ϖ. The condition for the existence of solutions can be expressed in the 

following infinite determinant form (Bolotin, 1964): 

   
OP
PP
Q� � �é ® e�� �Zr � F_�=s �F=e� �Zr 0 …� � é �Zr � µ_�=s � F=_e�  �Zr …,�\ �� é �Zr � =_̀ �=s …… … … …RS

SS
T 
 0 (63) 

Where:  

 é 
 �[§�e�� (64) 

  � 
 �s � �J   (65) 

The boundaries of the instability regions lying near � 
 2{F can be determined with 

sufficient accuracy considering the first leading diagonal term (Bolotin, 1964): 

 ¶�s ��J��[§�e� ® e�� �Zr � F_�=s ¶ 
 0   (66) 

To scale the results of Eq. (64) with the corresponding frequencies and critical loads it’s 

necessary to solve additionally three eigenproblems; the problem of free vibration of an 

unloaded rotating beam: 

 |�s ��J �{=s | 
 0,   (67) 

the problem of free vibration of a beam loaded by a constant longitudinal force 

 ·�s ��J��[§�e� ® e�� �Zr �{=s · 
 0,   (68) 

And finally, the buckling problem: 

 ·�s ��J��[§�e� ® e�� �Zr · 
 0   (69) 

7    APPLICATIONS AND NUMERICAL RESULTS 

We are mainly interested in the effects of the angular velocity and the laminate stacking 

sequence on the natural frequencies of the beam and its instability regions.  
We will base the numerical implementation on a bisymmetric closed cross-section, 

considering different laminate schemes. The analyzed material is graphite-epoxy (AS4/3501) 

whose properties are E1 = 144 GPa, E2 = 9.65 GPa, G12 = 4.14 GPa, G13=4.14 GPa, G23 = 3.45 

GPa, ν12 = 0.3, ν13  =  0.3, ν23 = 0.5, ρ = 1389 kg/m
3
. 

In all the results presented below, the value of the static load parameter is adopted α = 0.5, 

and the excitation frequency � is scaled with the lowest frequency value of parametric 

resonance (that is the double of the fundamental natural frequency, that is: 2{F). It’s worth to 

note that for all cases studied in this paper the angular velocity has only one component, that 

is z 
 {�  ¹̧. 
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7.1. – Natural Frequencies and Modal Crossing  

We study in this section a cantilever beam with a bisymmetric box cross-section whose 

geometric properties are: L = 5 m, h = 0.7 m, b = 0.3 m, e = 0.05 m. Note that because of the 
cross-section symmetry the motion equations are uncoupled. Therefore, there are three main 

modes of vibration: flapping, lagging and torsional. Table 1 shows the natural frequencies and 
critical loads of the beam for different load cases, eº§'  represents the critical load of the beam 

without considering the rotation effects and eº§»  is the critical load of the beam considering the 

rotation effects. On the other hand, ω½ and {¾ represent the natural frequencies of the beam 

without rotation and a beam rotating at 200 RPM respectively. Finally, {»¿ represents the 

natural frequency considering the rotation effects (200 RPM) and the static load. 

 

Bisymmetric box beam – Elements = 50. 

 Laminate eº§'  eº§»  {' {»  ωÀÁ  Mode  

{0,0,0,0} 2,1359E+07 2,1711E+07 

25,93 26,16 19,42 Flap 1 

45,67 45,68 42,64 Lag 1 

65,20 65,27 63,76 Tors 1 

101,00 101,36 91,53 Flap 2 

163,71 163,91 158,23 Lag 2 

{0,90,90,0} 1,2441E+07 1,2792E+07 

20,39 20,69 15,20 Flap 1 

36,88 36,89 34,41 Lag 1 

64,74 64,81 63,92 Tors 1 

89,76 90,15 83,43 Flap2 

147,96 148,16 144,38 Lag 2 

{45,-45,-45,45} 2,6825E+06 3,0330E+06 

9,87 10,52 7,60 Flap 1 

18,64 18,69 17,27 Lag 1 

60,54 61,11 58,20 Flap 2 

110,91 111,16 109,268 Lag 2 

164,13 164,38 164,29 Axial 1 

Table 1 – Natural frequencies and critical loads. 

The critical load observed in Table 1 corresponds to a flexural mode in the y direction. It 

can be seen that the effect of rotation increases the buckling load, specially for the most 

flexible laminate ({45,-45,-45,45}). A similar behavior is observed for the natural frequencies 

of an unloaded beam. The longitudinal lamination sequence, namely {0,0,0,0},  gives the 

highest frequencies for both the static and the rotating beam. Conversely, the laminate {45,-

45,-45,45} presents the lowest frequency values. As expected, the effect of the static load 

(¡ 
 0.5) reduces the natural frequency of a rotating beam. However, this effect depends on 

the beam vibration mode, i.e., the natural frequency reduction is larger in the first mode 

(Flapping 1, 26% reduction). This effect keeps almost constant for the different laminates.  

To validate our beam model we compare natural frequencies and mode shapes obtained 

with a 3D shell model (Abaqus). The beam of comparison is loaded with half the critical load 

and laminated {0,90,90,0}. The implementation of the beam model was done in Matlab and, 
for a better visualization; the whole cross-section movement was rendered. Figure 4 shows a 

comparison of the first mode of vibration between the 3D shell and beam models and Table 2 
shows a comparison of the first three natural frequencies. 
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Natural Frequency  ÄF Ä=  Ä̂  

Abaqus shell 13.70 33.01 62.76 

Present  14.96 34.47 63.87 

Table 2 – Frequencies of a loaded beam (Hz), shell vs. beam comparison. 

 

  

Figure 4 – First mode shape – Shell model (Abaqus) vs. present beam model (Matlab). 

In order to analyze the modal behavior of the rotating beam we plot the first seven natural 

frequencies of an unloaded beam vs. the angular velocity. Figures 5, 6 and 7 show the results 

for the {0,0,0,0}, {45,-45,-45,45} and {0,90,90,0} laminates respectively.  

As it can be observed, the curves show that the natural frequencies increase with the 

angular frequency. This increase depends not only on the mode but also on the laminate 

stacking sequence. It was found that there are critical angular velocities for which a modal 

crossing phenomenon can exist. As it can be seen from Figure 5, in the laminate {0/0/0/0} the 

first flapping and first lagging modes cross each other at about 2300 RPM. This modal 

crossing of the first modes is generated because the first lagging mode is practically not 

affected by the rotation speed. This lack of sensitivity of the first lagging mode to the angular 
velocity variation is observed for all the laminates studied in this paper. 
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Figure 5 – Modal crossing, laminate {0/0/0/0}. 

In the case of the laminate {0/90/90/0}, the dynamic behavior of the first modes is similar 
to the previous laminate. The frequency curves show that the rotation stiffening effect is more 

significant in the flapping modes. This causes two modal crossings; the first flapping with the 
first lagging modes at 1800 RPM and the third flapping and second torsional modes at about 

700 RPM. 

 

Figure 6 – Modal crossing for a {0/90/90/0} laminate. 

The modal crossing phenomenon is more evident for the laminate {45/-45/-45/45}. In this 

case the torsional mode has a high frequency and the first axial mode appears before. Also, 

both modes are not strongly affected by the rotation, and thus, two additional modal crossings 

appear. At about 1000 RPM the first flapping mode crosses over the first lagging mode. Also, 

since the third flapping mode is strongly affected by the rotation, it crosses the first axial 

mode at 50 RPM and the first torsional mode at about 1450 RPM. By coincidence, the first 

axial and the third flapping modes have almost the same frequency for the beam without 

rotation. 
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Figure 7 – Modal crossing, laminate {45/-45/-45/45}. 

7.2 – Instability Regions 

In this section we study the behavior of the instability regions for different laminate 

sequences. Figures 8, 9 and 10 show the instability regions for three laminates: {0/0/0/0}, 
{45/-45/-45/45} and {0/90/90/0}, and for a rotation speed of 200 RPM. It is observed that the 

widest regions of instability correspond to parametrically excited flapping modes. Recall that ¤ is the dynamic load parameter. 

 

Figure 8 – Instability regions for a laminate {0/0/0/0}. 

The region corresponding to parametrically excited torsional modes is more distant from 

the main region in the case of the laminate {0,90,90,0}, in comparison with the laminate 

{0,0,0,0}.  (see Figure 9). For the laminate {45,-45,-45,45} the torsional mode is stiffer than 

the second lagging mode, for that reason it wasn’t showed in Figure 10.  
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Figure 9 – Instability regions for a laminate {0/90/90/0}. 

 

Figure 10 – Instability regions for a laminate {45/-45/-45/45}. 

To show the effect of the rotation speed on the instability boundaries we compare the 

instability regions of a beam without rotation with a beam rotating at 1000 RPM (see Figures 

11, 12 and 13). The stability region corresponding to the rotating beam is plotted in dotted-

dashed line while the no rotation case is plotted in solid line. For clearness, we have not 

scaled the forcing frequency. Figure 11 shows the evolution of the instability regions for the 

case of a laminate {0/0/0/0}. It’s observed that the effect of rotation not only moves the 

regions but also makes it wider.  

 

Figure 11 – Instability regions for a laminate {0/0/0/0}. 
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We previously stated that an increase in the angular velocity of the beam leads to an 

increase in the natural frequencies of the beam. In contrast to what could be expected, not all 

regions move to the right when increasing the rotation speed. For the particular case of the 

{0/0/0/0} and {0/90/90/0} laminates, the region corresponding to the first lagging mode 

moves to the left. This occurs because the angular velocity influences the critical buckling 

load but not the first lagging mode natural frequency.  

The laminate {0/90/90/0} shows a very similar instability behavior to that of the previous 

laminate, see Figure 9. It is important to note that for these two laminates the ordering of 

parametrically excited regions is the same to that obtained in the case of an angular velocity 
of 200 RPM (Figure 9).  

 

Figure 12 – Instability regions for a laminate {0/90/90/0}. 

In the case of a laminate {45/-45/-45/45} (Figure 13), the angular velocity effect strongly 

increases the unstable regions size. Moreover, for the first two regions the influence of this 

effect provokes the regions to cross each other. This effect is observed because for the angular 

speed for which the dash-dotted regions where plotted (1000 RPM) a modal crossing between 

the first flapping and first lagging mode has just occurred.  

 

Figure 13 – Instability regions for a laminate {45/-45/-45/45}. 

8 – CONCLUSIONS 

In this paper the dynamic stability of a rotating beam was studied and a finite element 

was specially formulated for that purpose. As a distinct aspect, the beam formulation 

incorporates in a full form the effect of shear deformation, warping inhibition and rotary 
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inertia. The instability behavior of a cantilever beam subjected to axial load was obtained by 

means of the Bolotin’s method. A geometrically nonlinear Total Lagrangean finite element 

formulation that takes into account the rotation effects was developed. 

 The numerical results show that the natural frequencies depend highly on the rotation 

speed. Also, the influence of this effect depends on the laminate stacking sequence analyzed. 

For example, the stiffening effect of the angular velocity is larger for the laminate {45,-45,-

45,45}. On the other hand, for some laminations and at different angular velocities of the 

beam a modal crossing phenomenon can appear. This phenomenon is more frequently 

observed for the first flapping and lagging modes, mainly because the first lagging mode is 
almost independent of the rotation speed. 

The unstable regions shift to the right when increasing the angular velocity and the size of 
these regions is also influenced by the angular velocity. Also, the unstable boundaries are 

affected by the variation of the orientation angle of the laminate fibers. 
For the box cross-section analyzed the widest regions of instability correspond to 

parametrically excited flapping modes. In contrast, the smallest regions correspond to 
parametrically excited torsional modes. 
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