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Abstract. In this paper, the results of the adaptive Generalized Finite Element Method to free 

longitudinal vibration analysis of straight bars are compared with the results of the h-versions 

and the hierarchical p-version of the Finite Element Method. The Generalized Finite Element 

Method is developed by enriching the standard Finite Element Method space, whose basis 

performs a partition of unity, with knowledge about the differential equation being solved. 

The enrichment functions used are dependent on the geometric and mechanical properties 

of the element. The proposed approach converges very fast and is able to approximate the 

frequency related to any vibration mode. The main aspects of the adaptive Generalized Finite 

Element Method are presented and discussed. The efficiency and convergence of the 

proposed method in vibration analysis of uniform and non-uniform straight bars are checked. 

The frequencies obtained by the adaptive Generalized Finite Element Method are also 

compared with those obtained by the analytical solution. 

Mecánica Computacional Vol XXIX, págs. 169-183 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

1 INTRODUCTION 

The vibration analysis is an important step in design process of structures subject 

to dynamic loads. The main dynamic properties of these structures are obtained by a 

free vibration analysis. 

The Finite Element Method (FEM) is commonly used in vibration analysis and its 

approximated solution can be improved using two refinement techniques: h and p-

versions. The h-version consists of the refinement of element mesh, on the other side; 

the p-version may be understood as the increase in the number of form functions in 

the element domain without any change in the mesh (Ribeiro, 2001; Campion and 

Jarvis, 1996). The h-version of FEM gives good results for the lowest frequencies but 

demands great computational cost to work up the accuracy for the higher 

frequencies. The accuracy of the FEM can be improved applying the conventional p 

refinement that consists of increasing the polynomial degree in the solution. However 

Leung and Chan (1998) note that the use of high-order polynomials as shape 

functions can result in ill conditioning of the solution. 

Some enriched methods based on the FEM have been developed in last 20 years. 

Engels (1992) and, Ganesan and Engels (1992) presented the Assumed Mode Method 

(AMM) which is obtained adding to the FEM form functions set some interface 

restrained assumed modes. The Composite Element Method (CEM) (Zeng, 1998a,b,c) 

is obtained by enrichment of the conventional FEM local solution space with non-

polynomial functions obtained from analytical solutions of simple vibration problems. 

This approach results in a hierarchical refinement called c-version. A modified CEM 

applied to analysis of beams was proposed by Lu and Law (2007). The use of products 

between polynomials and Fourier series instead of polynomials alone in the element 

shape functions is recommended by Leung and Chan (1998). They developed the 

Fourier p-element applied to the vibration analysis of bars, beams and plates.  

The Generalized Finite Element Method (GFEM) was independently proposed by 

Babuska and others (Melenk and Babuska, 1996; Babuska, Banerjee and Osborn, 

2004; Duarte, Babuska and Oden, 2000) and by Duarte and Oden (Duarte and Oden, 

1996; Oden, Duarte and Zienkiewicz, 1998) under the names: special finite element 

method, generalized finite element method, finite element partition unity method, hp 

clouds and cloud-based hp finite element method. In the GFEM, the local solution 

spaces are formed for functions, not necessarily polynomial, that permits inclusion of 

a priori knowledge about fundamental solution of the governing differential 

equation. The local spaces are grouped in the approximated solution space by the 

Partition of Unity Method that ensures good global approximation.  

The application of the Partition of Unity Method in dynamic analysis of structures is 

not new, although there are few studies in this area. De Bel, Villon and Bouillard 

(2005) presented a new technique based on the partition of unity to forced vibration 

analysis of thin plates in medium frequency range. The Partition of Unity Method with 

interface elements was applied by Hazard and Bouillard (2007) to numerical vibration 

analysis of sandwich plates equipped with passive damping layers.  
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One of the main challenges in developing the GFEM to a specific problem is the 

imposition of essential boundary conditions, since the degrees of freedom used in 

GFEM generally do not correspond to the nodal degrees of freedom. In most cases 

the imposition of boundary conditions is achieved by the degeneration of the 

approximation space or applying penalty methods or Lagrange multipliers. 

Arndt, Machado and Scremin (2010) proposed an adaptive method based on the 

Partition of Unity Method to free vibration analysis of bars and trusses, which was 

called adaptive Generalized Finite Element Method. In this adaptive method, 

trigonometric enrichment functions depending on geometric and mechanical 

properties of the elements are added to the linear FEM shape functions by the 

partition of unity approach. This technique allows an accurate adaptive process that 

converges very fast and is able to refine the frequency related to a specific vibration 

mode. In addition the enrichment functions are easily obtained and the introduction 

of boundary conditions follows the standard finite element procedure. 

The use of trigonometric functions in the construction of form functions is not 

new. This technique was used in several works as Weaver and Low (1985), Lages and 

Silva (1992 and 1993), Engels (1992), Zeng (1998a) and Leung and Chan (1998). The 

innovation in the work of Arndt, Machado and Scremin (2010) is the application of 

the Partition of Unity Method with a specific set of trigonometric approximation 

functions producing an adaptive method in which the introduction of boundary 

conditions follows the standard finite element procedure.   

In Arndt, Machado and Scremin (2010) the adaptive GFEM was compared to linear 

h-version of FEM and c-version of CEM. In this work the efficiency and convergence 

of the adaptive GFEM in vibration analysis of uniform and non-uniform straight bars 

are checked and compared to linear and cubic h and hierarchical p versions of FEM. 

2 VARIATIONAL FORM OF THE AXIAL FREE VIBRATION OF BARS 

The bar consists of a straight rod with axial strain (Figure 1). The basic hypotheses 

are (Craig, 1981): (a) The cross sections which are straight and normal to the axis of 

the bar before deformation remain straight and normal after deformation; and (b) 

The material is elastic, linear and homogeneous.  

 

Figure 1: Straight Bar 

The vibration of the bar is a time dependent problem. The momentum equation 

that governs this problem is the partial differential equation 
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where A(x) is the cross section area, E is the Young modulus,  is the specific mass, p 

is the externally applied axial force per unit length and t is the time. The problem of 

free vibration consists in finding the axial displacement ),( txuu   which satisfies Eq. 

(1) when 0),( txp . The solution ),( txuu   must satisfy the boundary and initial 

conditions defined in the problem. 

Assuming periodic solutions )(),( xuetxu
ti

 , where   is the natural frequency, 

the free vibration of a bar becomes an eigenvalue problem with variational statement: 

find a pair ),( u , with ),0(1 LHu  and R , so that 

 ),(),( vuFvuB  , (2) 

for all admissible test functions ),0(1 LHv , where 2   and, R11: HHB   and 

R11: HHF   are bilinear forms. 

The bilinear forms for classical boundary conditions are 
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Similarly the bilinear forms for non-classical boundary conditions are 
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where Ek  and Dk  are the spring stiffness at left and right bar ends, respectively, and 

Em  and Dm  are the masses at left and right bar ends respectively. 

In numerical methods, finite dimensional subspaces of 

approximation ),0(1 LHH h   are chosen and the variational statement becomes: find 

Rh  and ),0( LHu h

h   so that 

 ),(),( vuFvuB hhh  , 
hHv . (7) 

The approximated solution )(xuh  can be written, for a discrete system with N 

degrees of freedom, in the following form: 

 



N

j

jjh xuxu
1

)()(  , (8) 
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where j  are the basis functions of the subspace of approximation hH  and ju  are the 

corresponding degrees of freedom. 

3 ADAPTIVE GENERALIZED FINITE ELEMENT METHOD  

The Generalized Finite Element Method (GFEM) is a Galerkin method whose main 

goal is the construction of a finite dimensional subspace of approximating functions 

using local knowledge about the solution that ensures accurate local and global 

results. The GFEM was initially named Partition of Unity Finite Element Method 

(PUFEM) by Melenk and Babuska (1996), and the local enrichment in the 

approximation subspace is incorporated by the partition of unity approach. 

Let )(1 u  be the function of interest and }{ i  be an open cover of domain   

satisfying an overlap condition: 

 Ν SM   so that  x    Si Mxicard  }{  (9) 

Let }{ i  be a Lipschitz partition of unity subordinate to the cover }{ i  satisfying 

the conditions: 

 ][}0)({)(supp iii xx   ,   i  (10) 

  on    1 
i

i  (11) 

  CnRLi )(
  (12) 

 iGRLi Cn   diam
)(

  (13) 

where )( supp i  denotes the support of definition of the function i , ][ i   is the 

closure of the patch i  and, C  and GC   are constants. 

 If on each sub domain i  there is a function space )(1  iiS  so that 

u  can be locally well approximated then the global space S  taken to approximate u  

on   is obtained by: 
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in other words, the approximated solution at point x of the domain is: 

 ij

i Ss

j

iih axsxu
i

j
i




 )()(   (15) 

where ija  are the degrees of freedom. 

In adaptive GFEM (Arndt, Machado and Scremin, 2010) the conventional linear 

FEM form functions are used as partition of unity functions, so they can be written by 
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in the patch  11,  iii xx
.
 

The local approximation space in the patch  11,  iii xx  proposed by Arndt, 

Machado and Scremin (2010) takes the form: 
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where  Ed and ρd  are the bar Young modulus and specific mass on sub domain 

 1, ii xx , Ee and ρe are the bar Young modulus and specific mass on sub domain 

 ii xx ,1 , and j  is a frequency related to the enrichment level j.  

The adaptive GFEM is an iterative approach whose main goal is to increase the 

accuracy of the frequency (eigenvalue) related to a chosen vibration mode with order 

denoted by “target order”. The flowchart with blocks A to H presented in Figure 2 

represents the adaptive process. In this flowchart, target corresponds to the frequency 

related to the target mode. The first step of the adaptive GFEM process (blocks A to 

C) consists in obtaining an approximation of the target frequency by the standard 

FEM (GFEM with nl = 0) with a coarse mesh. The finite element mesh used in the 

analysis has to be as coarse as is necessary to capture a first approximation of the 

target frequency. The subsequent steps (blocks D to G) consist in applying the GFEM 

with just one enrichment level (nl = 1) to the same finite element mesh assuming the 
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frequency j (j = 1, blocks D and E) of the enrichment functions (Eq. (18)-(21)) as the 

target frequency obtained in the last step. Thus, no mesh refinement is necessary 

along the iterative process.  

Both the standard FEM and the adaptive GFEM allow as many frequencies as the 

total number of degrees of freedom to be obtained. However, in this approach just 

the precision of the target frequency is effectively improved by the iterative process. 

The other frequencies present errors similar to those obtained by the standard FEM 

with the same mesh. In order to improve the precision of another frequency, it is 

necessary to perform a new analysis by the adaptive GFEM, taking this new one as the 

target frequency. Few steps are necessary for the method to converge, for each target 

frequency, and the number of degrees of freedom is smaller than those of the 

standard FEM to achieve a similar precision, resulting in an appreciative global 

performance. 
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Figure 2: Flowchart of the adaptive Generalized Finite Element Method 

4 APPLICATIONS 

Numerical solutions for uniform and non-uniform straight bars are given below to 

demonstrate the application of the adaptive GFEM. To check the efficiency of this 

adaptive method the results were compared to those obtained by h and p-versions of 

FEM. 

The number of degrees of freedom (ndof) considered in each analysis is the total 

number of effective degrees of freedom after introduction of boundary conditions. As 

an intrinsic imposition of the adaptive method, each target frequency is obtained by 

(A)  Choice of the target 

  

        vibration mode 

target = chosen mode 

order  (B) Solution by FEM (GFEM nl = 0) 

       mesh ndof  > =  target 

        Obtain target,FEM 

(C)       i = 1 

target,i =  target,FEM 

(D)     i = i + 1 

        j =  1 

   (E) Solution by GFEM    

       nl = j and µj = 

target,i-1 

Obtain target,GFEM 

(F) target,i =  target,GFEM 

(G)   Convergence test 

|target,i -  target,i-1|  < 

tolerance  

(H)         End 

Show results 

 

NO 

YES 
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different iterative analyses. The mesh used in each analysis is the coarser one, that is, 

just as coarse as is necessary to capture a first approximation of the target frequency. 

4.1 Uniform fixed-fixed bar 

The free axial vibration of a fixed-fixed bar (Figure 3) with length L, elasticity 

modulus E, mass density  and uniform cross section area A, has exact natural 

frequencies ( r ) given by: 

 





E

L

r
r       , ,2,1r  (24) 

 

Figure 3: Uniform fixed-fixed bar 

In order to compare the exact solution with the approximated ones, in this 

example a non-dimensional eigenvalue r  given by: 

 
E

L r
r

22
   (25) 

will be used. 

Four different adaptive GFEM analyses are performed in order to obtain the first 

four frequencies. The behavior of relative error for the target eigenvalues in each 

analysis is presented in Figure 4. In order to capture a first approximation of the 

target vibration frequency, for the first frequency, the finite element mesh must have 

at least two elements (one effective degree of freedom), for the second frequency, it 

must have at least three elements (two effective degrees of freedom), and so on.  
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Figure 4: Relative error for the target eigenvalues – Uniform fixed-fixed bar 

Table 1 presents the relative errors obtained by the numerical methods. The linear 

FEM solution is obtained with 100 elements, that is, 99 effective degrees of freedom. 

The cubic FEM solution is obtained with 33 cubic elements, that is, 98 effective 

degrees of freedom. The p FEM solution is obtained with just one hierarchical 33 

node element (polynomial form functions until order 32), that is, 31 degrees of 

freedom. The analyses by the adaptive GFEM have no more than 24 degrees of 

freedom in each iteration. For example, the fourth frequency is obtained taking 4 

degrees of freedom in the first iteration and 24 degrees of freedom in the two 

subsequent ones.  

 

 

 

r 

h linear FEM 

(100e)  

ndof
(a)

 = 99 

h cubic FEM  

(33e) 

ndof = 98 

p FEM 

(1e 33n) 

ndof = 31 

Adaptive GFEM  

(after 3 iterations) 

error (%) error (%) error (%) error (%) ndof in iterations
(b) 

1 8,225 e-3 5,432 e-10 1,800 e-13 7,199 e-14 1x 1 dof + 2x 9 dof 

2 3,290 e-2 4,715 e-8 1,655 e-8 3,420 e-13 1x 2 dof + 2x 14 dof 

3 7,404 e-2 5,368 e-7 3,504 e-8 1,440 e-13 1x 3 dof + 2x 19 dof 

4 1,317 e-1 3,010 e-6 1,689 e-8 1,800 e-13 1x 4 dof + 2x 24 dof 

Notes:  (a) ndof = effective number of degrees of freedom after introduction of boundary conditions; 

 (b) 1x n dof + 2x m dof  indicates first iteration (FEM) with n degrees of freedom and the other 

two iterations (GFEM) with m degrees of freedom in each analysis. 

Table 1: Results to free vibration of uniform fixed-fixed bar. 

For the uniform fixed-fixed bar, one notes that the adaptive GFEM reaches greater 

precision than the h and p versions of FEM. The adaptive process converges rapidly 

requiring three iterations in order to achieve each target frequency with precision of 

the 10
-13

 order. 
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4.2 Uniform fixed-free bar carrying a concentrated mass 

In this topic the free axial vibration of a uniform fixed-free bar with a concentrated 

mass attached to the free end (Figure 5) proposed by Tongue (2002) is analyzed. The 

properties of this bar are: length L = 1 m, axial stiffness EA = 10 N, linear mass A  = 

1 kg/m and concentrated mass m = 10 kg. 

 

Figure 5: Uniform fixed-free bar carrying a concentrated mass 

The natural frequencies of this bar are obtained by the solution of 

     0cossin
2

 LALm rrrr   (26) 

 rr

E



   (27) 

Four different adaptive GFEM analyses are performed in order to obtain the first 

four frequencies. In order to capture a first approximation of the target vibration 

frequency, for the first frequency, the finite element mesh must have at least one 

element (one effective degree of freedom), for the second frequency, it must have at 

least two elements (two effective degrees of freedom), and so on. 

Table 2 presents the relative errors obtained by the numerical methods. The linear 

FEM solution is obtained with 100 elements, that is, 100 effective degrees of freedom. 

The cubic FEM solution is obtained with 33 cubic elements, that is, 99 effective 

degrees of freedom. The p FEM solution is obtained with just one hierarchical 33 

node element (polynomial form functions until order 32), that is, 32 degrees of 

freedom. The analyses by the adaptive GFEM have no more than 20 degrees of 

freedom in each iteration. For example, the fourth frequency is obtained taking 4 

degrees of freedom in the first iteration and 20 degrees of freedom in the two 

subsequent ones. 

 

 

 

r 

h linear FEM 

(100e)  

ndof
(a)

 = 100 

h cubic FEM 

 (33e) 

ndof = 99 

p FEM 

(1e 33n) 

ndof = 32 

Adaptive GFEM  

(after 3 iterations) 

error (%) error (%) error (%) error (%) ndof in iterations
(b) 

1 1,344 e-6 7,865 e-10 6,095 e-13 9,000 e-14 1x 1 dof + 2x 5 dof 

2 4,196 e-3 1,575 e-10 9,914 e-13 9,000 e-13 1x 2 dof + 2x 10 dof 

3 1,678 e-2 2,381 e-08 6,628 e-11 4,500 e-13 1x 3 dof + 2x 15 dof 

4 3,777 e-2 2,696 e-07 2,012 e-12 3,000 e-13 1x 4 dof + 2x 20 dof 

Notes:  (a) ndof = effective number of degrees of freedom after introduction of boundary conditions; 
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 (b) 1x n dof + 2x m dof  indicates first iteration (FEM) with n degrees of freedom and the other 

two iterations (GFEM) with m degrees of freedom in each analysis. 

Table 2: Results to free vibration of uniform fixed-free bar carrying a concentrated mass. 

Again the precision reached by the adaptive GFEM exceeds the precision obtained 

by h and p versions of FEM with greater number of degrees of freedom.  

4.3  Fixed-fixed bar with sinusoidal variation of cross section area 

In this topic, the longitudinal free vibration of a fixed-fixed non-uniform bar with 

sinusoidal variation of cross section area, length L, elasticity modulus E and mass 

density ρ is analyzed. The boundary conditions are 0),0( tu and 0),( tLu , and the 

cross section area varies as 

 







 1sin)( 2

0
L

x
AxA , (28) 

where A0 is a reference cross section area 

Kumar and Sujith (1997) have presented exact analytical solutions for longitudinal 

free vibration of bars with sinusoidal and polynomial area variations. The equation of 

motion of axial vibration is reduced to analytically solvable differential equations 

using appropriate transformations. 

This problem is analyzed by the h and p versions of FEM and the adaptive GFEM. 

Six adaptive analyses are performed in order to obtain each of the first six 

frequencies.  

Table 3 shows the first six non-dimensional eigenvalues ( ELrr   ) and their 

relative errors obtained by these methods. The linear FEM solution is obtained with 

100 elements, that is, 99 effective degrees of freedom after introduction of boundary 

conditions. The cubic FEM solution is obtained with 12 elements, that is, 35 effective 

degrees of freedom. And the hierarchical p-version of FEM is obtained with one 33 

node element, that is, 31 effective degrees of freedom. The analyses by the adaptive 

GFEM have maximum number of degrees of freedom in each iteration ranging from 9 

to 34. 

 

r 

Exact 

solution
(a)

 

h linear 

FEM 

 (100e) 

ndof = 99 

h cubic 

FEM (12e) 

ndof = 35 

hierarchical 

p FEM 

(1e 33n) 

ndof
(b)

 = 31 

Adaptive GFEM  

(after 3 iterations) 

r error (%) error (%) error (%) r error (%) 
ndof in 

iterations
(c) 

1 2,978189 4,737 e-3 2,577 e-5 2,998 e-5 2,978188 2,997 e-5 
1x 1 dof + 2x 9 

dof 

2 6,203097 1,699 e-2 1,901 e-4 6,774 e-6 6,203097 6,871 e-6 
1x 2 dof + 2x 14 

dof 

3 9,371576 3,753 e-2 3,065 e-4 1,643 e-6 9,371576 1,731 e-6 
1x 3 dof + 2x 19 

dof 

4 12,526519 6,632 e-2 7,312 e-4 2,498 e-6 12,526519 2,441 e-6 
1x 4 dof + 2x 24 

dof 
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5 15,676100 1,033 e-1 2,332 e-3 2,407 e-7 15,676100 2,044 e-7 
1x 5 dof + 2x 29 

dof 

6 18,823011 1,486 e-1 6,787 e-3 2,163 e-6 18,823011 2,187 e-6 
1x 6 dof + 2x 34 

dof 

 Notes: (a) Results from Kumar and Sujith (1997); 

(b) ndof = effective number of degrees of freedom after introduction of boundary 

conditions; 

 (c) 1x n dof + 2x m dof indicates first iteration (FEM) with n degrees of freedom and 

the other two iterations (GFEM) with m degrees of freedom. 

Table 3: Results to free vibration of fixed-fixed bar with sinusoidal variation of cross section area. 

One notes that the adaptive GFEM reaches more precise values than the h-versions 

of FEM with even less degrees of freedom. The precision reached for all calculated 

frequencies by the adaptive process is similar to the one reached by p-version of FEM 

with 31 degrees of freedom. The errors are greater than those from the uniform bars 

because the exact vibration modes of non-uniform bars cannot be exactly 

represented by the trigonometric functions used as enrichment functions; however, 

the precision is acceptable for engineering applications. Each analysis by the adaptive 

GFEM is able to refine the target frequency until the exhaustion of the approximation 

capacity of the enriched subspace. Thus the precision can be improved by using a 

more refined mesh in the adaptive process. 

5 CONCLUSIONS 

In the adaptive GFEM, trigonometric enrichment functions depending on 

geometric and mechanical properties of the elements were added to the linear FEM 

shape functions by the partition of unity approach. This technique allows an accurate 

adaptive process that converges very fast and is able to refine the frequency related 

to a specific vibration mode. In addition the enrichment functions are easily obtained 

and the introduction of boundary conditions follows the standard finite element 

procedure. 

The results have shown that the adaptive GFEM achieves narrower precision than 

linear and cubic h-versions of FEM in free longitudinal vibration analysis of uniform 

and non-uniform straight bars analyzed for the same number of degrees of freedom. 

It has been observed that even for free vibration problems of non-uniform bars; the 

results from the adaptive method are accurate with relatively few degrees of freedom.  

In these examples, the adaptive GFEM reached at least similar precision that the p-

version of FEM with same number of degrees of freedom. For uniform bars the 

adaptive GFEM results were better than those obtained by p-version of FEM.  

Future research will extend this adaptive method to other structural elements like beams, 

plates and shells. 
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