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Abstract: In this work it is presented a Finite Element (FEM) formulation based on positions to 
analyze plates and shells exhibiting large deformations under dynamic loads. The objective is to apply 
a geometrically exact total Lagrangian description associated with Reissner kinematics capable of 
accurately solving non linear dynamics using a simple time integration procedure, i.e., the Newmark 
 . In order to make it possible co-rotational formulations must be avoided and the positional 
formulation, based on unconstrained vectors, is applied. This formulation does not apply the Euler-
Rodrigues formula for finite rotations, resulting into a constant mass matrix. A simple proof of the 
momentum conserving property for rigid bodies is provided and high order curved elements are used 
to avoid locking. For flexible structures the conserving property is checked by selected examples. 
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1 INTRODUCTION 

An accurate analysis of structures that exhibit large deflections is of great importance for 
structural design. The increasing search for economy and optimal material application leads to 
the conception of very flexible structures. As a consequence, the equilibrium analysis in the 
non-deformed position is no more acceptable for most applications. This affirmation is 
confirmed by the large amount of research regarding this subject. One can see pioneering 
studies related to nonlinear analysis of structures as the works of Bisshopp and Drucker 
(1945); Mattiasson (1981); Goto et al. (1985); Jenkins et al. (1966); Kerr, (1964); Mondkar 
and Powell (1977); Belytschko et al. (1977); among others. 

Moreover, some structures are naturally geometrically nonlinear as, balloons, airbags, 
cables, membranes etc. The design of this kind of structures requires more sophisticated 
theories than the linear ones. One can see, for instance, the works of Stein and Hedgepath 
(1961); Baginski and Brakke (2006); Pipkin (1994); Bonet et al. (2000) among others. 

This study is concerned with the development of a new Finite Element methodology to 
solve geometrical non-linear dynamics of shells. In order to achieve a robust formulation, the 
resulting element should be free of shear and volumetric locking. This problem is solved here 
by the natural presence of the transverse shear strain in the proposed kinematics. The novelty 
of the proposed formulation is the use of positions and generalized unconstrained vector 
mapping, resulting in a naturally objective continuum representation of the shell, free of large 
rotation descriptions and locking. There exists other kind of rotation free elements as 
proposed in the works of Oñate and Zerate (2003) and Flores and Oñate (2007), developed 
specifically for thin shells and based on curvature considerations. 

There are different approaches regarding time integration for transient non-linear FEM 
dynamics, one can mention as an example, three different approaches. The first is the explicit 
time integration for fast solutions, analysed in details by Argyris et al. (2003) and works cited 
therein, where small time steps are adopted and an indirect control of errors is made. The 
second is the so called variational energy conserving algorithms, necessary for co-rotational 
like formulations, see for instance Simo et al. (1992). And finally, the implicit time 
integration for total Lagrangian formulations as described by Lopez (2007).  

The formulation proposed here is total Lagrangian and, due to its unconstrained vector 
mapping, it presents constant mass matrix. It is possible to apply the Newmak   integrator as 
a momentum conserving algorithm. A simple proof of the momentum conserving property of 
the Newmark   method is given in this paper. The proof is restricted to total Lagrangian 
formulation (not extended to co-rotational formulations) and trivially fulfills the energy 
conserving property for rigid bodies. All required features of the formulation as: locking free, 
frame invariance and momentum conserving (linear and angular) are checked in the numerical 
example section. 

2 STRAIN MEASURE AND SPECIFIC STRAIN ENERGY POTENTIAL 

This section summarizes simple concepts used to derive the proposed formulation. The 
Green strain tensor is derived directly from the gradient of the change of configuration 
function, represented by letter A, given as follows: 
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where if  is the change of configuration function, as depicted in Fig. 1, and jx  represents 

variation regarding initial position. 
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Fig. 1 Change of configuration 

 
In Fig. 1 idx  and idy  represent an infinitesimal fiber in the initial and current continuum 

configurations, respectively. Following Ogden (1984), the Green strain tensor can be written 
as: 
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In which index notation is adopted. The variables ijC  and ij  are the right Cauchy-Green 

stretch tensor and the Kroenecker delta, respectively. The following quadratic strain energy 
per unit of initial volume is adopted, 
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resulting into a linear elastic constitutive law relating second Piola-Kirchhoff stress and Green 
strain, usually called Saint-Venant–Kirchhoff elastic law, i.e.: 
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The elastic tensor is given by 
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Where G  is the shear modulus, given by, 
E

G
2(1 )
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with E  being the well known Young modulus and   the Poisson’s ratio. 
The true stress (Cauchy stress) is achieved directly from the Second Piolla-Kirchhoff stress 

following simple expressions given by Ogden (1984) or Ciarlet (1993), for instance. For the 
sake of completeness it is necessary to recall that the right Cauchy-Green stretch tensor is 
positive definite, symmetric and has six independent values. 

3 EQUIVALENCE OF CLASSICAL AND GENERALIZED UNCONSTRAINED 
MAPPING OF SOLIDS: 

This section presents the equivalence of a classical finite element solid mapping and its 
counterpart, the generalized vector mapping. Fig. 2 shows a solid (following plane stress or 
plane strain condition) element of quadrangular shape classically mapped from a usual non-
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dimensional coordinate system. Fig. 2 also shows the same solid mapped from the same non-
dimensional coordinate system, this time using generalized unconstrained vector parameters. 
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Fig. 2 Classical and generalized unconstrained vector discretizations 

 
Without loss of generality the equivalence is shown for a low order mapping and in the 

next section extended to consider high order interpolations. In order to be complete, lets take 

the following shape functions:   1 1 2

1
1 1

4
     ,   2 1 2

1
1 1

4
     , 

  3 1 2

1
1 1

4
     , 

   4 1 2

1
1 1

4
      and  1 1

1
1

2
    and  2 1

1
1

2
   . 

where i  are non-dimensional coordinates. The classical continuum mapping is written as: 

1 2i ix ( , )X           for    1,2i       and    1, 2,3,4      

 (7) 
where ix  are the coordinates of any point of the mapped continuum,   are the shape 

functions and iX   are the coordinates of nodes P  named position parameters. 

A totally similar mapping is given by: 
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where the mid line nodal coordinates m

iX   and nodal generalized vectors iH  are given by: 
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 ; 1 4 1i i iH X X   and 2 3 2i i iH X X     (9) 

Expression (8) shows that the equivalent vector mapping is done using non unitary vectors 

iH  as parameters. In order to generalize the formulation one writes the nodal vectors 1iH  

and 2iH  as functions of their lengths 1H  and 2H  resulting: 

( )
22

m
i i i

H
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       for 1, 2i    and  1,2     (10) 

where brackets mean that summation is not implied. The first term of Eq. (10) describes the 
reference line approximation. The values iV   are the generalized nodal vectors. These vectors 

are not orthogonal to the reference line and could not be unitary, if desired, see Eq. (8). 
However, for the initial configuration they are made unitary, but in the current configuration 
these vectors assume non unitary values. This feature is the original of the generalized 
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unconstrained vector mapping of solids. Finally, if one adopts constant height ( 0h ), a usual 

assumption for bars and shells, Eq. (10) turns into the desired continuum mapping, i.e, 

0
22

m
i i i

h
x X V          for 1, 2i    and   1,2     

 (11) 
This mapping is totally similar to the classical one, given in Eq. (7) and, consequently, has the 
same objectiveness, Jelenic and Crisfield (1999).  

4 IMPROVED FINITE ELEMENT KINEMATICS: 

Improving the solid description of Fig. 2 by a three dimensional representation of a shell. 
One can approximate the mid-surface positions of a shell, see Fig. 3, by the following 
mapping. 

0m m
i i if x X              (12) 

1m m
i i if y Y              (13) 

where m
ix  is the ith coordinate of a generic point in the mid surface of the shell at initial 

configuration, iX   is the ith coordinate of node  , m
iy  is the ith coordinate of a generic point 

in the mid surface of the shell at current configuration, iY  is the ith coordinate of node   at 

current configuration. 
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Fig. 3 Mid-surface mapping Fig. 4 Position vectors 
 

One can see in Fig. 3 that 0mf  is the positional mapping from the auxiliary coordinate to 

the initial mid surface configuration, 1mf  is the positional mapping from the auxiliary 

coordinate to the current mid surface configuration, mf  is the positional mapping from the 

initial configuration to the current one (not to be written) and the values 0mA , 1mA , mA  are 
their respective gradients. Expression (12) is totally similar to the reference line description of 
the first term of Eq. (11). This time, high order approximations for a surface are used.  

To complete the shell kinematic description for both initial and current configurations, one 
realizes that the difference between a point out of the mid-surface and its corresponding 
belonging to the mid-surface generates position vectors ov


 or 1v


, see Fig. 4. 

A general point of the shell can be defined by adding the position vectors to the 
corresponding mid-surface point, i.e., 
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0m
i i ix x v             (14) 

1m
i i iy y v             (15) 

Following what has been described in section 3, for constant strain regarding 3 , one 

writes 0
iv  and 1

iv  as functions of non-dimensional coordinates, as 

0 00
32i i

h
v V              (16) 

1 10
32i i

h
v V               (17) 

where 0h , 0
iv , 1

iv  are, respectively, the initial constant thickness of the shell, the normal unit 

vector to the initial mid-surface and the current generalized vector (not necessarily normal to 
the mid-surface). 

To consider linear strain variation regarding 3  an improved kinematics is required. This is 

done adopting a new scalar variable called here the linear rate of thickness variation and 
denoted by letter a . It is not necessary to introduce this new variable for initial configuration, 
so expression (16) does not change, however expression (17) turns into: 

3

1 1 20
32i i

h
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The introduced quadratic term allows linear strain variation along the transverse direction 
of the shell. The final generalized nodal vectors 1

iV  are not constrained, so the final thickness 

of the shell is not the same as the initial one and can be recovered as: 
1 1
i iv V              (19) 

1 1
0 i ih h v v            (20) 

The final mapping is generalized and unconstrained, like Eq. (11), improved in the 
membrane and thickness sense and is written as: 
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h
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In which the linear rate of thickness variation (scalar) is parameterized by its nodal values A , 

as follows: 
a A              (23) 

The current position has seven unknown parameters per each node  , i.e., three positions 

iY , three generalized nodal vectors iV   and the nodal rate of thickness variation A . Function 
0

if  is used to find 0A  while function 1
if  is used to find 1A  (trial). The composition of these 

two values for each integration point gives the numerical value of the gradient of the change 
of configuration for any initial geometry (curved), i.e., 

1 0 1A A ( A )            (24) 

 It is worth to show the derivatives of 1
if  regarding the non-dimensional variables j , 

constituting the gradient 1
ijA  as follows: 
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5 DYNAMIC NON LINEAR EQUATION: 

From this section on, a unified notation will be adopted for nodal parameters, they will be 
called simply iY  for each element   and  for i varying from 1 to 7. The correspondence is as 

follows, translations for i varying from 1 to 3, rate of thickness variation for 4i   and 
generalized vectors for i varying from 5 to 7. 

The conservation of energy in a mechanical system is guaranteed if the input and output of 
energy are at balance. If there is some kind of dissipation the total energy of the system 
changes along time. It can be understood writing the total potential energy of a system as 
follows: 

)x,t(Q0            (28) 
where, following Lanczos (1970), )x,t(Q  can be stated as the quantity of energy withdrawn 
from the simple conservative idealized energy 0 . As a consequence,   is the remaining 
(current) mechanical energy of the system and Eq. (28) can be rewritten as: 

)x,t(Q0            (29) 
This equation can be understood as recovering the possibility of using stationary properties 

for the mechanical system analysis, i.e., one can use the minimum potential energy theorem 
on the ideal energy function 0  for equilibrium analysis.  

For a structural problem associated with a fixed reference system, Fig. 5, the ideal potential 
energy function can be written as the composition of the strain energy ( eU ), the potential 
energy of applied conservative forces ( ), the kinetic energy ( K ) and dissipation (Q ), as 
follows. 

QKU e0            (30) 
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Fig. 5 Deformation of a beam under the action of a force 

In this work the non-conservative forces will be considered as part of the dissipative potential. 
The strain energy function of the body, shell for instance, is considered stored in the initial 
volume of the body V0 and is written as an integral of the specific strain energy value eu , Eq. 

(3), as 


0V

0ee dVuU                     (31) 

The strain energy is assumed to be zero at the initial position, called non-deformed. The 
potential energy of the applied conservative forces is written as: 
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0
0i i i is
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where iF  represents forces applied in  direction "i" and iY  is the ith current position of the 

point where the load is applied, it  is the distributed force applied in direction "i" and iy  is the 

current position of mid surface points ( 1 2 3i , ,  only). Gravitational force has not been 
mentioned, however as it is a conservative force, t can be introduced directly into the integral 
of Eq. (32). The letter 0ds  represents the initial differential area of elements. The kinetic 

energy is written as  

0
0 0

1

2 i iV
K y y dv                (33) 

where iy  are velocities and 0  is the mass density, relative to the initial volume 0V . The 

dissipative term, including normal distributed forces, is written in its differential form as 

0 0 0
0 0 0 0m i iv v s

i i

Q( t , y ) q( y,t )dv y dv q ds
y y

  
  

          (34) 

where q  is the specific dissipative functional, m  is a proportional damping constant, iy  are 

velocities at any point and iq  are components of the normal distributed forces given by: 
1

i iq q V              (35) 

In equation (35) q  is the normal distributed force over the element and 1
iV the generalized 

vector corresponding to the values iY  for i  varying from 5 to 7. The integral of these forces 

respects the direction of the current position but its integral is performed over the initial 
surface as the load magnitude is written regarding initial position. The current load is easily 
known by multiplying these magnitudes by 0ds / ds , for usual applications of thin structures 

the value of 0 1ds / ds  . 

Substituting Eqs. (31), (32) and (33) in Eq. (30) results: 
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y y dV   + Q       (36) 

This energy function can be written substituting the exact position field by its 
approximation described in section 4, i.e.: 

0
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The minimum potential energy theorem is used on 0  by differentiating Eq. (37) 

regarding a generic nodal position jY , resulting: 
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0
0j j ki kis

F ( ) ( )ds t      
0

0 0j js
q ( )ds          (38) 

It is worth noting that in this equation the dissipative potential is differentiated regarding 
nodal positions, differently from Eq. (34), so Eq. (35) should be introduced in the last integral 
of Eq. (38) to perform the numerical integration. Moreover, as the vibration frequency of the 
thickness variation is too high, when compared to the other movements, the mass matrix is 
generated neglecting this term. One can rewrite Eq. (38) in a simple vector form as 
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or 

0c nce
j j j j j
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U
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The involved forces are, inertial force inert .
jF or jMY , damping damp.

jF or jCY  and the 

external force, divided into conservative c
jF  and following forces nc

jF . It is important to note 

that the second representation of the inertial and damping forces is possible because the 
simple vector mapping described in sections 3 and 4 generates constant mass matrix. Splitting 
the derivative of the specific strain energy, one writes: 

   kl k lim im kl k lim im im im
j j j j

E E E1 1
E C E E C E C E S
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Consequently: 
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int .
im im 0

jV

E
F C E dV

Y











         (42) 

where int
jF  is the first gradient vector of the strain energy potential regarding positions, 

understood as internal force. Eq. (39) represents the dynamic equilibrium of the shell in the 
D'Alambert sense. If not, vector jg  can be understood as the unbalanced force of the 

mechanical system. 
The current position is the unknown of the problem, so it is necessary to solve the non-

linear Eq. (39) regarding  jY   and time. The first solution step is to integrate Eq. (39) 

regarding time. For an implicit approach this step is of great importance regarding the 
momentum conserving properties of the adopted time integrator. In this work a proof 
(alternative to the one given by Kane et al. (2000)) that the Newmark   method conserves 
linear momentum and angular momentum for any adopted time step, is given. This proof is 
restrict to total Lagrangian formulation (not co-rotational) and is trivially extended to energy 
conserving property for rigid bodies. 

6 LINEAR AND ANGULAR PROPERTIES OF NEWMARK   METHOD FOR 
CONSTANT MASS MATRIX: 

In this section no indexes are used, so the variables, as they appear, are vectors. It is 
important to mention that the proofs given here are restricted to total Lagrangian 
formulations. It is not extended to non-lagrangian or co-rotational formulations.  
The Newmark   approximations, following the notation given by Argyris and Mlejnek 
(1991), for position description is:  
 

2
1 1

1

2S S S S SY Y tY t Y Y  

            
                  (43) 

 1 11S S S SY Y t Y tY                         (44) 

 
The linear momentum expression for a total Lagrangian description is given as: 
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0

0 0

V

Q YdV              (45) 

If the body does not develop any deformation and the external forces are zero, then the 
linear momentum does not vary along time, that is: 

0

0 0 0
V

Q
YdV

t


 
             (46) 

From the continuity of the body, Ogden (1984), one concludes that, for any point of the 
continuum, holds 

0Y              (47) 
Using Eq. (47), written for two times st  and 1st  , into Eq. (44), it results: 

1S SY Y              (48) 

or by continuity  

1

0 0

0 0 0 0s s

V V

Y dV Y dV 


            (49) 

i.e, the linear momentum is conserved for any adopted time step and Newmark constants. 
To prove the conservation of angular momentum more steps are required. The Lagrangian 

expression of angular momentum is: 

0

0 0

V

J Y xYdV             (50) 

where x  is the vector product. 
The angular momentum is constant when there is a fixed axis around which a rigid body 

turns with constant angular velocity. As the body is considered rigid, no transfer of energy 
from kinetics to strain energy occurs; as a consequence the conservation of momentum means 
the conservation of energy for an isothermal situation. Assuming this hypothesis one writes: 

0 0

0 0 0 0( ) ( ) 0
V V

J
Y xY Y xY dV Y xY dV

t
 

   
            (51) 

Form the continuity assumption the equality 
0Y xY             (52) 

must hold for any point of the continuum. It occurs in two situations, the trivial undesired one, 
i.e., 0Y   and the desired one,  

2Y Y             (53) 
where   is the angular velocity of the body around the rotation axis and Y  is, without loss 

of generality, the position vector of the point related to its projection over the rotation axis. 
Using Eq. (53) for time 1st   into the Newmark   Eqs. (43) and (44), one writes 

2 2 2 2
1 11 2S S S S SY Y tY t ( / ) Y t Y                     (54) 

2 2 2 2
1 11S S S StY tY t ( ) Y t Y                       (55) 

Rearranging terms of Eq. (54) one has, 
2 2 2 2

11 1 1 2S S StY ( t )Y ( t ( / ) )Y                     (56) 

substituting Eq. (56) into Eq. (55) results: 
2 2 2 2 2 2 2 2

1 11 1 1 2 1S S StY ( t t )Y ( t ( / ) t ( ) )Y                         (57) 

Post-vector-multiplying Eqs. (56) and (57) by sY  and 1sY  , respectively, and subtracting 

results one achieves: 
2 2 2 2 2 2

1 1 1( ) (1 (1/ 2 ) (1 ) 1)( )s s s s s st Y xY Y xY t t t Y xY                    (58) 
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Finally Eq. (58) simplifies to: 

2
1 1 1

1
( ) ( )

2s s s s s sY xY Y xY t Y xY   
     
 

         (59) 

By continuity one writes 

0 0 0

2
0 1 1 0 0 0 0 1 0

1
( )

2s s s s s s

V V V

Y xY dV Y xY dV t Y xY dV      
     
         (60) 

or in a shorter notation 

0

2
1 0 1 0

1
( )

2s s s s

V

J J t Y xY dV   
     
         (61) 

Therefore, the Newmark   method is angular momentum conserving for constant mass 
matrix and 1/ 2  , despite the adopted time step, angular velocity or   parameter. 

7 TIME MARCHING PROCESS AND THE NEWTON RAPSON PROCEDURE 

From the previous developments Eq. (39) can be written in a simpler form as 

0c nceU
g F F MY CY

Y


     


          (62) 

Expression (62) represents the dynamic equilibrium equation at any time and has to be 
solved. In order to do so the first step is to write this equilibrium for a specific instant 1st  , as 

follows: 

1 1 1
1 1

0e
S S S

S S

U
F MY CY

Y Y   
 


    

 
              (63) 

Substituting the Newmark approximations (43) and (44) into Eq. (63) results  

 1 1 1 12
1 1

0e
S S S S S S S

S S

U M C
g Y F Y MQ CR Y tCQ

Y Y t t

 
    

 


         
   

   (64) 

where vectors QS and RS represent the dynamic contribution of the past, and are given by 

2

1
1

2
S S

S S

Y Y
Q Y

t t  
 

       


                  (65) 

 1S S SR Y t Y                              (66) 

Eq. (64) can be understood simply by  1 0Sg Y    and is clearly non-linear regarding 

 1SY  . A Taylor expansion to solve this non-linear equation is necessary. The second 

derivative of the total energy potential is then given by: 

 
22

12 2 2

1 1

e
s

S S

U M C
g Y

Y Y t t


 

 

 
    

   
      (67) 

One builds the Taylor series of first order as: 

   0 00 g(Y ) g Y g Y Y            (68) 

and derives the Newton-Raphson procedure to solve the non-linear Eq. (64), i.e., 

   0 0g Y Y g Y             (69) 

where 0Y  is a trial position (usually Ys) for YS+1 used in Eq. (64) to calculate  0g Y . Solving 

Y  one calculates a new trial for 1sY   as 
0

1SY Y Y                (70) 
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The acceleration must be corrected for each iteration by an expression obtained from Eq. 
(43), i.e., 
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This equation is used in Eq. (44) to correct velocity. The stop criterion is given by Eq. (72), 
when a chosen tolerance (TOL) is satisfied, i.e., 

0g(Y ) TOL  or Y TOL                          (72) 

It must be noted that, before the first time step, the initial acceleration must be calculated 
as follows 
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8 THE DERIVATIVES OF THE SPECIFIC STRAIN ENERGY 

In order to conclude the description of the formulation the second derivatives of the strain 
energy regarding nodal positions should be given as it has been done for the first derivative in 
Eq. (42). From Eqs. (41) and (42) one writes: 
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    (74) 

Finally, the first and second derivatives of the Green strain regarding current nodal 
positions should be done. Firstly the necessary derivatives of the Cauchy-Green stretch tensor 
are presented. Next the derivatives of strains are straightforward achieved. Recalling that the 
Cauchy-Green stretch tensor is given by: 

AAC t            (75) 
and omitting, for simplicity, extra indices, one applies the proposed mapping, i.e., 

1 0 1A A ( A ) , and writes: 
0 t 1 1 t 1 0 1

i iC [( A ) ] ( A ) (Y )A (Y )( A )         (76) 

Remembering that 0A  is constant regarding the current position, the first derivative is 

performed as: 
1 t 1

0 t 1 1 1 0 t 1 1 t 0 1i i
i 0 i

j j j
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and, from Eqs. (25) to (27), one has the following (not null) values of the current positional 
mapping gradient: 
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The first index of mY  is the element node and the second is the degree of freedom. The 

second derivative of the Cauchy-Green stretch is given by, 
1 t 1 1 t 12
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where 1 / kA Y   are given by Eqs. (78-92) and the second derivatives, 2 1 /( )k jA Y Y    are 

straightforward. Recalling Eq. (2), one achieves directly  
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It is important to mention that the present technique can be applied to any strain measure 
based on the Cauchy-Green stretch. Eq. (67) indicates that the proposed procedure can be 
operated by creating the Hessian matrix and internal forces for finite elements and building 
the global matrix and internal force vector by summation of coincident degrees of freedom, as 
it is done for usual FEM procedures. One should remember that all nodal parameters follow 
the global system of reference, avoiding the use of rotation schemes. 
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9 NUMERICAL EXAMPLES 

This section provides eight examples covering selected tests to confirm the generality and 
accuracy of the proposed formulation for static and dynamic situations. No mention to units is 
made to keep a coherence with references. The important features are: objectivity, locking 
free behavior, Linear momentum conserving, angular momentum conserving, total energy 
conserving and generality in applications. More examples regarding static analysis can be 
seen in Coda and Paccola (2007). 

9.1 Objectivity of the formulation regarding rotations 

As mentioned in the introduction, this formulation is tested regarding mapping objectivity. 
The employed way to test this property follows well known methodologies; see for instance 
Criesfield and Jelenic (1999) and Ibrahimbegovic and Taylor (2002). A clamped vertical plate 
(shell in deformed configuration) is subject to a transverse load at its free end as depicted in 
Fig. 6. Static conditions are considered so inertial forces are negleted, gravitational forces are 
also not considered. The physical properties of the structure are 100000E   and 0.   The 
thickness of the shell is 0.1h  . The adopted discretization can also be seen in Fig. 6. 
 

2

2

h=0.1

q=1.5

Clamped

 
 

Fig. 6 - Geometrical characteristics of the problem and discretization. 
 

Two situations are created. The first consists into applying a rotation over the shell 
regarding the clamping axis without applying any load. The objective is to show that no stress 
will be generated at any stage of rotation. One hundred turns are applied and no stress 
appears; moreover the positions are exactly the same after each turn. In Fig. 7 one can see an 
illustration of this situation for the first turn. The adopted rotation step is 0.1 . 

In the second situation the process is divided into two phases. First, the load is increased to 
its final value in ten equal steps. The resulting stress, following the longitudinal direction of 
the shell, at the superior face of the shell, is depicted in Fig. 8.  

0.6

1.1  

1.6  

2.0  
0.1  

 

  
 

Fig. 7 - Stress values for the first turn -unloaded 
 

Fig. 8 Stress values for the first deformed 
configuration - no rotation 
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Then the load is kept constant and acting in the same sense and direction and the rotation, 
similar to the one used in the first situation, is applied. The adopted rotation step is 0.01 . At 
the beginning of the rotation process the action of rotation is against the action of the loading. 
At a quarter of the first turn the loading is compressing the shell and the stress values, 
following the longitudinal direction of the shell, are depicted in Fig. 9.  

At the half of the first turn the shell is in opposite position to the beginning of the rotation 
process, and the initially superior face of the shell is now the inferior one. The stress values at 
this face are negative and their values are depicted in Fig. 10. The difference in stress 
magnitude from the first deformed configuration and this one is due to the normal traction 
force that increases the values in Fig. 8 and decreases the absolute values in Fig. 10. 

 
  

Fig. 9 Stress values for a quarter of the first turn 
( / 2 ) 

 

Fig. 10 Stress values for the half turn ( ) 
 

At three quarters of the first turn the stress values are the ones depicted in Fig. 11, exactly 
as expected. Finally, after a complete revolution the stress values depicted in Fig. 12 are 
exactly the same ones present in Fig. 8. Ninety nine more turns were performed and the 
results are repeated for each turn, revealing the total objectiveness of the generalized vector 
mapping.  

   

Fig. 11 Stress values for three quarters of a turn 
(3 / 2 ) 

Fig. 12 Stress values for one complete turn 
( 2 ) 

9.2 Shear and Volumetric locking analysis 

This example is extracted from Bucalem and Nóbrega (2000) and is a benchmark to check 
FEM formulations regarding shear and volumetric locking. It is an important example as the 
solution for plates is very sensitive to the Poisson Ratio and some shell theories fail to 
reproduce the analytical solution by the presence of shear locking. It is the analysis of a simple 
supported square plate subjected to a static transverse concentrated load at its center. The 
numerical results are compared with the analytical solution obtained using Navier’s series for 
Kirchhoff plate theory. The thin plate geometry is depicted in Fig. 13. 
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Fig. 13 Analyzed plate and 
adopted discretization 

 

Fig. 14 Displacement at the centre of the plate versus 
Poisson Ratio. 

 

The adopted physical data are 2L  , 92.1 10E x , 0.002h   and   varying from 0 to 0.5. 

The applied load is 20.4 10P x  . In Fig. 14 the results obtained using the presented improved 
formulation is compared to the analytical solution and the solution for constrained linear rate of 
thickness variation. This last situation is called simply six parameter shell formulation. 

As one can observe the presented formulation is free from shear and volumetric locking and 
reproduces perfectly the analytical solution. For more examples regarding the shear locking free 
behavior of the proposed kinematics one is referred to Coda and Paccola (2007), where an 
extensive static analysis for a six parameter shell element is presented. 

9.3 Pinched Cylinder with rigid diaphragms (static) 

This benchmark consists in a cylinder with rigid diaphragms pinched by concentrated loads 
at two opposite points at its top and bottom, see Fig. 15. The adopted discretization (2x18x6 
mesh) is also depicted in Fig. 15 comprising 1045 nodes. This example is also used to test the 
formulation regarding shear and Poisson locking. It should be noted that if a formulation 
suffers from any locking the correct results can not be achieved. The use of symmetry can 
hide some buckling modes of the problem, however to compare with the reference papers the 
symmetry is assumed. The number of modes one can gets with accuracy (excluding non 
symmetric ones) is about 30 for a total of 220 node for the total circumference and cubic 
approximations. The results are compared to the ones achieved by Sansour and Kollmman 
(2000) with a mesh of 1681 nodes. Taking advantage of symmetry only one octant of the 
cylinder is discretized. The adopted physical parameters are: R 100 , h 1 , 4E 3x10 , 
L 200 . Two values are adopted for the Poisson ratio, 0.3   and 0.49  , respectively, in 
order to check the locking free behavior of the presented formulation.  
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Fig. 15 Pinched Cylinder geometry, loading and the adopted discretization. 

 
The problem is solved with the proposed formulation following two strategies. The first, 

called 7 parameters, does not constrain the linear rate of thickness. The second, called 6 
parameters, totally constrains the linear rate of thickness variation. In Fig. 16 the results for 

0.3   are compared with Sansour and Kollmman (2000) that employed an strain enhanced 
strain quadrilateral element. As one can see the formulation proposed here can capture the 
flexibility of the pinched shell for 0.3   even if the linear rate of thickness variation is 
totally constrained. A formulation suffering of shear locking is not able to run this example. 
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Fig. 16 Displacements for points A and B, 0.3  . 

 
In Fig. 17, the behavior of the proposed formulation (with the seventh parameter 

constrained or not) is depicted for 0.49  . The reference value for this figure is the seven 
parameter result with 0.3  . As expected, the proposed formulation does not lock for large 
Poisson ratio. However, the results for the totally constrained rate of thickness variation lock 
completely. Shell formulations based on six parameters and full constitutive relations can be 
free from shear locking, but not from Poisson locking. 
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Fig. 17 Displacements for points A and B, 0.49  . 

  
From this result it is obvious that the positional improved formulation based on generalized 

vectors, together with high order curved elements, is able to solve geometrically non-linear 
shell problems with precision and reduced mesh. Additional and practical information is that 
the pinched cylinder benchmark problem is not very sensitive to the Poisson ratio intensity. 

9.4 Linear momentum conservation 

This example is used to confirm the proof given for the linear momentum conserving property 
of the Newmark   method when used with the generalized vector mapping to develop the 
positional formulation. A plate with the same dimensions of example 9.1 with no 
displacements restriction and mass density 0 1   is subjected to an initial velocity in the 

vertical direction of value 2 1V  . As the gravitational force is neglected and no displacement 

restrictions are imposed the plate does not deform and moves with constant velocity. The total 
applied kinetic energy is, of course, 0.2k  . Only two finite elements were used to run this 
problem. In Fig. 18 the numerical kinetic energy calculated for 1000 time steps using different 
time steps is depicted. Remembering that the Newmark parameter 0.5   is mandatory the 
other one is adopted as 1/ 4  . 
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Fig. 18 Energy conserving for linear momentum 

 
As one can see in Fig. 18 the Newmark   method preserves the total energy of the system 

when a linear momentum is applied. No strains were developed in this example. 
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9.5 Angular momentum conservation 

In this example a vertical circular thick cylinder, see Fig. 19, is subjected to a field of 
initial velocity generated by an angular velocity of 1w  . the dimensions of the cylinder are: 

0.4h  , 1.0l   and 1.0r  . The physical parameters are: 100E  , 0   and 0 0.1  . The 

total energy introduced in the problem by this velocity field is (considering the thickness 
influence) 1.3069k  . Eighteen finite elements with forty eight nodes and 0.25   are used 
to run this problem, as shown in Fig. 19. One should note that the elements are curved despite 
the straight lines that appear in the Fig. 19. The achieved total energy is depicted along 1000 
time steps in Fig. 20 for two different time steps. It is interesting noting that a small strain 
energy was computed for this analysis.  
 

 

l

h

Rotation axis

2r

 

0 200 400 600 800 1000
0.1000

0.1025

0.1050
0.1075

0.1100

0.1125

0.1150
0.1175

0.1200

0.1225

0.1250
0.1275

0.1300

0.1325

0.1350
0.1375

0.1400

T
o

ta
l E

n
er

g
y

Number of Time Steps

 t=0.01
 t=0.10

Fig. 19 Geometry and discretization 
Fig. 20 Energy conserving for angular 

momentum 
 

The exact solution is coincident with the numerical one for 0.01t  . The numerical result 
for the large time step is also energy conserving; the difference in results is floating and less 
than 1%. This difference is due to the better accuracy achieved when using a small time step. 
In Fig. 20 the number of time steps is the same, however for the larger one 15.9 turns are 
depicted and only 1.59 turns are depicted for the smaller one. The same total energy is found 
after 1,000,000 time steps for the smaller time step, i.e, performing 1590 turns. Even better 
results are achieved for thinner shells. As a consequence, the proof given for the momentum 
conserving property of the Newmark   method is confirmed also for angular momentum. 

9.6 Transverse dynamic load over a clamped beam - Energy conservation check 

This example adopts the proposed non-linear shell element to run the non-linear transversal 
dynamic vibration of a clamped beam subjected to an initial field of velocity see Fig. 21. It 
intends to show the transfer behavior of kinetic and strain energies for a deformable body. 
The beam have young Modulus 90 2 10E . x , mass density 0 500  , length 1L  , thickness 

0 01h . , width 0 20b .  and Poisson’s ratio 0  . The applied velocity is proportional to 
the distance from the clamped end and has a maximum value of 0 1v  , see Fig. 20. The 

adopted time step is 0.001t  . The exact total energy of the system is 0 0.16667k   
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Fig. 21 Geometry, initial velocity and discretization. 
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Fig. 22 Energy and free end displacement along time 

 
Forty finite elements and 217 nodes are employed in the discretization. In Fig. 22, the 

kinetic, strain and total energies are depicted. The transversal displacement of the beam at the 
free end is also depicted in Fig. 22. As one can see the energy is completely conserved for 
deformable situations. It is important to mention that in non-linear applications the coupling 
of vertical and horizontal movements is present and this is the reason the peaks of the analysis 
does not repeat with the same shape, also there is not necessarily an instant for which the 
kinetic energy becomes zero, as it is expected in some simple linear analysis. 

9.7 Simple airbag simulation 

This simple example is inspired in the airbag simulation presented by Cirak and 
Radovitzky (2005) that includes fluid structure interaction. In the present work only the 
structure (airbag) is modeled subjected to a deterministic applied load in order to demonstrate 
the possibilities of the proposed formulation regarding the analysis of very thin membranes 
and general problems. A formulation suffering of shear locking is not able to run this 
example. The load is orthogonal to the airbag surface and, as no comparisons can be made, 
the initial structure discretization is simplified. The simulation corresponds to an initially-flat 
airbag made of an elastic fabric with a Young’s modulus of 96 0 10E . x , Poisson’s ratio of 

0 3.  , and mass density of 0 1000  . The initial position of the real airbag can be seen in 

Fig. 23, extracted from the work of Cirak and Radovitzky (2005). The thickness of the airbag 
is 47 3 10h . x   and the diameter in its flat initial configuration is 0 74D . . Our initial 
discretization (1 8/ th  of the airbag due to the assumed double symmetry) consists of 800 
cubic elements of ten nodes resulting in 3721 nodes, Fig. 24. The adopted boundary condition 
at the curved board is simple supported. The pressure of the fluid is simulated by the 
following function. 
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2(0.999t-0.01)r100 t e 5066.25   for   0<t<0.01     and     5066.25    for   t>0.01  
where t is time and r is the distance from the centre of the airbag. The adopted time step is 

0 0002t .   and the maximum tolerance for convergence is 0 0005tol .  in positions. An 
initial random vertical defect with maximum amplitude of 0.001   is assumed for the 
analysis. 
 

 

Fig. 23 Airbag geometry, Cirak and Radovitzky (2005) Fig. 24 Adopted discretization, 
initially flat 

  
Some selected deformed positions are depicted in Figs. 25, 26 and 27. In Fig. 28 the time 

story of the displacement of the top of the airbag is depicted. As one can see in figure 28 the 
top of the airbag stabilizes, to the final value, by geometrical accommodation. 

  

Fig. 25 Airbag at 0.0042s Fig. 26 Airbag at 0.0084s Fig. 27 Airbag at  0.0314s 
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Fig. 28 Top displacement along time 

9.8 Cylindrical shell with dynamic snap through 
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Following Argyris et al. (2003), the second example is a cylindrical shell exhibiting 
dynamic snap through, a severe nonlinearity. Important theoretical studies, related to severe 
non-linearities are presented by Breslavsky et al. (2008) and others cited therein. This is a 
typical benchmark example that has been used extensively as a test for all nonlinear shell 
dynamics formulations presented so far. Snap through problems in shells produce higher 
dynamical modes and this is the reason why it is believed that the standard integration 
schemes such as the Newmark method are not adequate to produce a stable and accurate 
solution and that only algorithms with numerical dissipation and energy decaying schemes 
can be applied with an acceptable time step. Despite this widespread belief, it will be shown 
that using the proposed shell element it is possible to obtain stable and accurate solutions with 
the Newmark integration for reasonable time step. Results will be compared to the TRIC 
element and an ABACUS solution, both presented by Argyris et al. (2003).  

The geometry of the cylindrical shell is shown in Fig. 29. The two straight edges of the 
shell are simply supported, while the two curved edges are free. A concentrated load is 
applied at the central node of the shell. The value of this load increases linearly from 0 to 

650 10x in a time of 0.2, after that it is held constant. To avoid any distortion in results the 
structure is totally discretized. The mesh used in the analysis is shown in Fig. 30 and consists 
of 32 curved finite elements with cubic approximation resulting in 169 nodes and 1183 
degrees of freedom. Argyris et al. (2003) used (for a symetric quarter of the structure) 128 
TRIC elements with 407 degrees of freedom to run this example, see Fig. 30. The adopted 
Newmark Parameters are 0.25   and 0.5  . The TRIC element is designed to run this 
example using large time step within the context of co rotational formulation. by the coupling 
of rigid body movements, for the overall element, and strain modes. Argyris et al. (2003) 
found a maximum stable time step for their co rotational formulation of 31 10t x   . Using 
the proposed formulation we vary the time step from 30.0625 10t x    to 34 10t x    and 
found not instability for the total Lagrangian formulation. The adopted physical properties are 

9200 10E x , 0.25v  , 10.000   and thickness of 0.1h   
 

 
 

 
Present (1/4)            Argyris et. al. (2003)total 

Fig. 29 Geometry  Fig. 30 Discretizations 
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Fig. 31 Present solution for the apex displacement 

 
As one can see, the results converge to the smaller time step, while for large time steps the 
accuracy is lost, but the stability is kept. 

 

 

 
Fig. 32 Results presented by Argyris et. al. (2003) 

10 CONCLUSIONS 

A new, simple and robust formulation to solve dynamic geometrical non-linear problems 
with large deflections applied to shells is proposed and implemented. The formulation is 
based on unconstrained vector mapping of the continuum, called here position description, 
simplifying the understanding and the implementation of total Lagrangian geometrical non-
linear analysis when compared to typical FEM shell formulations. The Newmark   method 
has been proved to be linear and angular momentum conserving, for the proposed total 
Lagrangian formulation. The high order curved triangular element with improved transverse 
position field is free from locking and does not need reduced integration or relaxed 
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constitutive relation to reproduce, with accuracy and small degrees of freedom, the static 
benchmarks of plate and shell analysis. Moreover, the formulation proved to be objective 
regarding rotation for unloaded and loaded structures. The general dynamic analysis of thin 
shells (airbag) and the snap through benchmark indicate that the formulation is promising and 
should be extended to include physical non-linearities (hyperelasticity and plasticity), fluid-
structure iteration and impact. 
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