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Abstract. An eight node serendipity element free of lockemgd spurious zero energy modes is
formulated to model laminated composite plates.ir&t-brder shear deformation theory and
equivalent lamina assumption are adopted. Theefregresents transverse shear strains and stresses
as constants while their actual variations arelgdi@ Thus, a shear correction factor is useditr
gradient notation is employed which allows for gailed a-priori analysis of the finite element mbde
Its polynomial expansions are inspected and spsirierms which are responsible for shear locking
are identified. The element is corrected by simmplyoving the spurious terms from those expansions.
The compatibility modes are also clearly identifiald maintained, preventing the introduction of
spurious zero energy modes. Numerical results dbokng effects caused by the spurious terms on
displacement and transverse stresses solutiong.al$e show that properly refined meshes composed
of corrected elements provide solutions which cogeeather well to analytical solutions.
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1 INTRODUCTION

This paper describes the development of an eigtie-serendipity finite element for the
analysis of laminated composite plates using styeadient notation. The element is based on
a first-order shear deformation theory, which cdess the transverse shear strains according
to Mindlin’s theory. The equivalent lamina assuraptis employed to treat the laminate as
one single, orthotropic lamina plate whose cortiuproperties are the average of the
properties of the constituent laminae.

Strain gradient notation is an alternative notafiemwriting finite element polynomials.

It is a physically interpretable notation which atels displacements to the kinematics
quantities of the continuum. The identification thiis relationship is possible due to a
procedure which identifies the physical contentshef polynomial coefficients (Dow, 1999).
The main advantage of the use of strain gradietsttion is that the modeling characteristics
of the finite element become apparent to the d@ezlosince the early steps of the
formulation. This allows for sources of modelingoes to be identified and consequently
removed from the finite element polynomial expansidor strains prior to the formation of
the element stiffness matrix. Sources of shearihgckvill be precisely identified and
removed from the element’s strains. Causes of @mirzero energy modes will explained,
and this deficiency will be avoided by correctlinghating shear locking.

Elimination of locking in finite element analysi$ plates and shells has been a major
concern for many decades. The related literatuvass and it is not the purpose of this work
to make a thorough review. Reference will be maxda few important works which have
motivated the research reported in this paper. Arlyework (Zienkiewicz at al., 1971)
recognizes that the serendipity plate element (Adthrat al., 1970) increases unduly in
stiffness for thin problems. Recognizing the pheanan as parasitic shear, they apply a
reduced-order integration scheme (2x2 Gauss quadjato calculate transverse shear
stresses. Although this procedure represents amouement over normal integration, the
element behaves poorly in the thin plate limit (Heg at al., 1978).

The regular four-node ontinuity plate element (bilinear element) is éoypd
successfully in the analysis of thin plates wheselactive reduced integration is adopted. The
2x2 Gauss quadrature scheme is used to integratbethding energy while the 1x1 Gauss
quadrature scheme is used to integrate the sheagyem order to avoid locking (Hughes at
al., 1977).

A follow-up work (Hughes at al., 1978) addresseduoed and selective reduced
integration of Lagrange %ontinuity plate elements. The authors elect Lageaelements
under the premise that triangles and serendipigdglateral elements may behave poorly.
Although considerable improvement is achieved mteplanalysis through selective reduced
integration of Lagrange elements, findings are thase elements are rank deficient. That is,
the elements contain spurious zero energy modes.

In order to avoid rank deficiency, the “heterosmate bending element (Hughes and
Cohen, 1978) is developed. The element is basellindlin’s plate theory (&continuity)
and it is designed with the purpose of analyzingktlas well as thin plates. The element is a
nine-node quadrilateral which employs serendipibape functions for the transverse
displacement, and Lagrange shape functions forata¢ions. A selective reduced integration
scheme is employed to remove locking. The “hetefadement possesses correct rank (does
not possesses spurious zero energy modes), isantjaand passes the Mindlin’s theory plate
patch test. Numerical experiments show that théefiosis” element is superior in the overall
sense because it presents neither a divergentibelmav an oscillating behavior.
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Another author (Prathap, 1997) proposes the ustheoffield-consistency approach to
construct well-behaved plate elements. A condissrain field is constructed from
orthogonality relations which are derived form tHellinger-Reissner theorem. A two-node
Timoshenko beam element is constructed in this eratm explain the procedure and to
demonstrate the analogy to a displacement-basedepteintegrated using only one Gauss
point or to an element formulated using mixed ipbdaition fields. Further, the author applies
the field-consistency approach to construct a qladdral four-node Mindlin plate element.
The resulting element does not lock and does restgmt spurious zero energy modes.

A four-node plate bending element based on MinBkngsner theory and mixed
interpolation is devised (Bathe and Dvorkin, 198%)e element is a special case of a general
nonlinear shell element formulation. Locking is @leal by using different interpolations for
bending and transverse shear effects. Specificatgfions and transverse displacements are
interpolated using the natural coordinates bilineaape functions, and transverse shear
strains are interpolated in terms of physical skstains defined at four intermediate points
over the sides of the quadrilateral. The elementains no spurious zero energy modes and
does not lock when applied to thin plates.

In this work, spurious terms which are presenthmm shear strain polynomial expansions
of the serendipity plate element are identified ibgpection. It is demonstrated both
theoretically and numerically that they are flexdeams which cause locking of the model by
increasing the element’s shear strain energy undhfn the plate undergoes bending. It is
also demonstrated that spurious zero energy modesi@ introduced into the model by
recognizing and not removing the compatibility me&d&hese can be easily confused with
shear locking terms and be inadvertently removdts is the limitation of reduced-order
integration schemes in attempting to correct eleméor locking. Along with eliminating
legitimate spurious terms responsible for lockindpose techniques also eliminate
compatibility modes, thus introducing spurious zenergy modes. Strain gradient notation
allows for the clear identification of the compditlp modes and legitimate spurious terms in
the element’s formulation. The transparency ofirstggadient notation offers a simple and
free-of-drawbacks means to deal with spurious tefithe element is corrected for locking by
simply removing the spurious terms from the shéairss expressions. As the compatibility
modes are maintained, spurious zero energy modear introduced. Thus, the strain
gradient notation element has the advantages dcking is taken care of correctly aad
priori of the formation of the stiffness matrix and o tomputer implementation, and that it
is of correct rank.

Research on modeling and analysis of laminated osit® structures has increased
significantly in the last three decades. The camt¢eraccurately represent the actual behavior
of this kind of structures has led researcherste@hlbp analytical and numerical models every
time more refined. A thorough review on theoriesl @omputational models for laminated
composites has been presented (Reddy and Avédll)land further updated (Reddy, 2004).
Another thorough review on theories for isotropne anisotropic laminated plates has been
conducted which cites over four hundred refereifGaigal and Shimpi, 2002).

Several works have proposed high-order deformatlmories to model laminated
composite plates (Lo et al., 1977a,b; Singh and, R885; Bose and Reddy, 1998a,b). An
overview of the relationships between classical ahdar deformation theories has been
presented (Reddy and Wang, 2000). Computationalefaaanging from simple to refined
have been developed to perform numerical evaluatial those theories (Bose and Reddy,
1998b; Reddy, 1989). Further advances include enlage model that avoids shear locking
by employing a transverse shear deformation fiehdclv is compatible with the assumed
displacement field (Botello et al., 1999). Also,f@ur-noded mixed finite element for
composites is developed which is based on the wérBathe and Dvorkin (Brank and
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Carrera, 2000). A triangular element for composuésch is free of locking and spurious

zero energy modes is developed (Sheikh and ChatkiraB@03) based on Reddy’s simple
higher-order shear deformation theory. Further, dy&xl displacement for third order shear
deformation theory is employed to derive a set gfiations to model the behavior of

laminated plates, and a triangular finite elementimplemented using those equations
(Aagaah, 2003).

Although recognizing important advances in the nucaé analysis of laminated
composites using more refined theories (some meedicabove), the authors of this paper
adopt a first-order shear deformation theory in themulation of this serendipity plate
element. The element is implemented in a FORTRAdielement code in two versions;
namely, one containing the spurious terms and adfier elimination of the spurious terms.
In order to assess the performance of the elenmehtcavalidate the procedure of eliminating
the sources of locking, solutions provided by bwénsions of the element are compared.
Comparison of numerical results shows the manifiestaf shear locking and attenuation of
its effects provided by mesh refinement. Numerresllts also demonstrate that removal of
the spurious terms eliminates shear locking. Fumlbee, the corrected model is validated by
comparing numerical solutions with results obtaifredh analytical solutions (Reddy, 2004).
This work demonstrates that the element present@ddes accurate results and converges
quickly to the correct solution after spurious terwhich are responsible for shear locking are
eliminated.

2 THEORETICAL BACKGROUND

The kinematicselations according to the Mindlin or first-orddate theory may be written
as follows:

u(x, v:2) = up (x, y) + 26, (x,y) 1)
V(X1 Y, Z) =Vo (X’ Y) - Z8y (X’ Y) )
wx,y)=w 3)
by(xy) = 226 2) @
8, (xy)= ——"V(QZV’ d (5)

where u and v are in-plane displacements along thed y directions, respectively, w is the
out-of-plane (normal to the middle surface) disptaent,6, and6y are rotations in the x and y
directions, respectively (or around the y and xsaxespectively), anch@and \ are the middle
surface’s in-plane displacements along the x adulegtions, respectively. The displacement
w is independent of rotations, which allows tramseeshear deformation representation. This
feature is particularly important for modeling tkiglates and laminated composites.

Strains are defined as follows:
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Ey Uo, 20,

Ey Vo,y - 20y,

Yy [ =1Yo,, +Vo, ¢t z(HX,y—é’y,X) (6)
yyz 0 W,y—gy

Vxz 0 W, +6x

where the first vector contains membrane strainistha second vector contains plate bending
strains.

The strain energy of the laminate is the sum ofthain energies of its laminae. Hence,

1n T
U=-2X .[{g}k[Q]k{g}dek @)

2 k=1 Qk
where k is a typical lamina, n is the total numbédaminae, €}« is the strain vector of
lamina k, [Q} is the constitutive properties matrix of laminaand Qk is the volume of
lamina k.

Strain gradient notation is mainly characterizedrddating displacements and strains to
the kinematics quantities of the continuum in a wdnych is transparent to the analyst (Dow,
1999). The referred kinematics quantities are rigpdly modes, strains, and first-order and
higher-order derivatives of strains, and they aregally referred to astrain gradients The
relations of displacements and strains to straiadignts are given in symbolic form,
respectively, by:

{d} = [¢Res,} (8)
{e} = [T heso! 9)

where [g and [Tsd are the corresponding transformation matricesl ggg is the strain
gradients vector. This vector contains the setnolependent deformation modes that the
model is capable of representing. Matrig [s comprised of linearly independent vectors,
each associated to a strain gradient componentridieg) a specific deformation pattern of
the model. Eqg. (8) and Eq. (9) are combined to iabe vector §sg, and the resulting
expression is substituted into Eq. (7) to yield:

U =20 3 [l Qlefreoh, c0u o) 10

k:].Qk

which is an expression of the strain energy foriteted composites iistrain gradient
notation The quantity between parentheses is called stra@éngy matrix and it is represented
by [U,,]. The elements of its principal diagonal contaie tquantities of strain energy

associated with the pure strain modes of the laminghe other elements of the matrix
contain the quantities of energy associated with ¢bupling between the various strain
modes. Matrix [UJ] may be written as:
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=3[ ral okl 02,08 ay

where the volume integral has been broken intontagral over the area of the middle surface
of the laminate and an integral over its thickn@$ss line integral is carried out as the sum of
the integrals over the thicknesses of the vari@msinae. The integration limits z e z

represent the bottom and top coordinates of a aypéenina k, respectively. The integration
over the thickness of the laminate yields its s&ffs quantities:

A = kZ:,(Qu )z -2,) (12)
B, = %; @), (z2-22) (13)
D; = %kZ:,(Qu ) (22 -22.) (14)
A =KY(Q )z -2Z,.) (15)

where A is the membrane stiffness, B is the men#tanding coupling stiffness, D is the

bending stiffness, and *Ais the transverse shear stiffness and it is sudgjetd a shear
correction factor KThe determination of the shear correction factorldmninates is still an
open issue as it depends on lamination scheme, ggegnand material properties (Reddy,
2004). The value 5/6, which is very accurate fombgeneous, isotropic plates, is most
commonly used. This value is adopted in the nurakaoalyses performed in this paper to
allow for comparisons to the analytical solutiomspboyed as reference solutions (Reddy,
2004).
Finally, as the strain energy in terms of the s&ffs matrix is given by:

LJ=%aﬂWKHd} (16)

the general expression of the stiffness matrixnairs gradient notation turns out to be:

[K]=ld Uy 4™ (17)
3 STRAIN GRADIENT NOTATION SERENDIPITY PLATE EL EMENT

The formulation of an eight-node serendipity platée element in strain gradient notation
is presented in this section. The finite elemesh®wn in figure 1. Five degrees of freedom are

associated to each node; namely, in-plane dispkictsmy and v, the out-of-plane
displacement w, and rotatiofsand6.
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Graue de liberdade em cada né

Fig. 1 - Eight-node serendipity plate element

The displacement polynomial expansions in straadignt notation, according to Eq.(1)
through Eq.(5), are obtained by substituting thienamvn coefficients by their physical contents.
The procedure to identify physical contents oftéinelement displacement polynomials is
described in detailed by Dow (1999). The strairdgmat notation displacement polynomials for
this element are presented below:

L(X y,z)=(u)0 +(‘9x)oX+(ny /2—r)oy+(£XYX)OX2 /2+(‘9x,y)oxy+(yxy,y /2_5y,x)oy2 /12

+(‘9>cxy)o X2y/2+(£xyy)0xy2 1240, + Ve /2)oZ+(€X,Z)O Xz+ (ny,z ~Vyzx +szy)o yz/2 (18)
+ (Exxz)o X22/2+(ny,yz _EMXZ)O y'z/2+ (Exyz)o Xyz+ (5 xxyZ)o X2y2/2+(5xyy2)0 xy°z/2
\(X Vs Z)= (V)o +(ny /2+r)OX+(‘9y)oy+(yxy,x _‘9x,y)ox2 /2+(£y,x)oxy+ (‘gy,y)o y? 12
+(£y,xx)o x2y/2+(£y,xy)0 xy2 /2+(yyz /2—6?),)0 Z+(ny,z +Vyzx _szy)o xz/2+(£y,z)0 yz (19)
+ (yxyxz —£xyz)o X°z[2+ (ng)o y22/2+(£y,xz)0 Xyz+ (5 y’XXZ)O x2yz/2+ (.s MXYZ)o xy22/2
Wx )= Wo + (1 12 00X+ 1y, 1246, ) v+ (i =€), X7 12
+ (_ Vxyz ¥ Vyzx * yxz,y) Xy/2+ (yyzy _£y,z)o y2 12+ (szxy _"5‘xyz)OX2y/2 (20)
+ (yyzxy yxz) y?x/2
6, (% ¥)=(6x * ¥y, /2)0 + (Ex,z)ox"'(yxy,z ~Vyzx +szy)oy/2

2 2 2 2 (21)
+ (‘gxxz)ox 12+ (yxyyz - £y,xz)o y“ 2+ (‘gxyz)o Xy + (5 XXyZ)OX yl2+ (‘Exyyz)o xy“ 12
9y(x’ y):—(yyZIZ—Hy)O _(ny,z *Vyzx _szy)oX/Z_(‘Ey,Z)oy 22)

- (nyxz - gxyz)o x? 12~ (gy,yz)o y2 12— (gy,xz)o Xy— (g yxxz)0 XZy/2— (g yxyz)o xyz /2

These expansions contain the set of fourty straates that the element is capable of
representing. These strain states are rigid bodges) constant strains, flexural strains and
shear strains gradients, which are listed below:

Rigid body modes: ( ) (V) (r)o (W) (6, (6y),
Constant strains: x)o €y )O iy ) (Viedo yz)
Flexural strains: (‘9x,x)0 (‘gx,y)o (gx,z)o (gx,xy)o (gx,yy)o
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(5xxz) ( xyZ) ( xxyz) (‘9 XWZ)O
(‘gyx) ( ) ( )o (‘gy,xy)0 (‘gy.xz)o
(‘gyxx)0 ( yyZ) ( yxxz)o (‘9 y,xyz)o
Shear strain gradients: (nyx)o (yxyy) (ny,z)o
(yxy,xz) (yxy,yz)o (szx)o (yxz,y)o
(yxzxy R (yyz,x)o (Vyz.y)o (Vyzxy)o

The elastic strain expansions for the element lat&med through application of Eq.(6):

gx:(gx)o-"(gx,x) X+( ) y+(€><yy) y /2+(€>€Z)oz (23)

+ (5 xxz)o XZ+ (g XyZ)o yz+ (5 xxyz)o Xyz+ (5 XWZ)O y2z/2

£y = (‘gy)o +(£y,><)ox"'(‘9yyy)0 y"'(‘fy,xx)ox2 /2+(‘9yv><y)o Xy+(€%2)oz (24)

+ (‘9y,y2)0 yz+ (‘9y,XZ)O XZ+ (‘9 MXXZ)O X212+ (‘9 yxyZ)o Xyz

Yy =Wy )y + Wy ) X+ Wy )y Y+ Wz )y 24 W sy ), X2 (Vs ) v2

+(£X,Xy)0 x? /2+(£x,yy +€Y'Xx)o xy+(£y’xy)oy2 /2+(g xxyz)o Xz/2 (25)
+ (‘9 xyyz T € yxxz)o Xyz+ (5 Mxyz)o y22/2

Vyz = (yyz)o +(yyZX)OX+(VYZy) y+(VYZXY) Xy"'(yxy,xz)ox2 /2+(yxzxy)oX2 /2 (26)
_(gxyz)oxz +( yyz) y /2+( yxXZ)O x2y/2+(£ yxyz)oxyz /2

Vi = (o + (VXZX)OX+ (yxzy)oy+ (szxy)oxy+ (nyyz)o y2 12+ (Vyzxy)o y*12 (27)

+ (sxxz)ox2 12— (ewz)o y2 + (sxxyz)o X2y 12+ (sxyyz)o xy? 12

Examination of these strains expressions will rewikea presence of spurious terras
priori. Strains expansions should be only composedmstevhich are physically related to the
strains quantities they represent. Examinatiomefexpansions for normal strains, Eq.(23) and
Eq.(24), shows that all coefficients are associtaetieir respective normal strains. Therefore,
all those terms are legitimate as they correctitrdoute to the representation of normal strains.

However, examination of the expansions for sheainst, Eq.(25), Eq.(26) and Eq.(27),
reveals that besides legitimate terms, these eigs contain terms which are related to
normal strains. In general, normal strain termshiear strains expansions are spurious terms
because they will increase the shear strain er@rtge element unduly when activated during
deformation. That is, they will cause shear locking

Spurious terms are introduced due to the use ommipatible displacement polynomials. In
the present case, the membrane displacement palgisoselected are incomplete, third order
polynomials. They do not contain the termisandy®. This causes the presence of spurious
terms in the in-plane shear strain expangign Further, the order of the rotation polynomial
expansions and the order of the out-of-plane digpheent polynomial expansion are the same,
which is inconsistent with Mindlin plate theory. & heason is that the transverse shear strains
are defined as the sum of the rotations and teederivatives of the out-of-plane displacement
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(see EQ.(6)). These polynomials would be consistahe out-of-plane displacement polyno-
mial were one order higher than the order of thatimn polynomials. It is this inconsistency
that causes the presence of spurious terms inahgsverse shear strain expansigagandys,.

Based on these arguments, after examining then stvgpansions above, one might be
tempted to remove all the normal strain gradienhsefrom the shear strain expansions to
produce a well-formulated element. However, cdirsftrutiny of the shear strain expansions
reveals that not all their normal strain gradienits are spurious. Some are actually terms that
are needed by the element. Such terms are negess#éney are recognized as the terms of
compatibility equations of the elasticity theoryhat is, they are compatible modes. This will
be shown in the following for each shear strainagsgmon.

The expansion of the in-plane shear styginEq.(25), contains eight normal strain gradient
terms. Four of these terms are needed in the fation because they give rise to the following
compatibility equations:

Vyxy = Exyy ¥ Eyxx (28)
YVxyxyz = € xyyz T € yxxz (29)

and, hence, the only spurious terms present imtp&ne shear strain expansion are

(g x,xy)o’ (‘9 y,xy)o’ (‘9 xxyz)o’ (‘9 y,xyz)0 '

Proceeding on with tha-priori analysis, it is seen that the expansion of thestrerse
shear straity,,, Eq.(26), contains four normal strain gradientnigrone gradient of the in-plane
shear strain and one gradient of the transverse shrain in the plane X-Z, which appear to be
spurious for not belonging to the Taylor seriesaggon ofy,,. However, according to the
following compatibility equation:

Yyzxx = Vxyxz T Vxzxy = 2€xyz (30)

the only spurious terms a(ey yz)o’ (syxxz)o ,and(gyxyz)o :
Finally, it is seen that in the expansion of tren&verse shear strag, Eq.(27), there are

four normal strain gradient terms, one gradienthefin-plane shear strain, and one gradient of

the transverse shear strain in the plane Y-Z, wlappear to be allien to the expansion.

However, according to the following compatibilitgeation:
Vxzyy = Vyyz T Vyzxy = 2€ yxz (31)

the only spurious terms a(exxz)o, (‘gxxyz)o ,and(sxyyz)o.

The terms on the left-hand sides of the compaijbgguations above belong to the Taylor
series expansions of the corresponding shear str&onsequently, the terms on the right-hand
sides of those equations are compatible modess, Thase terms must be kept, and the only
terms to be eliminated are those recognized asiosgguterms. Proceeding on with the
elimination results on the corrected shear strggaesions, which are:

Vxy = (yxy)o + (yxy,x)0X+ (yxy,y)o y+ (ny,z)o zZ+ (V xyxz)o XZ+ (V xy,yz)o yz (32)

+ (Ex,yy + Ey,xx)o Xy+ (5 Xyyz te yxxz)o Xyz
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Vyz = (yyz)o + (yyzx)ox + (yyzy)oy + (yyzxy)o Xy + (yxy,xz)ox2 12+ (yxzxy)OX2 12~ (gxyz)ox2 (33)
Ve = Facdo *+ )y X+ (o )oY+ (s o X9+ gy, Y2 12+ (Vg ), Y2 12 (€ ). Y2 (34)

These shear strain expansions do not contain amosp terms and the compatible modes
have been kept. Removal of the spurious termsremshat shear locking will not occur, and
the presence of the compatible modes preventsittweluction of spurious zero energy modes.
Therefore, these two measures must be taken t@mearthat spurious mechanisms will not
occur in the eight-node serendipity plate elemamtnd analysis. As all spurious terms are
present in shear strains polynomials, they mayebsrned to as parasitic shear terms as it has
been done in the literature (Dow, 1999; Zienkievatal., 1970).

The eight-node plate element developed above willdlidated in the next section through
comparison of numerical and analytical resultsed¢ced problems. Also, the effects of the
identified spurious terms on the behavior of tlerant will be investigated.

4 NUMERICAL APPLICATIONS

In this section, two laminated composite plate fewois are analyzed employing the
serendipity plate model described above.

4.1  Application #1

To start, a cantilever plate problem is analyzeitivdemonstrates with great clarity the
severe shear locking caused by the spurious teresemt in the eight-node serendipity plate
element. The plate is a two-layer angle ply langnaiith lamination scheme -45°/+45°
subjected to two point loads applied at the coroétbe free end. Fig. 2 shows the lay-out of
this problem.

Fig. 2 - Cantilever plate subjected to concentrédads at the free-end. Anti-symmetric angle-piyilzate -
45°/+45°, Problem definition.

Fig. 3(a) and Fig. 3(b) show the transverse digptaent w solutions of the plate modeled
with elements containing the spurious terms anchefgs corrected for the spurious terms,
respectively. It is seen that the former is mudfiestthan the latter, evidencing the strong
shear locking effect. According to these figurése taximum displacements calculated for
both models are 0.08 m and 0.18 m, respectivelgré&fbre, it is apparent that shear locking
causes the solution to be greatly underestimatied.3tc) shows the behaviors of the two
models with mesh refinement. The solutions withspuirious terms converge asymptotically
and very rapidly.
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0.2
0.1
w (m)
-0.1
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Fig. 3(a) - Cantilever plate subjected to concéatrdoads at the free-end. Anti-symmetric anglelpiginate -
45°/+45°, Transverse displacement solutions with spurieuss.
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Fig. 3(b) - Cantilever plate subjected to concaattdoads at the free-end. Anti-symmetric anglefaiginate -
45°/+45°. Transverse displacement solutions without spsrterms.
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Fig. 3(c) - Cantilever plate subjected to concdattdoads at the free-end. Anti-symmetric anglelpiginate -
45°/+45°. Convergence of transverse displacement solutidgtiisand without spurious terms.

4.2  Application #2
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The second application problem is a square simgbparted (SS1 suppports) cross-ply
laminated composite plate subjected to a uniforad lof value g= 10 N/nf. The laminate is
symmetric with lamination scheme 0°/90°/0°, andsides of the laminate are 1.0 m in length
(@ = b = 1.0 m) as shown in Fig. 4. The plate isexb both with side length-to-thickness
ratios a/h = 10 and a/h = 100. In-plane normabks#ss,, andoyy, are calculated at the center
point of the plate, while transverse shear stresseand 1y, are calculated at borders middle
points. Table 1 contains the highest percent énreach solution.

Fig. 4 — Square simply-supported (SS1 boundaryitiond) plate subjected to a uniformly distributedd.
Symmetric cross-ply laminaté/00°/0°. Problem definition.

First, solutions for the thick plate (a/h = 10) gmesented. Fig. 5(a) through Fig. 5(c)
show the results of these analyses. In generdepisted by these figures, the effects of shear
locking although apparent, are not as significantheey are in thin plates. These deleterious
effects appear to be greatly attenuated by mesfteraént.

Fig. 5(a) through Fig. 5(c) show solutions for tlansverse shear stressgs It is
observed that shear locking effects are strongethan coarser meshes solutions. The
corresponding percent errors are significant. Efoorthe model with spurious terms is
39.63%. These error drops to 17.51% after the ramof/the spurious terms. Further, it is
also observed that mesh refinement attenuates &ang, and that the models converge
within acceptable levels of error to the analytisalution. The finer mesh fax, solutions
contains errors of only 1.05% and 0.60%. The cagsmece plots of Fig. 5(c) show that
solutions for transverse shear stresses, with aimithom spurious terms, converge
asymptotically to the analytical solutions from kEwbounds.

Next, solutions for the thin plate (a/h = 100) aresented. Fig. 6(a) through Fig. 6(f)
show the results of these analyses. In generakethdts depicted by these figures show that
the model containing the spurious terms eitherdoasergence delayed or prevented whereas
the model without the spurious terms converges amdl quickly to the analytical solutions.
Fig. 6(a) shows that the spurious terms delay cg@ree of the normal stressgg, and that
even the finer mesh (16x16) presents results warehstill far from the analytical results.
Errors range from 93.06% to 14.90%. On the otherdhdig. 6(b) shows that after the
removal of the spurious terms, convergence occarg guickly and well to the analytical
solutions. The highest percent error is only 4.38% drops to 0.29% with refinement. The
convergence plots in Fig. 6(c) help to demonstitaése solutions behaviors.

Fig. 6(d) through Fig. 6(f) show the solutions foe transverse shear stressgs The
spurious terms cause a strong delay in convergancemonstrated in Fig. 6(f). The coarser
mesh error is 386.42%, dropping to 158.89%. It |0 abserved that the coarse mesh
produces results which are qualitatively erroneddter the removal of the spurious terms, as
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shown in Fig. 6(e), solutions for transverse slhad@ss converge rather well to the analytical
solution. Errors range from 15.50% to 0.47%. Thawvergence plot in Fig. 6(f) reinforces
these observations.

Furthermore, the convergence plots associatedecsdfutions without spurious terms
show that the numerical solutions tend asymptdyidal the analytical solutions. This is an
important characteristic which indicates fast cogeeace rates.
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Fig. 5(a) — Square simply-supported (SS1 boundangitions) plate subjected to a uniformly distrisdifoad
with side-to-thickness ratio a/h = 10. Symmetriass-ply laminate W90°/0°. Transverse shear stressgs
computed through the thickness of the laminate ggtlrious terms.
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Fig. 5(b) — Square simply-supported (SS1 boundanglitions) plate subjected to a uniformly distréxifoad
with side-to-thickness ratio a/h = 10. Symmetriass-ply laminate W90°/0°. Transverse shear stressgs
computed through the thickness of the laminateanttspurious terms.
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Fig. 5(c) — Square simply-supported (SS1 boundanglitions) plate subjected to a uniformly distridiioad
with side-to-thickness ratio a/h = 10. Symmetriass-ply laminate ¥90°/0°. Convergence of transverse shear
stresses,, solutions with and without spurious terms.
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Fig. 6(a) — Square simply-supported (SS1 boundangitions) plate subjected to a uniformly distridifoad
with side-to-thickness ratio a’/h = 100. Symmetrizss-ply laminate ¥90°/0°. Normal stresses,, computed
through the thickness of the laminate with spuritums.
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Fig. 6(b) — Square simply-supported (SS1 boundanglitions) plate subjected to a uniformly distréxiioad
with side-to-thickness ratio a/h = 100. Symmetrizss-ply laminate ?90°/0°. Normal stresses,, computed

through the thickness of the laminate without spusiterms.
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Fig. 6(c) — Square simply-supported (SS1 boundanglitions) plate subjected to a uniformly distridifoad

with side-to-thickness ratio a’/h = 100. Symmetrizss-ply laminate ¥90°/0°. Convergence of normal stresses

oxx SOlutions with and without spurious terms.
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Fig. 6(d) — Square simply-supported (SS1 boundanglitions) plate subjected to a uniformly distréxifoad
with side-to-thickness ratio a/h = 100. Symmetrizss-ply laminate W9(°/0°. Transverse shear stressgs
computed through the thickness of the laminate ggtlrious terms.
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Fig. 6(e) — Square simply-supported (SS1 boundangitions) plate subjected to a uniformly distridiioad
with side-to-thickness ratio a/h = 100. Symmetrizss-ply laminate W90°/0°. Transverse shear stressgs
computed through the thickness of the laminateauitlspurious terms.
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Fig. 6(f) — Square simply-supported (SS1 boundanddions) plate subjected to a uniformly distrisdifoad
with side-to-thickness ratio a/h = 100. Symmetrizss-ply laminate 990°/0°. Convergence of transverse shear
stresses,, solutions with and without spurious terms.

5 CONCLUSION

An eight-node serendipity element has been forradlasing strain gradient notation for
the analysis laminated composite plates. The shiams polynomial expansions of the
element were inspected for the identification ofirspus terms associated to shear locking.
Due to the transparency of strain gradient notatiloa element has been corrected by simply
removing the spurious terms from the shear straolynomial expansions. In addition,
compatible mode terms, which might be mistakenpasigus, have been clearly identified by
recognizing that they comprise compatibility eqoias. Those terms have been retained in
order to avoid the introduction of spurious zerergy modes.

Thick and thin rectangular plates have been andlyae different lamination schemes
and boundary conditions. In each case, stressaigw provided by the model containing
the spurious terms have been compared to streskeg®is provided by the corrected model.
Those numerical analyses have demonstrated thadehé&fied spurious terms are the cause
of shear locking. Those analyses have also denadedtthe effectiveness of the procedure
employed to eliminate the spurious terms as, ireg@nsolutions provided by the corrected
model converged monotonically and faster to anadytisolutions. Further, numerical
solutions have shown that mostly transverse sheasses solutions provided by the model
containing the spurious terms might not convergeqadtely to the correct solutions as the
results oscillate or contain great levels of eswch as those in Table 1 and Table 2.

A limitation of the current work is that the elemdras not been designed to assume
arbitrary shapes as its formulation does not endbgeometric mapping procedure such as
that used in the isoparametric formulation. Newddss, it has been shown that the element
behaves quite well as a rectangular element dftemation of the spurious terms.

The use of strain gradient notation may be vieweddvantageous as it allows spurious
terms responsible for shear locking to be iderdihad eliminate@-priori. The authors claim
to have demonstrated theoretically the sourceshearslocking and spurious zero energy
modes in the eight-node serendipity plate elemant to have built an efficient FSDT
element to analyze rectangular laminated compopiates.
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