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Abstract. An eight node serendipity element free of locking and spurious zero energy modes is 
formulated to model laminated composite plates. A first-order shear  deformation  theory  and 
equivalent  lamina  assumption are adopted. The model represents transverse shear strains and stresses 
as constants while their actual variations are parabolic. Thus, a shear correction factor is used. Strain 
gradient notation is employed which allows for a detailed a-priori analysis of the finite element model. 
Its polynomial expansions are inspected and spurious terms which are responsible for shear locking 
are identified. The element is corrected by simply removing the spurious terms from those expansions. 
The compatibility modes are also clearly identified and maintained, preventing the introduction of 
spurious zero energy modes. Numerical results show locking effects caused by the spurious terms on 
displacement and transverse stresses solutions. They also show that properly refined meshes composed 
of corrected elements provide solutions which converge rather well to analytical solutions.  
 
 

Mecánica Computacional Vol XXIX, págs. 39-57 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

1 INTRODUCTION 

This paper describes the development of an eight-node serendipity finite element for the 
analysis of laminated composite plates using strain gradient notation. The element is based on 
a first-order shear deformation theory, which considers the transverse shear strains according 
to Mindlin’s theory. The equivalent lamina assumption is employed to treat the laminate as 
one single, orthotropic lamina plate whose constitutive properties are the average of the 
properties of the constituent laminae.  

Strain gradient notation is an alternative notation for writing finite element polynomials. 
It is a physically interpretable notation which relates displacements to the kinematics 
quantities of the continuum. The identification of this relationship is possible due to a 
procedure which identifies the physical contents of the polynomial coefficients (Dow, 1999). 
The main advantage of the use of strain gradient notation is that the modeling characteristics 
of the finite element become apparent to the developer since the early steps of the 
formulation. This allows for sources of modeling errors to be identified and consequently 
removed from the finite element polynomial expansions for strains prior to the formation of 
the element stiffness matrix. Sources of shear locking will be precisely identified and 
removed from the element´s strains. Causes of spurious zero energy modes will explained, 
and this deficiency will be avoided by correctly eliminating shear locking. 

Elimination of locking in finite element analysis of plates and shells has been a major 
concern for many decades. The related literature is vast and it is not the purpose of this work 
to make a thorough review. Reference will be made to a few important works which have 
motivated the research reported in this paper. An early work (Zienkiewicz at al., 1971) 
recognizes that the serendipity plate element (Ahamad et al., 1970) increases unduly in 
stiffness for thin problems. Recognizing the phenomenon as parasitic shear, they apply a 
reduced-order integration scheme (2x2 Gauss quadrature) to calculate transverse shear 
stresses. Although this procedure represents an improvement over normal integration, the 
element behaves poorly in the thin plate limit (Hughes at al., 1978). 

The regular four-node Co-continuity plate element (bilinear element) is employed 
successfully in the analysis of thin plates when a selective reduced integration is adopted. The 
2x2 Gauss quadrature scheme is used to integrate the bending energy while the 1x1 Gauss 
quadrature scheme is used to integrate the shear energy in order to avoid locking (Hughes at 
al., 1977).  

A follow-up work (Hughes at al., 1978) addresses reduced and selective reduced 
integration of Lagrange Co-continuity plate elements. The authors elect Lagrange elements 
under the premise that triangles and serendipity quadrilateral elements may behave poorly. 
Although considerable improvement is achieved in plate analysis through selective reduced 
integration of Lagrange elements, findings are that those elements are rank deficient. That is, 
the elements contain spurious zero energy modes.  

In order to avoid rank deficiency, the “heterosis” plate bending element (Hughes and 
Cohen, 1978) is developed. The element is based on Mindlin´s plate theory (Co-continuity) 
and it is designed with the purpose of analyzing thick as well as thin plates. The element is a 
nine-node quadrilateral which employs serendipity shape functions for the transverse 
displacement, and Lagrange shape functions for the rotations. A selective reduced integration 
scheme is employed to remove locking. The “heterosis” element possesses correct rank (does 
not possesses spurious zero energy modes), is invariant, and passes the Mindlin´s theory plate 
patch test. Numerical experiments show that the “heterosis” element is superior in the overall 
sense because it presents neither a divergent behavior nor an oscillating behavior. 
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Another author (Prathap, 1997) proposes the use of the field-consistency approach to 
construct well-behaved plate elements.  A consistent strain field is constructed from 
orthogonality relations which are derived form the Hellinger-Reissner theorem. A two-node 
Timoshenko beam element is constructed in this manner to explain the procedure and to 
demonstrate the analogy to a displacement-based element integrated using only one Gauss 
point or to an element formulated using mixed interpolation fields. Further, the author applies 
the field-consistency approach to construct a quadrilateral four-node Mindlin plate element. 
The resulting element does not lock and does not present spurious zero energy modes. 

A four-node plate bending element based on Mindlin/Reissner theory and mixed 
interpolation is devised (Bathe and Dvorkin, 1985). The element is a special case of a general 
nonlinear shell element formulation. Locking is avoided by using different interpolations for 
bending and transverse shear effects. Specifically, rotations and transverse displacements are 
interpolated using the natural coordinates bilinear shape functions, and transverse shear 
strains are interpolated in terms of physical shear strains defined at four intermediate points 
over the sides of the quadrilateral. The element contains no spurious zero energy modes and 
does not lock when applied to thin plates. 

In this work, spurious terms which are present in the shear strain polynomial expansions 
of the serendipity plate element are identified by inspection. It is demonstrated both 
theoretically and numerically that they are flexural terms which cause locking of the model by 
increasing the element´s shear strain energy unduly when the plate undergoes bending. It is 
also demonstrated that spurious zero energy modes are not introduced into the model by 
recognizing and not removing the compatibility modes. These can be easily confused with 
shear locking terms and  be inadvertently removed. This is the limitation of reduced-order 
integration schemes in attempting to correct elements for locking. Along with eliminating 
legitimate spurious terms responsible for locking, those techniques also eliminate 
compatibility modes, thus introducing spurious zero energy modes.  Strain gradient notation 
allows for the clear identification of the compatibility modes and legitimate spurious terms in 
the element´s formulation. The transparency of strain gradient notation offers a simple and 
free-of-drawbacks means to deal with spurious terms. The element is corrected for locking by 
simply removing the spurious terms from the shear strains expressions. As the compatibility 
modes are maintained, spurious zero energy modes are not introduced. Thus, the strain 
gradient notation element has the advantages that locking is taken care of correctly and a-
priori  of the formation of the stiffness matrix and of the computer implementation, and that it 
is of correct rank. 

Research on modeling and analysis of laminated composite structures has increased 
significantly in the last three decades. The concern to accurately represent the actual behavior 
of this kind of structures has led researchers to develop analytical and numerical models every 
time more refined. A thorough review on theories and computational models for laminated 
composites has been presented (Reddy and Averill, 1991) and further updated (Reddy, 2004). 
Another thorough review on theories for isotropic and anisotropic laminated plates has been 
conducted which cites over four hundred references (Ghugal and Shimpi, 2002).  

Several works have proposed high-order deformation theories to model laminated 
composite plates (Lo et al., 1977a,b; Singh and Rao, 1995; Bose and Reddy, 1998a,b). An 
overview of the relationships between classical and shear deformation theories has been 
presented (Reddy and Wang, 2000). Computational models ranging from simple to refined 
have been developed to perform numerical evaluation of all those theories (Bose and Reddy, 
1998b; Reddy, 1989). Further advances include a layerwise model that avoids shear locking 
by employing a transverse shear deformation field which is compatible with the assumed 
displacement field (Botello et al., 1999).  Also, a four-noded mixed finite element for 
composites is developed which is based on the work of Bathe and Dvorkin (Brank and 
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Carrera, 2000). A triangular element for composites which is free of locking and spurious 
zero energy modes is developed (Sheikh and Chakrabarti, 2003) based on Reddy´s simple 
higher-order shear deformation theory. Further, Reddy´s displacement for third order shear 
deformation theory is employed to derive a set of equations to model the behavior of 
laminated plates, and a triangular finite element is implemented using those equations 
(Aagaah, 2003). 

Although recognizing important advances in the numerical analysis of laminated 
composites using more refined theories (some mentioned above), the authors of this paper 
adopt a first-order shear deformation theory in the formulation of this serendipity plate 
element. The element is implemented in a FORTRAN finite element code in two versions; 
namely, one containing the spurious terms and other after elimination of the spurious terms. 
In order to assess the performance of the element and to validate the procedure of eliminating 
the sources of locking, solutions provided by both versions of the element are compared. 
Comparison of numerical results shows the manifestation of shear locking and attenuation of 
its effects provided by mesh refinement. Numerical results also demonstrate that removal of 
the spurious terms eliminates shear locking. Furthermore, the corrected model is validated by 
comparing numerical solutions with results obtained from analytical solutions (Reddy, 2004). 
This work demonstrates that the element presented provides accurate results and converges 
quickly to the correct solution after spurious terms which are responsible for shear locking are 
eliminated. 

2 THEORETICAL BACKGROUND 

The kinematics relations according to the Mindlin or first-order plate theory may be written 
as follows: 

 
( ) ( ) ( )yxzyxuzyxu xo ,,,, θ+=                                                                                             (1) 

( ) ( ) ( )yxzyxvzyxv yo ,,,, θ−=                                                                                              (2) 

( ) wyxw =,                                                                                                                             (3) 

( ) ( )
z

zyxu
yxx ∂

∂= ,,
,θ                                                                                                             (4) 

( ) ( )
z

zyxv
yxy ∂

∂−= ,,
,θ                                                                                                           (5) 

 
where u and v are in-plane displacements along the x and y directions, respectively, w is the 
out-of-plane (normal to the middle surface) displacement, θx and θy are rotations in the x and y 
directions, respectively (or around the y and x axes, respectively), and u0 and v0 are the middle 
surface´s in-plane displacements along the x and y directions, respectively. The displacement 
w is independent of rotations, which allows transverse shear deformation representation. This 
feature is particularly important for modeling thick plates and laminated composites. 

Strains are defined as follows: 
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where the first vector contains membrane strains and the second vector contains plate bending 
strains. 

The strain energy of the laminate is the sum of the strain energies of its laminae. Hence, 

          
{ } [ ] { } k

n

k k
kk

T
k dQU Ω∑ ∫=

= Ω1
 

2

1 εε
                                                                             (7) 

where k is a typical lamina, n is the total number of laminae, {ε} k is the strain vector of 
lamina k, [Q]k is the constitutive properties matrix of lamina k, and Ωk is the volume of 
lamina k. 

Strain gradient notation is mainly characterized by relating displacements and strains to 
the kinematics quantities of the continuum in a way which is transparent to the analyst (Dow, 
1999). The referred kinematics quantities are rigid body modes, strains, and first-order and 
higher-order derivatives of strains, and they are generally referred to as strain gradients. The 
relations of displacements and strains to strain gradients are given in symbolic form, 
respectively, by: 

 

          { } [ ]{ }sgd εφ=                                                                                                           (8) 

 
          { } [ ]{ }sgsgT εε =                                                                                                        (9) 

 
where [φ] and [Tsg] are the corresponding transformation matrices, and {εsg} is the strain 
gradients vector. This vector contains the set of independent deformation modes that the 
model is capable of representing. Matrix [φ] is comprised of linearly independent vectors, 
each associated to a strain gradient component, describing a specific deformation pattern of 
the model. Eq. (8) and Eq. (9) are combined to eliminate vector {εsg}, and the resulting 
expression is substituted into Eq. (7) to yield: 
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which is an expression of the strain energy for laminated composites in strain gradient 
notation. The quantity between parentheses is called strain energy matrix and it is represented 
by [U

M
]. The elements of its principal diagonal contain the quantities of strain energy 

associated with the pure strain modes of the laminate. The other elements of the matrix 
contain the quantities of energy associated with the coupling between the various strain 
modes. Matrix [U

M
] may be written as: 
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where the volume integral has been broken into an integral over the area of the middle surface 
of the laminate and an integral over its thickness. This line integral is carried out as the sum of 
the integrals over the thicknesses of the various laminae. The integration limits z

k-1
 e z

k
 

represent the bottom and top coordinates of a typical lamina k, respectively. The integration 
over the thickness of the laminate yields its stiffness quantities: 
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where A is the membrane stiffness, B is the membrane-bending coupling stiffness, D is the 

bending stiffness, and A* is the transverse shear stiffness and it is subjected to a shear 
correction factor K. The determination of the shear correction factor for laminates is still an 
open issue as it depends on lamination scheme, geometry, and material properties (Reddy, 
2004). The value 5/6, which is very accurate for homogeneous, isotropic plates, is most 
commonly used. This value is adopted in the numerical analyses performed in this paper to 
allow for comparisons to the analytical solutions employed as reference solutions (Reddy, 
2004).  

Finally, as the strain energy in terms of the stiffness matrix is given by: 
 

{ } [ ]{ }dKdU T

2

1=                                                                                                             (16) 

 
the general expression of the stiffness matrix in strain gradient notation turns out to be: 
 

[ ] [ ] [ ][ ] 1−−= φφ M
T UK                                                                                                         (17) 

 
3     STRAIN GRADIENT NOTATION SERENDIPITY PLATE EL EMENT 

 
The formulation of an eight-node serendipity plate finite element in strain gradient notation 

is presented in this section. The finite element is shown in figure 1.  Five degrees of freedom are 
associated to each node; namely, in-plane displacements uo and vo, the out-of-plane 
displacement w, and rotations θx and θy.  
 

J. ABDALLA FILHO, I. BELO, R. MACHADO44

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
Fig. 1 - Eight-node serendipity plate element. 

 
The displacement polynomial expansions in strain gradient notation, according to Eq.(1) 

through Eq.(5), are obtained by substituting the unknown coefficients by their physical contents. 
The procedure to identify physical contents of finite element displacement polynomials is 
described in detailed by Dow (1999). The strain gradient notation displacement polynomials for 
this element are presented below: 
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These expansions contain the set of fourty strain states that the element is capable of 

representing.  These strain states are rigid body modes, constant strains, flexural strains and 
shear strains gradients, which are listed below: 

 
Rigid body modes:               ( ) ( ) ( ) ( ) ( ) ( )

oyoxoooo wrvu θθ       

Constant strains:                  ( ) ( ) ( ) ( ) ( )
oyzoxzoxyoyox γγγεε      

Flexural strains:                   ( ) ( ) ( ) ( ) ( )
oyyxoxyxozxoyxoxx ,,,,,     εεεεε  
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The elastic strain expansions for the element are obtained through application of Eq.(6): 
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Examination of these strains expressions will reveal the presence of spurious terms a-

priori .  Strains expansions should be only composed of terms which are physically related to the 
strains quantities they represent. Examination of the expansions for normal strains, Eq.(23) and 
Eq.(24), shows that all coefficients are associated to their respective normal strains.  Therefore, 
all those terms are legitimate as they correctly contribute to the representation of normal strains. 

However, examination of the expansions for shear strains, Eq.(25), Eq.(26) and Eq.(27), 
reveals  that besides legitimate terms, these expansions contain terms which are related to 
normal strains. In general, normal strain terms in shear strains expansions are spurious terms 
because they will increase the shear strain energy of the element unduly when activated during 
deformation. That is, they will cause shear locking. 

Spurious terms are introduced due to the use of incompatible displacement polynomials. In 
the present case, the membrane displacement polynomials selected are incomplete, third order 
polynomials.  They do not contain the terms x3 and y3.  This causes the presence of spurious 
terms in the in-plane shear strain expansion γxy.  Further, the order of the rotation polynomial 
expansions and the order of the out-of-plane displacement polynomial expansion are the same, 
which is inconsistent with Mindlin plate theory. The reason is that the transverse shear strains 
are defined as the sum of the rotations and the first derivatives of the out-of-plane displacement 

J. ABDALLA FILHO, I. BELO, R. MACHADO46

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(see Eq.(6)). These polynomials would be consistent if the out-of-plane displacement polyno-
mial were one order higher than the order of the rotation polynomials. It is this inconsistency 
that causes the presence of spurious terms in the transverse shear strain expansions γyz and γxz. 

Based on these arguments, after examining the strain expansions above, one might be 
tempted to remove all the normal strain gradient terms from the shear strain expansions to 
produce a well-formulated element.  However, carefull scrutiny of the shear strain expansions 
reveals that not all their normal strain gradient terms are spurious.  Some are actually terms that 
are needed by the element.  Such terms are necessary as they are recognized as the terms of 
compatibility equations of the elasticity theory.  That is, they are compatible modes. This will 
be shown in the following for each shear strain expansion. 

The expansion of the in-plane shear strain γxy, Eq.(25), contains eight normal strain gradient 
terms.  Four of these terms are needed in the formulation because they give rise to the following 
compatibility equations: 

 

xxyyyxxyxy ,,, εεγ +=                                                                                                            (28) 

xxzyyyzxxyzxy ,,, εεγ +=                                                                                                         (29) 

 
and, hence, the only spurious terms present in the in-plane shear strain expansion are  

 
( ) ( ) ( ) ( )

oxyzyoxyzxoxyyoxyx ,,,,  , , , εεεε . 

 
Proceeding on with the a-priori analysis, it is seen that the expansion of the transverse 

shear strain γyz, Eq.(26), contains four normal strain gradient terms, one gradient of the in-plane 
shear strain and one gradient of the transverse shear strain in the plane X-Z, which appear to be 
spurious for not belonging to the Taylor series expansion of γyz.  However, according to the 
following compatibility equation: 

 

yzxxyxzxzxyxxyz ,,,, 2εγγγ −+=                                                                                            (30) 

 
the only spurious terms are ( ) ( ) ( )

oxyzyoxxzyoyzy ,,,  and ,  , εεε . 

Finally, it is seen that in the expansion of the transverse shear strain γxz, Eq.(27), there are 
four normal strain gradient terms, one gradient of the in-plane shear strain, and one gradient of 
the transverse shear strain in the plane Y-Z, which appear to be allien to the expansion.  
However, according to the following compatibility equation: 

 

xzyxyyzyzxyyyxz ,,,, 2εγγγ −+=                                                                                           (31) 

 
the only spurious terms are ( ) ( ) ( )

oyyzxoxyzxoxzx ,,,  and ,  , εεε . 

The terms on the left-hand sides of the compatibility equations above belong to the Taylor 
series expansions of the corresponding shear strains.  Consequently, the terms on the right-hand 
sides of those equations are compatible modes.  Thus, those terms must be kept, and the only 
terms to be eliminated are those recognized as spurious terms.  Proceeding on with the 
elimination results on the corrected shear strain expansions, which are: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) xyzxy

yzxzzyx

oxxzyyyzxoxxyyyx

oyzxyoxzxyozxyoyxyoxxyoxyxy

,,,,

,,,,,

                                                    εεεε

γγγγγγγ

++++

+++++=
                                  (32) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
,

2
,

2
,,,, 2/2/ xxxxyyx

oyzxoxyxzoxzxyoxyyzoyyzoxyzoyzyz εγγγγγγγ −+++++=           (33) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
,

2
,

2
,,,, 2/2/ yyyxyyx

oxzyoxyyzoyzxyoxyxzoyxzoxxzoxzxz εγγγγγγγ −+++++=          (34) 

 
These shear strain expansions do not contain any spurious terms and the compatible modes 

have been kept.  Removal of the spurious terms ensures that shear locking will not occur, and 
the presence of the compatible modes prevents the introduction of spurious zero energy modes. 
Therefore, these two measures must be taken to guarantee that spurious mechanisms will not 
occur in the eight-node serendipity plate element during analysis. As all spurious terms are 
present in shear strains polynomials, they may be referred to as parasitic shear terms as it has 
been done in the literature (Dow, 1999; Zienkiewicz et al., 1970). 

The eight-node plate element developed above will be validated in the next section through 
comparison of numerical and analytical results of selected problems.  Also, the effects of the 
identified spurious terms on the behavior of the element will be investigated. 
 
4     NUMERICAL APPLICATIONS 

 
In this section, two laminated composite plate problems are analyzed employing the 

serendipity plate model described above.  
 

4.1 Application #1 
 
To start, a cantilever plate problem is analyzed which demonstrates with great clarity the 

severe shear locking caused by the spurious terms present in the eight-node serendipity plate 
element. The plate is a two-layer angle ply laminate with lamination scheme -45º/+45º 
subjected to two point loads applied at the corners of the free end. Fig. 2 shows the lay-out of 
this problem.  

 
Fig. 2 - Cantilever plate subjected to concentrated loads at the free-end. Anti-symmetric angle-ply laminate -

45o/+45o. Problem definition. 
 
Fig. 3(a) and Fig. 3(b) show the transverse displacement w solutions of the plate modeled 

with elements containing the spurious terms and elements corrected for the spurious terms, 
respectively. It is seen that the former is much stiffer than the latter, evidencing the strong 
shear locking effect. According to these figures, the maximum displacements calculated for 
both models are 0.08 m and 0.18 m, respectively. Therefore, it is apparent that shear locking 
causes the solution to be greatly underestimated. Fig. 3(c) shows the behaviors of the two 
models with mesh refinement. The solutions without spurious terms converge asymptotically 
and very rapidly. 
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Fig. 3(a) - Cantilever plate subjected to concentrated loads at the free-end. Anti-symmetric angle-ply laminate -

45o/+45o. Transverse displacement solutions with spurious terms. 
 

 
 

Fig. 3(b) - Cantilever plate subjected to concentrated loads at the free-end. Anti-symmetric angle-ply laminate -
45o/+45o. Transverse displacement solutions without spurious terms. 

 

 
Fig. 3(c) - Cantilever plate subjected to concentrated loads at the free-end. Anti-symmetric angle-ply laminate -

45o/+45o. Convergence of transverse displacement solutions with and without spurious terms. 
 
 
4.2 Application #2 
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The second application problem is a square simply supported (SS1 suppports) cross-ply 
laminated composite plate subjected to a uniform load of value qo = 10 N/m2. The laminate is 
symmetric with lamination scheme 0º/90º/0º, and the sides of the laminate are 1.0 m in length 
(a = b = 1.0 m) as shown in Fig. 4. The plate is solved both with side length-to-thickness 
ratios a/h = 10 and a/h = 100. In-plane normal stresses σxx  and σyy are calculated at the center 
point of the plate, while transverse shear stresses τxz  and  τyz are calculated at borders middle 
points. Table 1 contains the highest percent error in each solution.  

 
Fig. 4 – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load. 

Symmetric cross-ply laminate 0o/90o/0o. Problem definition. 
 
First, solutions for the thick plate (a/h = 10) are presented. Fig. 5(a) through Fig. 5(c) 

show the results of these analyses. In general, as depicted by these figures, the effects of shear 
locking although apparent, are not as significant as they are in thin plates. These deleterious 
effects appear to be greatly attenuated by mesh refinement.  

 Fig. 5(a) through Fig. 5(c) show solutions for the transverse shear stresses τxz. It is 
observed that shear locking effects are stronger in the coarser meshes solutions. The 
corresponding percent errors are significant. Error for the model with spurious terms is 
39.63%. These error drops to 17.51% after the removal of the spurious terms. Further, it is 
also observed that mesh refinement attenuates shear locking, and that the models converge 
within acceptable levels of error to the analytical solution. The finer mesh for τxz solutions 
contains errors of only 1.05% and 0.60%. The convergence plots of Fig. 5(c) show that 
solutions for transverse shear stresses, with and without spurious terms, converge 
asymptotically to the analytical solutions from lower bounds.  

Next, solutions for the thin plate (a/h = 100) are presented. Fig. 6(a) through Fig. 6(f) 
show the results of these analyses. In general, the results depicted by these figures show that 
the model containing the spurious terms either has convergence delayed or prevented whereas 
the model without the spurious terms converges well and quickly to the analytical solutions. 
Fig. 6(a) shows that the spurious terms delay convergence of the normal stresses σxx , and that 
even the finer mesh (16x16) presents results which are still far from the analytical results. 
Errors range from 93.06% to 14.90%. On the other hand, Fig. 6(b) shows that after the 
removal of the spurious terms, convergence occurs very quickly and well to the analytical 
solutions. The highest percent error is only 4.38% and drops to 0.29% with refinement. The 
convergence plots in Fig. 6(c) help to demonstrate these solutions behaviors. 

Fig. 6(d) through Fig. 6(f) show the solutions for the transverse shear stresses τxz. The 
spurious terms cause a strong delay in convergence as demonstrated in Fig. 6(f). The coarser 
mesh error is 386.42%, dropping to 158.89%. It is also observed that the coarse mesh 
produces results which are qualitatively erroneous. After the removal of the spurious terms, as 
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shown in Fig. 6(e), solutions for transverse shear stress converge rather well to the analytical 
solution. Errors range from 15.50% to 0.47%.  The convergence plot in Fig. 6(f) reinforces 
these observations.  

Furthermore, the convergence plots associated to the solutions without spurious terms 
show that the numerical solutions tend asymptotically to the analytical solutions. This is an 
important characteristic which indicates fast convergence rates.  

  

Fig. 5(a) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 
with side-to-thickness ratio a/h = 10. Symmetric cross-ply laminate 0o/90o/0o. Transverse shear stresses τxz 

computed through the thickness of the laminate with spurious terms. 

 
Fig. 5(b) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 

with side-to-thickness ratio a/h = 10. Symmetric cross-ply laminate 0o/90o/0o. Transverse shear stresses τxz 
computed through the thickness of the laminate without spurious terms. 
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Fig. 5(c) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 
with side-to-thickness ratio a/h = 10. Symmetric cross-ply laminate 0o/90o/0o. Convergence of transverse shear 

stresses τxz solutions with and without spurious terms. 
 

 
Fig. 6(a) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 
with side-to-thickness ratio a/h = 100. Symmetric cross-ply laminate 0o/90o/0o. Normal stresses σxx computed 

through the thickness of the laminate with spurious terms. 
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Fig. 6(b) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 
with side-to-thickness ratio a/h = 100. Symmetric cross-ply laminate 0o/90o/0o. Normal stresses σxx computed 

through the thickness of the laminate without spurious terms. 

 
Fig. 6(c) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 
with side-to-thickness ratio a/h = 100. Symmetric cross-ply laminate 0o/90o/0o. Convergence of normal stresses 

σxx solutions with and without spurious terms. 
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Fig. 6(d) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 

with side-to-thickness ratio a/h = 100. Symmetric cross-ply laminate 0o/90o/0o. Transverse shear stresses τxz 
computed through the thickness of the laminate with spurious terms. 

 

 
Fig. 6(e) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 

with side-to-thickness ratio a/h = 100. Symmetric cross-ply laminate 0o/90o/0o. Transverse shear stresses τxz 
computed through the thickness of the laminate without spurious terms. 
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Fig. 6(f) – Square simply-supported (SS1 boundary conditions) plate subjected to a uniformly distributed load 

with side-to-thickness ratio a/h = 100. Symmetric cross-ply laminate 0o/90o/0o. Convergence of transverse shear 
stresses τxz solutions with and without spurious terms. 

 

5 CONCLUSION 

An eight-node serendipity element has been formulated using strain gradient notation for 
the analysis laminated composite plates. The shear strains polynomial expansions of the 
element were inspected for the identification of spurious terms associated to shear locking. 
Due to the transparency of strain gradient notation, the element has been corrected by simply 
removing the spurious terms from the shear strains polynomial expansions. In addition, 
compatible mode terms, which might be mistaken as spurious, have been clearly identified by 
recognizing that they comprise compatibility equations. Those terms have been retained in 
order to avoid the introduction of spurious zero energy modes. 

Thick and thin rectangular plates have been analyzed for different lamination schemes 
and boundary conditions. In each case, stresses solutions provided by the model containing 
the spurious terms have been compared to stresses solutions provided by the corrected model. 
Those numerical analyses have demonstrated that the identified spurious terms are the cause 
of shear locking. Those analyses have also demonstrated the effectiveness of the procedure 
employed to eliminate the spurious terms as, in general, solutions provided by the corrected 
model converged monotonically and faster to analytical solutions. Further, numerical 
solutions have shown that mostly transverse shear stresses solutions provided by the model 
containing the spurious terms might not converge adequately to the correct solutions as the 
results oscillate or contain great levels of error such as those in Table 1 and Table 2. 

A limitation of the current work is that the element has not been designed to assume 
arbitrary shapes as its formulation does not embed a geometric mapping procedure such as 
that used in the isoparametric formulation. Nevertheless, it has been shown that the element 
behaves quite well as a rectangular element after elimination of the spurious terms.  

The use of strain gradient notation may be viewed as advantageous as it allows spurious 
terms responsible for shear locking to be identified and eliminated a-priori. The authors claim 
to have demonstrated theoretically the sources of shear locking and spurious zero energy 
modes in the eight-node serendipity plate element, and to have built an efficient FSDT 
element to analyze rectangular laminated composite plates. 
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