
GEOMETRICALLY NON-LINEAR ANALYSIS OF MULTI-STOREY 

BUILDINGS SUPPORTED ON THE DEFORMABLE MASS 

Valério S. Almeida, Rafael D. Aquino 

Civil Engineering Department (DECIV), Federal University at Ouro Preto (UFOP) 

Campus Morro do Cruzeiro, Bauxita, 35400-000, Ouro Preto - MG – Brazil, 

valerio.almeida@pq.cnpq.br, http://www.propec.ufop.br 

Keywords: nonlinear analysis; BEM/FEM coupling; soil-structure interaction; shallow 

foundation. 

Abstract. These studies compare results of settlements and efforts of multi-storey buildings 

supported by flexible shallow foundations. The soil is simulated by the Mindlin´s continuous 

numerical model and the Winkler´s discrete model. The building is modeled by finite 

elements using a static nonlinear geometric analysis. The building is connected to shallow 

foundations, which is simulated by shell finite elements, where membrane effects and for 

plate bending are considered. The soil representation follows two models: the Mindlin´s 

continuous model via boundary element method (BEM), and the Winkler´s discrete model. 

The insertion of the geometrically nonlinear formulation considers moderate rotations. These 

are considered to be sufficient for the building analysis. The building is evaluated by 

comparing the geometric linearity and non-linearity for several support conditions and the 

differences between efforts that appear especially in the first floors. 
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1 INTRODUCTION 

The mechanical performance of a construction is governed by the interaction of 

the superstructure, the substructure, and the soil mass within a mechanism 

denominated of soil-structure interaction (SSI). 

In the engineering practice, the interaction mechanism is usually ignored. As a 

consequence, structure and foundation projects are still developed independently 

from each other. 

In general, when dealing with the building structure, the engineer considers 

undeformable supports to determine the response of the building and of the 

foundation. This set of reactions is given to the engineer in charge of defining the 

foundation, calculating settlements, and comparing these settlements with admissible 

values. He also compares the acting stress with the bearing capacity of the soil 

according to existing code requirements. 

However, the effort distribution in the superstructure is not usually re-evaluated. 

As a consequence of the soil deformation, the tension flow in the superstructure is 

different from that originally calculated when considering the hypothesis of 

undeformable soil. It is expected that the change of efforts in the structure be either 

absorbed by the safety coefficient or small enough to cause no significant 

disturbance in the effort distribution of the building-foundation-soil system. These 

possibilities not always occur and the consequences can be highly undesirable. 

Several SSI studies have already enriched the specialized literature. In particular, 

Meyerhof (1953), Chamecki (1956, 1958, 1969), Lopes and Gusmão (1991), Moura 

(1995), Reis (2000), Romanel et al. (2000), Romanel and Kundu (1990), Gusmão (1990), 

Antunes and Iwamoto (2000), Holanda Jr. (1998), Almeida and Paiva (2004) are 

considered references in that literature. 

In general, the studies mentioned and others present restrictions regarding their 

applicability. Some do not allow the inclusion of flexible foundation elements, others 

consider only vertical actions in the building, and another group considers SSI but it 

ignores the foundation influence. 

An additional phenomenon to be considered in the analysis of the soil structure 

interaction is the second-order effect that occurs in the 3D frames. This must not be 

ignored in slender buildings. Because of the importance and consequences in the 

effort redistribution of these buildings, this subject has received special attention in 

the NBR 8800 (2003) from the Brazilian Association of Technical Norms (ABNT). 

However, SSI when considering the geometric non-linearity of the building is still a 

field little explored inside the current literature. 

In this context, the present studies develop a numeric SSI formulation that 

simulates the 3D building and the flexible shallow foundation by applying finite 

element method (FEM). It also simulates the semi-continuum media via boundary 

element method (BEM) and the Winkler’s model. Finally, it is considered the 

equilibrium of the building in the deformed position. The model also considers the 

geometric non-linearity phenomenon and takes an incremental-iterative procedure 
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for the analysis of the building-foundation-soil complex. 

2 THE BOUNDARY ELEMENT METHOD APPLIED TO ELASTIC INFINITE 

STRATUM 

In the absence of volume forces, the Navier-Cauchy equations are given by: 
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Where )(sui
 is the displacement in the i orthogonal direction from s, a point inside 

the solid that satisfies certain boundary conditions and   is the Poisson’s ratio. 

These domain equations can be further expressed as surface equations, which are 

represented by the Somigliana Identity: 
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Where p and S are the source point where the unit force is applied and the 

boundary point at the surface, respectively. Moreover, ui and pi are the real 

displacement field and the surface forces at the boundary point S in the i
th

 direction, 

respectively. *

iju  and 
*

ijp  represent weighted field coefficients which indicate the 

response in the j direction at S to those forces applied in the i direction at the p point. 

This identity is based on Betti’s reciprocal theorem. Fundamental solutions given by 
*

iju  and 
*

ijp represent particular solutions of the partial differential equations (1) for a 

given boundary condition. 

The strategy to obtain boundary integral equations involves transforming p, which 

is inside the body, into P on the boundary. Thus equation (2) can be written as 

follows:  
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where the integral in equation (3) is defined in sense of Cauchy principal value (París 

and Cañas, 1997), and Cij are coefficients that depend on the problem geometry 

(Hartmann, 1980). The fundamental solutions used here are the known Mindlin’s 

solutions presented by Mindlin (1936). 

Since the analytical solutions of Expression (3) are not given in closed form, they 

have to be estimated numerically. Hence, BEM is based on the assemblage of a 

system of algebraic equations resulting from boundary integral equations, Equation 

(3), written in terms of nodal parameters that are approximated to boundary values 

by using shape functions. If the domain forces are not considered, the integral 

equations (3) are written as: 
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where NE, , and J are the number of boundary elements, the shape function, and the 

Jacobian transformation, respectively. In this paper, linear shape functions of 

form ii   ),,( 321  are adopted. i  are homogeneous coordinates defined for the 

flat triangular element, Brebbia and Dominguez (1989), in which the surface is 

discretized. 

As the integrals of (4) cannot be solved analytically for any generic surface, they 

require the use of numerical techniques. The free surfaces are discretized in triangular 

boundary elements only in contact region with shallow foundations and linear shape 

functions are defined to represent displacements and traction fields associated with 

nodal points. Thus, it is possible to assemble shape matrices of the equation (4), 

which takes the following form: 

 }{][}{][ PGUH   (5) 

Where the H and G matrices are defined as 
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The tractions indicated in equation (5) are prescribed or unknown values that can 

be associated with the foundation reactions which are coupled with the shallow 

foundation simulated by FEM. In this case, the expression (5) can be written as: 

 
fff PUK   (8) 

The matrix Kf is the influence matrix indicates in eq. (6), Pf are the nodal 

foundation’s reactions and Uf are the unknown nodal foundation’s settlements. 

3 GEOMETRICALLY NONLINEAR MODEL OF THE BUILDING 

In the analysis of slender structures and in many applications, their components 

deform along the application of the actions in such a manner that the initial 

configuration changes and, as a consequence, influences and modifies significantly 

the final effects. Then, the static equilibrium must be considered in an incremental 

way. The problem is then led to a nonlinear force displacement relation. In other 

words, it does not follow the classic linear or in other way, the balance is evaluated in 

the deformed position. This kind of phenomenon is called geometrically nonlinear 

analysis (GNA). 

In the GNA of tall buildings, a simplified GNA procedure can be used when 

displacement fields are not large and rotations are moderated. This is an 

approximated second-order procedure that is able to evaluate the coupling of axial 

and transversal displacements. Then, it is possible to use the Green-Lagrange 
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deformation measures for the 
x component of the axial deformation in the following 

way: 
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Considering plane sections remain plane, the displacements in the 3-orthogonal 

directions are given by: 

   ´´ zwyvxuu o  ;  xvv o ;  xww o  (10) 

Where  vu, and ware, respectively, axial and transverse displacements. Applying 

equation (10) to (9), the following is obtained: 
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To establish the formulation of the equilibrium problem, principle of virtual work is 

applied using both the components of the Piola-Kirchhoff tension and the Green-

Lagrange deformation. The integration of the undisturbed volume characterizes the 

total Lagrangian formulation. In this sense, the following expression represents the 

work of the internal forces: 
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where ne is total number of flat elements. After considering elastic properties for all 

prismatic elements, equation (14) gives the following expressions for the normal 

effort and bending moments, respectively: 
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The work of the external forces is indicated by: 
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where rm represents the external load and q the set of nodal displacements 

generalized for a given element. 

Thus, considering the principle of virtual work with kinematic relations (12) and 

equations (13), (14), and (15), the following relation can be obtained:  
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The first part of the expression (16) represents the vector of the internal forces of 

an element. Equation (16) is valid for any δq
T
 variations. There is a set of neq 

nonlinear equations, where neq is the number of freedom degrees of the element. 

Thus equation (16) becomes: 
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In this expression, fm represents the vector of internal forces for one element. The 

vector of forces of the structure is assembled by the contribution of each finite 

element of conventional form. 

The tangent stiffness matrix is assembled from the derivative of the fm vector in 

relation to q, the nodal displacements of the set. The following expression is valid for 

a finite element: 
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In this work, the following sets of nodal parameters were applied to the finite-

element assemblage of the 3D frame: 
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The following form functions represent displacement fields: 
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In this expression, non-dimensional coordinates correlate with the x coordinate by 

1
2

 x


 . The derivatives of the displacement fields are represented by: 
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Considering the hypothesis of moderate rotations, their expressions are 

represented by 'vZ   and 'wY  .  Derivations of u, v, and w in relation to (q), 

once and twice, give the expressions that are applied to equations (21), the vector of 
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internal forces, and the matrix of tangent rigidity. The vector of internal forces, and 

the tangent stiffness matrix are given by the following expressions, respectively: 
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Equation (23) contains the derivatives of Nx, My and Mz in relation to q, the set of 

generalized displacements. These derivatives are given by: 
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Geometric and mechanical relations for all sections of the structure have already 

been taken into account. Each section is considered to be homogeneous and have a 

symmetry axis. These conditions are represented by the following expressions:   
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E is the Young’s modulus, A the transversal area, Iz and Iy correspond to the inertia 

moments of each section. The torsion effect is assumed to follow its classic linear 

relation. 

Assuming geometric non-linearity, the tangent stiffness matrix (equation 23) and 

the vector of internal forces (equation 22) are assembled for the simulation of the 

finite element of the 3D frames. The incremental-iterative procedure and the Newton-

Raphson's technique are applied after considering the soil and foundation influences 

as described in the following section. 

4 THE BUILDING-FOUNDATION-SOIL SYSTEM 

Both the superstructure and the infrastructure were modeled by FEM using flat 

triangular and bar elements. The flat elements simulate laminar structures employing 

the membrane formulation developed by Bergan and Felippa (1985) and the plate 
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bending formulation presented by Batoz and Dhatt (1979). The building is simulated 

by 3D frame elements and the influence of floor slabs is not considered. 

 

                  

Figure 1: a) Mesh for the soil-foundation contact; b) Definition of the column and foundation nodes 

The nonlinear problem is solved by the incremental iterative procedure which 

consists of the linearization of the equilibrium equation using Newton-Raphson's 

general procedure as described by Crisfield (1991). 

The soil-foundation-building interaction can be achieved by considering the 

existing equilibrium conditions among nodal points that are common to the two 

methods. This generates a final algebraic system shown in Almeida and Paiva (2004) 

and represented in Figure 1a. However, this procedure is not used in this work. 

Considering that the building undergoes a nonlinear analysis, the computational time 

for the resolution of the final linear system of the BEM/FEM coupling increases 

drastically. This is a consequence of the BEM characteristics. The linear-system matrix 

to be handled for each iteration becomes larger, denser, and non-symmetrical. 

To avoid this problem, contact nodes between foundation and soil, represented by 

equation (8), were condensed in order to produce building nodes only. Considering 

that both soil and foundation are idealized in the linear theory, their influences are 

inserted in the nodes at the base of the columns. In addition, they do not change 

during the incremental iterative procedure. 

The FEM algebraic system is used to separate the nodes of the building and 

columns from the nodes of the foundation as shown in Figure 1.b. This system can be 

written as: 
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This can be organized in four sub-blocks: column-column (CC); column-foundation 

(CF); foundation-column (FC), and foundation-foundation (FF) as shown below: 
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 Where 

    TCnC2C1
T

C UUUU   and    TFnF2F1
T

F UUUU   (29) 

In order to isolate {UF}, the algebraic equation (28) is rewritten and becomes: 

    CFCF
1
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
  (30) 

After using (30), the (28) expression becomes: 

      CCC FUK   (31) 

With 
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Thus, the foundation-soil influence is applied to the nodes at the base of each 

column. This can interpreted as if the building lay on an elastic base and considering 

the soil-foundation influences stored in spring constants as represented in Figure 2. 

After the incremental-iterative analysis, the structure converges to its balance 

position. Then, equation (30) is used to calculate settlements and foundation and soil 

efforts. 

  

Figure 2: Representation of foundation and soil influences as springs 
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5 NUMERICAL EXAMPLES 

5.1 2D Frame – Nonlinear Analysis 

This example is a comparison to 2D Frame subjected to vertical and horizontal 

loads proposed by Elias (1986) and analyzed for Paula (2001). 

The horizontal load is kept constant, the vertical load is divided in 10 steps and the 

tolerances in displacements and forces had been fixed in 10
-6

. All elements have the 

same elastic and geometric properties shown in Figure 3. 
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Figure 3: 2D Frame 

In Figure 4 are presented the curves load-displacement gotten by Paula (2001) 

using the total Lagrangian lormulation and Update Lagrangian Formulation - with 

two developed tangent rigidity matrix, complete and approached, as well as the 

results presented by Elias (1986). The formulation used in the present work gets in 

results close to the founds for Paula (2001) and Elias (1986), proving the validity of 

the present work. 

 

Figure 4: Curves load-displacement 
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5.2 3D Building – Soil-Structure Interaction – Linear / GNA 

 

The following example represents a fictitious building elaborated to validate of the 

present work through software SAP 2000, the building is composed of 9 columns, 20 

floors and 3m from floor to floor. In the building all the elements, beams and 

columns, have the same physical and geometric properties, gravitational loads 

uniformly distributed in the beams (10 kN/m) and horizontal loads concentrated in 

the top of each pillar in X direction (0.25 kN).  

The building is simulated over several connecting conditions: clamped and 

interaction soil-structure through discrete (Winkler) and continues (Mindlin) models, 

and over linear and nonlinear analysis. 

    

Figure 5: Physics and Geometrical Properties 

 

Figure 6: Loads distribution 
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Through estimated vertical soil deformation described in Poulos and Davis (1974) 

we can determine the vertical spring coefficient, which bases on the deformation of 

the soil by an unitary pressure applied on a rectangular area. In this paper we are 

assuming that the horizontal spring coefficient is 20% of the vertical. 

 

Figure 7: Foundation and soil (Winkler Model) 

In Figure 8 is shown a comparison of the present work and SAP 2000 for the 

distribution of moments in the Y direction when considering global axes, clamped 

connection, linear and nonlinear analysis for the central column on the first’s and 

lasted floors. 

 

Figure 8: My - Clamped connection 
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In the linear and clamped connection analysis we got differences under 1.5% in the 

first’s floor and in the geometrical nonlinear analysis the differences is under 3.7% in 

the first’s floor. In the lasted floor we almost don’t have differences. 

 

Figure 9: My – Interaction Soil-Structure 

The difference of moment at the pillar base can be up to 2 times larger when 

comparing the analysis with soil-structure interaction and Mindlin´s model and the 

one using the clamped model.  

Figure 9 indicates a significant difference of the efforts in pillars. The average 

difference is 40% when comparing the linear and nonlinear analyses. 

It is important to emphasize that the structure behavior depend on the type of 

support.  In this case, the differences get almost 50% especially in the first’s floors 

according to established hypothesis. 

6 CONCLUSION 

The objective of this work was to verify the differences of structural behavior 

between the clamped model, which is usually adopted in the engineering practice, 

and other more refined models such as the Winkler´s discrete model and the 

Mindlin´s continuous model. A joint analysis between the infrastructure-

superstructure and the soil massif is performed by these last two models. 
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The structural behavior depends on the applied model. Moreover, the occurrence 

of settlements is the main consequence of the analysis using soil-structure 

interaction. Differential settlement is the main cause of changes of the structure 

behavior. 

In the Mindlin's model, which is considered to be a more refined analysis, the soil 

massif is represented as a continuous medium via BEM. However, for being a more 

refined analysis it requires longer processing time. 

The Winkler's model also considers the soil-structure interaction. It replaces the 

soil by a set of springs and considers that there is no interaction among adjacent 

springs. The Winkler´s model is simpler, considered to perform a less refined analysis, 

and has a shorter processing time than the Mindlin's model.  

The geometrically nonlinear analysis is iterative. It considers the structure in its 

deformed position. This analysis and the one that considers the soil-structure 

interaction lead to results that are closer to the real behavior of the structure. 

The comparison of results from this work leads to the conclusion that the soil-

structure interaction and the geometric not-linearity are very important 

considerations for the structural analysis of buildings. 
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