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Abstract. The absolute coordinate method is widely used for the integrated modeling of 

complex flexible multibody systems including rigid bodies, nonlinear force elements as well 

as flexible components. In the approach proposed in [2,5], each large rotation variable is 

represented by three rotation parameters, which are used for the formulation of the 

equations of motion. This paper considers as alternative an adaptation of Lie group time 

integrators [4, 7, 8] in order to provide a more natural answer to the rotation 

parameterization problem. Lie group time integrators do not require a priori the definition of 

local generalized coordinates, in other words, it includes in its algorithmic structure an 

intrinsic and consistent strategy for the parameterization of the configuration manifold. 

The motion of a flexible multibody system is described using nodal translation and rotation 

variables so that the system evolves on the Lie group defined by a multiple cartesian product 

of R
3
 and SO(3). The interconnections between the various bodies of the multibody system 

are modeled using nonlinear algebraic constraints. As a consequence, the motion of the 

system is restricted to a submanifold of the Lie group. In other words, the equations of 

motion have the structure of a differential-algebraic equation on a Lie group (DAE on a Lie 

group). 

In order to solve DAEs on a Lie group, an extension of the generalized- method for Lie 

group systems is considered [1]. This rather broad family includes as special cases the 

classical generalized-method for dynamic systems on a linear space [3] and the algorithm 

described in [9]. Compared to the classical parameterization-based approach, the remarkable 

simplicity of the new algorithms opens some interesting perspectives for real-time 

applications, model-based control and optimization of multibody systems. 

Several critical benchmarks of rigid and flexible systems with large rotation speeds and 
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kinematic constraints are studied. In order to model flexible systems, a simple flexible beam 

element is developed without using any particular parameterization of rotations [6]. From 

these examples, it appears that Lie group methods compete with the classical “linear” 

generalized- scheme from the viewpoint of accuracy and stability. Hence, these new 

methods are promising candidates for the development of robust, efficient and open 

simulation software for flexible multibody systems. 
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