Asociacion Argentina AMCL

de Mecanica Computacional

Mecénica Computacional Vol XXIX, pags. 473-492 (articulo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)
Buenos Aires, Argentina, 15-18 Noviembre 2010

TOPOLOGY OPTIMIZATION WITH h-ADAPTIVE REFINEMENT
PROCESS IN THERMOELASTIC BIDIMENSIONAL PROBLEMS

Jodo C. A. Costa JA Marcelo K. Alves, Paulo S. R. da Silvaand Hilbeth P. A de Deu$

4 UFRN - Federal University of Rio Grande do No@mpus Universitario, Lagoa Nova, Centro
Tecnoldgico, Depto. de Eng. Mecéanica, CEP 59072-R@fal — RN, Brazilarantes@ufrnet.br,
http://www.dem.ufrn.br

® UFSC — Federal University of Santa Catarina, Casplniversitario, TrindadeCentro
Tecnoldgico, Cx. Postal - 476, CEP 88040-900, Eiedipolis — SC, Brazikrajnc@emc.ufsc.br,
http://www.gmac.ufsc.br

¢ IFBA — Federal Institute of Bahia, Campus de SaévaSalvador — BA, Brazil
http://www.portal.ifba.edu.br

¢ UTFPR - Federal Technological University of Para@mpus Curitiba, DAMEC - Departamento
Académico de Mecéanica, NUMAT, Av. Sete de SeteBi86, CEP 80230-901, Reboucas, Curitiba —
PR, Brazil,azikri@utfpr.edu.brhttp://www.numat.ct.utfpr.edu.bPPGEM-UTFPR/PPGMNE-UFPR.

Keywords: topology optimization, thermoelasticity, FEM, adajty, error estimator

Abstract. This work proposes a formulation for optimizatiohbidimensional (2D) structure layouts
submitted to mechanic and thermal shipments andiegp@n h-adaptive filter process which
conduced to computational low spend and high deimistructural layouts. The main goal of the
formulation is to minimize the structure mass sutedito an effective state of stress of von Mises,
with stability and lateral constraint variants. Aterion of global measurement was used for intents
parametric condition of stress fields. To avoidgsiarity problems was considerate a release on the
stress constraint. On the optimization was used ademal approach where the homogenized
constructive equation was function of the mateeddtive density. The intermediary density effeetiv
properties were represented for a Solid Isotropicrdétructures with Penalization (SIMP) type
artificial model. The problem was simplified by usethe method of finite elements of Galerkin using
triangles with linear Lagrangian basis. On the Sotuof the optimization problem, was applied the
augmented Lagrangian Method, that consists on niimirproblem sequence solution with box-type
constraints, resolved by a second order projectiethod which uses the method of the quasi-Newton
without memory, during the problem process solutibnis process reduces computational expends
showing be more effective and solid. The resultdeneize more refined layouts with accurate
topologic and shape of structure definitions. Gadther hand formulation of mass minimization with
global stress criterion provides to modeling "réaslyuctural layouts, with violation of the criten

of homogeneous distributed stress.
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1 INTRODUCTION

The reduction of the cost of manufacturing a gigemponent or product may be obtained
by applying some optimization tool. In the partarutase of components or products obtained
by an injection process (plastic or metal powdéhng possibility to consider complex
geometry allow us to explore the flexibility of theocess by designing optimized molds with
an optimum topology for the domain of the component

One of the most difficult decisions in the designphase is to specify the layout of the
geometry of the component. Once the layout or tmpobf the component is defined we may
concentrate in the definition of the optimum shapéhe domain, sizing of some additional
geometric parameters used to define the model antk snmaterial properties, (Suzuki and
Kikuchi, 1990; Suzuki and Kikuchi, 1991; Bendsoe &ikuchi, 1998; Bendsoe, 1995).

In general, the appropriate choice of the layowtiengly dependent of the designer, what
implies in the necessity of a designer with a lgoggctical experience. The decision process
associated with the definition of the optimum layoficomponent may be done automatically
by employing a topology optimization software, (Bsae and Sigmund, 2003; Bendsoe and
Rodrigues, 1991; Bendsoe et al. 1993).

In this work, the layout optimization is done by nealering a Solid Isotropic
Microstructure with Penalization (SIMP). The magérdensity functionp are the design
parameters and varies continuously from 0 to Intpthe value of 1.0 for a solid material and
0.0 for a void material, Costa Jr. and Alves (200®) avoid numerical singularity, the lower
bound of materialp,,, , is introduced as

0<ppn < p<1. 1)
2 FORMULATION OF THE PROBLEM

2.1 Determination of the Thermo Mechanical Problem

The thermal problem considered in this work issitated in Figure 1.
q
r

q

rT
Fig. 1: Definition of the Thermal Proble

Here 0Q=T, vl I''n[ ;=< . Denoting byI'; and ', the part of the boundary

where the temperature and the heat flux are plestniespectively. At this point, we define
the set of admissible temperaturég,, and the set of the temperature variatiove, , to be

given as:W. :{T‘Te H(Q): T:TI'atFT} and Var, ={:|;‘:|\-G H(Q): T=0 atFT}, where

T is a prescribed temperature imposed over the teaype boundary, . We consider the
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source/sink to be given by a convection heat teanffom the body to a fluidi. e,
r=-h(T-T,) whereT, denotes the temperature of the fluid amdthe convection heat

transfer coefficient. Notice that, f > T, then heat is removed from the body and i T,
heat is given to the body, (Alves and Alves, 1%i%a, 2007).

The weak formulation of the thermal problem may $tated as: LetT =T + T,
whereT €W, is a known field. The problem consists in the dateation of T" e Var. such
that,

a (T, T)= 1 (T), VTe Vay 2)
where
aT(T*,f)=jKHvT-v?cQ+j hT T @ (3)
and
L (M) =T, -T) T+ [QTd - [K"V TV Te @)
Q T, Q

Here, the conductivity matrixk” =k"l , where k" is the homogenized thermal
conductivity of the material that is porous matediependent, such that

k" = p"k (5)

where k is the conductivity parameter for the fully depsmaterial, p the relative density
material andrn is the SIMP penalty parameter, (Cho and Choi, 20R&drigues and
Fernandes, 1993).

The mechanical problem considered in this worKustrated in Figure 2.

Fig. 2: Definition of the Mechanical Problem.

Here oQ=I,ul',; ', nI',=J . Here,I', and I', represent the part of the boundary

where the displacement and the traction are plesgnespectively. At this point we define
the set of admissible displacemerit¢,, and the set of the displacement variatiofat, , to

be given as:W, ={U‘U€[ HY(®)]3 u :UatFu} and Var, ={V‘VE[H1(Q)]3. v=0 atl“u} :
Here, for simplicity we considéi = 0. As a resultW, =Var,.

The weak formulation of the mechanical problem rbaystated as: Let e W, be the
solution of the problem. Then, the problem consisthie determination ofi e W, such that
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a,(u,v)=1,(v), vveVar,. (6)
where

a,(u,v)=[o)-s(v)da, (7)

|u(v)=jb-vd9+jt-vdr, (8)

and beerl, the reference temperature of the body

o(u) =D"e(u)~(T - T,)B" )
Now, since we consider the material (matrix) tadmgropic, we have:
Ea
B, =B, B =12 (10)

Here,o is the linear thermal expansion coefficie(if,—T,) B is the thermal stress tensor
and D is the generalized Hooke's law for a linear etdstidy, (Brahim-Otsmanet al., 1989;
Francfort, 1983). Moreover,

Dy« = 26,8, + (8, 8, +8,5,) (11)

ijrs ij ~rs 1s™jr
with
VE E

Gy ) "

Where 4 and i are the Lame’s constants, is the Poisson’s ratio ané is the Young
modulus.

The constitutive matriXD"™ adapted to intermediary density material, propdse@ho and
Choi (2005) is given

Dilj-ikl :anijkI : (13)
2.2 Formulation of the Problem

The objective of this work is to determine the optm layout of the structure obtained as
solution to an optimization problem. The optimipatiproblem consists in the minimization
of the mass of the structure subjected to an @ffecton Mises equivalent stress and side
constraints. The design variable is the relativesdg of the material, represented Jpy, for
dealing with the problem of stress criteria in massimization was used SIMP exponential
penalty system to describe the constitutive retadbthe material, which is useg=3, with
this choice, proposed by Sigmund and Petersson8f19® get a description of feasible
microstructure material.

The problem may than be formulated as:
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rp(lxp i pdQ, (14)
such that

O';q(p(X),U(p(X),X,T),T)—O‘YS 0 (15)
Pt —P <0 (16)
P~ Pap=0, VX eQ a7

where u(a) and T(a) are obtained as a solutionegtoblem:
a (T, T)=L(T), VTeVar (18)
a,(u,v)=1,(v), Vv eVar, (29)

andT =T +T,, for a givenT, € W, . The effective von Mises stress, for this microsture is

considered to be given as:
oy =2 (20)
,0'7
The Karush-Kuhn-Tucker necessary optimality condsi associated with this problem is
given by: LetL(e) denote the lagrangian functional associated vighproblemi. e.,

L(p,u, T4 4 A )=jp dQ+Iia(G;q(p,u PX.T)T }o,)d
Q Q , (21)

+J./1|(pinf _p)dQ+J-/13(p_psup) dQ
Q Q

where 4_, 4, and A, are the Lagrange multipliers associated with tieguality constraints,
Costa Jr. and Alves (2003). Then, the optimalitydibons are given by:

220, 420, A>C 22)

7 (00=0)=0, Ay -p)=0, A b-puy ¥ C (23)
O~ 0,<0, p,-p<0, p-p,< ( and (24)
142, aaa;q A +A=0, VxeQ. (25)

2.3 Stress Singularity Problem

In order to open the degenerated parts of the degigce with the possibility of creating or
removing holes without violating the effective sseconstraint we apply the- relaxation
technique (Duysinx, 1998; Duysinx and Sigmund, 1998ysinx and Bendsoe, 1998). In this
work, we implement an automatic and systematidesiyato reduce the initial perturbation
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parameterc. The stress relaxation parameter is decremente&kaget closer to the solution.
Now, let p,,,=1 be the relative density associated with the fuditenial condition. Then,

knowing thatu =u(p(x),x,T), the relaxed admensionalized effective stresstrains may
be written as:

g(p(X),u,T)=p(X)(

oea(p(x),u.T)

Oy

—1J+ K‘(psup—p(X)) <0. (26)

From this consideration, the relaxed minimizatioolgem may be formatted as:

min [ pdQ (27)
P Q
such that

O
pl—-1|+x(pyy—p)<0 (28)

O-y
Pt —P <0 (29)
P~ Pup=0, VXeQ (30)

3 DISCRETIZATION OF THE PROBLEM

In order to solve the thermo-mechanical problemapply the Galerkin Finite Element
Method. Moreover, we consider the material denaggociated with each finite element
linearly distributed. Consequently, the materiabpgarties related to given element are
characterized by a single microstructure. Thusefmh element we have a design variable “a”
which represents the size of the void of the micuasure that fully represents the given finite
element material properties. From this considenatibe number of design variables is given
by the number of finite elements in the mesh.

Furthermore, we make use of the slope-constrainedittons proposed by Petersson and
Sigmund (1998). These conditions are employed iera@ ensure the existence of a solution
to the layout optimization problem and to elimingte well-known checkerboard instability
problem (Bendsoe, 1995; Sigmund and Petersson,)18%& occur in the Galerkin finite
element discretization, when using a low order rpdkation base function, in the
approximation space. Thus,

) e
(2] <c; -
and
op 2<c2 32
(%)< @
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Here, the constant§, andC, define the bounds for the components of the graditthe

relative density. These bounds are imposed compomiset with the objective of properly
imposing a symmetry condition, which may be useslime particular cases.
The discretized problem may be formulated as:

minIde (33)
L Q
such that
o x),u(p(x),x,T),T
eq(p() (p(x).xT) )+K(i—i}1so, VxeQ (34)
O-y pO p
and
Pt —P =0, (35)
P~ Pap <0, i =1,..n (number of nodes iretmesh (36)

3.1 Global Stress Condition

Notice that, the effective stress constraint isaeametric constraint that must be satisfied
for Vxe Q. In order to handle this parametric constraintrelax the pointwise criteria and
consider a global integrated constraint. This caddree by replacing a parametric constraint
of the type

g(p(x),u(p(x),x,T),T*(p))s 0, VxeQ (37)

by the following associated global constraint:

Yo
g(p(x),u(p(x),x,T),T*(p))={égj;<p(x) u(p(x) x,T) ,T(p)>p CQ} = 0. (38)

Here, in order to enforce the point wise constrailatmust considemp — +« . However,
for practical purposes we considgr=2 where (g(e)) denotes the positive part of the

function ge), i. e, (g(¢))=max{0,g ¢ } , Silva (2007).

3.2 Formulation of the Discretized Problem
The discretized formulation of the relaxed problermynbe stated as: Determimpes g,

with g):{peR“

M <p <pPi=1,... ,n} , wheren is the total number of nodes, so that it

is the solution of:

min j pdQ. (39)
P Q

such that
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Yo
3(p(x).u, T (p) —{éf(g(p(x u,T(p)) } -0, (40)
P — P <0, (41)
P~ Pap <0, i =1,..n0. (42)
_1(20)
Oren(P)= ﬂ{( o CX}SO, (43)
ngPF%[(Zﬁj CZ_SO, e=1...,n, (44)

denoting by, is the total number of elements. The valués) andT™ ¢ ) are the solution of:
a (T, T)=p,(T), V TeVaf c Var and (45)

a,(u,v)=I1,(v), VveVar cVar, (46)

4 MESH REFINEMENT AND ADAPTIVITY

4.1 General description of the method

The objective, here, is to describe the new propgeededure which combines the
topology optimization and thdr-adaptive finite element methods. The main relevant
advantages of the procedure are: the improvemehealefinition of the material contour, the
reduction of the number of design variables anddaease of the error of the solution of the
state equation.

The procedure is defined by setting a priori thaltaimber oh-refinement levels and to
solve, at each level, a topology optimization peoll A general description of the algorithm
is given as follows:

1. Initialize the design variables
2. Read the data and generate the initial fingeneint data structure
3. For eacli-refinement level, do:
3.1. Solve the layout optimization problem
3.2. Apply the mesh refinement procedure
3.2.1. Get the mesh data structure
3.2.2. Perform the mesh refinement
3.2.2.1. Identify which elements must be refined
3.2.2.2. Perform the refinement of the elemant$introduce the
necessary transition elements in order to raairihe mesh
compatibility
3.2.2.3. Apply a constrained Laplacian smootigraredure in order
to improve the mesh quality
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3.2.3. Optimize the element nodal incidence liiergrofile reduction
3.2.4. Update the mesh and finite element datatsire

4.2 Mesh Refinement Strategy

The objective at this point is to determine the stib$ all elements in the mesh that will be
refined. Once this subset is defined, an introductf the transition elements is performed in
order to maintain the mesh compatibility. The refimad transition elements are illustrated in
Figure 3 and Figure 4, the set of refined elemaray be obtained with the usage of a pointer
Pref(), i=1...n. The default value is Pré&f£0 representing no action. However, if Piefl
then we refine the i-th element. The mesh refineragategy may be described as follows:

a

(a) Initial element (b) Refined element

Figura 3: Scheme of refinement of the element Tri3.

Figura 4: Scheme of transition element.

1. Set Pref=0.
2. Determine the global and the elements averagesetenoted respectively 8. and
O®., e=1...n. Now, for each element we verify®_ > (1+ 77)®GE, for some giverm > 1.
If true, we set Prefj=1, i.e., thee-th element will be refined.
3. Determine the quality measu@eof each element in the mesh, given by
6A
Q=——— 47
\/5 Lmax P ( )

where
Ais the area of the triangle
P is the one half of the perimeter of the triangle

Lmax=max{§b ,ac ,Fc} is the length of the element’s largest side

Also, for each element we verify @(€) < 0.55. If true, we set Predj=1.

4. ldentify all the elements which have a face camrwith the material contour and set their
pointer reference PrejEl.

5. Perform an additional smoothing refinement dote Here, for each element whose
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Pref@)=0 we identify their neighbors. If the element Rasr more neighbors
whose Pref(.)=1, then refine the given elemeet, set Pre§)=1.

4.3 Material boundary identification

The objective here is to define a criterion for dhefinition of the material boundary
contour and to refine the elements that have a dacemon to the given identified material
contour. A description of the procedure is giverici®ows:

1. For each elemergs1..n, do:
1.1. If the relative density of the elemept,, is such thaip. > 8, S €(0.5,1) then

1.1.1. Get the element neighbors list associaiddthee-th element.
1.1.2. For each d&th neighbor elements do:
1.1.2.1. If p, < (1- f) then set both Pref(=1 and Pre¥)=1.

As a result, this procedure refines all the elesievitose relative density. > f and also
the elements whose relative densjty < 8 but have at least a side that forms the material
boundary.

4.4 Additional smoothing refinement criteria

The objective here is to avoid having a given ndmeel element having 2 or more
neighbors to be refined. This may lead to the geioeraf sharp edges in the material contour
or may lead to the generation of internal void eegiwith a poor material contour definition.
As a result, we refine these elements.

4.5 Conditional Laplacian smoothing procedure

In order to improve the mesh, after the refinenstep, we employ a constrained Laplacian
smoothing, which is illustrated in Figure 5. Hamds the number of adjacent nodes associated
with nodex, .

X X

1 1

4
Figura 5: Laplacian Smoothing Scheme.

The Laplacian process is conditional since it willy be implemented if the mesh quality
of the set of elements, as illustrated in Figureniproves. The mesh quality of the set of
elements is given by the quality of the worst eletria the set. The measure of quality of a
given element is given by eqn. (47).

As a result, the refinement strategy may be sunmadras: A given element is refined if,

(i) The measure of the quality of the element isléen than a given lower bound;
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(i) The element has a side which forms the matdédandary of the given topology of the
domain;
(iii) The error estimate is larger than a relagpescribed value.

Once these elements are defined we also refineeldments which have two or more
elements to be refined, obtained by the applicatidthe criteria in (i), (ii) and (iii).

4.6 Error Estimator and refinement criteria

Here, for simplicity, we employ an error estimabased on the work of Zienkiewics and
Zhu (1990, 1991). Notice, however, that the conttié equation depends on the relative
density of the material and that the relative dgnfield is considered as a constant field
within the element domain but discontinuous acmifferent elements. As a result of this
consideration, we obtain a discontinuous stredd. fiehus, in order to apply the Zienkiewics
and Zhu approach we make use of the strain fietthad, the modified method estimates the
discretization error of the problem using a gratmtovery technique, now in terms of the
strain field, by means of the energy norm. lpetbe a given realizable distribution of the

relative density of the material. Then, the lodapthcement error may be defined as:
e(p) =u(p) —u,(p) (48)

whereu (p) is the exact solution andl, (p) is the approximate solution of the problem. Then,
the energy norm may be written as:

|ep) |2 = [ D" (p)= (e(p))- 2 (e(p)) A2 . (49)

Thus, the local strain error may be expressed imgeof the local displacement error as
follows:

e.(p) =&(p)—&,(p) =& (u(p)) — £ (u,(p)) (50)
and the energy norm may be written as:
[e®) [ = [[D" #)](s(0) - £,(0)-(s () -, (p)) dC2. (51)

Q
Since the exact strain distribution is unknown,apperoximates (p) by an improved solution
¢ (p), which is more refined theg, (p) . Thus, the error indicator is approximated by:

lee) |2 = [[ D" @) |(" ()~ &.()-(£" ()~ 0 (p)) Q. (52)

Q

Determination of & (p)

In order to determine the improved solution,(p), we apply the same projection
technigue proposed by Zienkiewicz and Zhu (199®1)%ut now based on the fact that the
finite element solutioru, (p) € C°(Q) and that the strain field is only piece-wise contius.
The determination ot"(p) consists in the solution of the least square mization of the
potentialy (p) , given by
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* 2
v(p)=[|le" () —2.(p)] de (53)
Q
Here, s (p) is interpolated within each element as

n
£=)Ng (54)
k=1

wherez, represents the vector of strain components, etealat thé-th node of the element,
and N, are the classical finite element interpolationclions.

At this point, onces” (p) is determined, we may compute global average e@gy, as:

Oce = = [0 ) (=) —2,(p) ()~ 5, ) S (55)
and the element average erréy, , as
0=~ [P ®](= )2 ®)(+ ()-2,0)de (56)

The strategy adopted to verify if a given elemdriutd be refined or not, due to the error
measure criteria, is given by: @, >(1+7)04., with 77 > 1, then we refine the element.

5 ALGORITHM

We are using a bound constrained Truncated-Newtethad. The Truncated-Newton
method is preconditioned by a limited-memory Qudswton method with a further diagonal
scaling. Similar results were obtained with the T&M algorithm of Andreanet al (2004),
Andreaniet al (2005) and Birgin and Martinez (2002).

6 NUMERICAL APPLICATIONS

6.1 Problem Case (1)

Here we consider the problem illustrated in Figérewhich the material properties
(stainless steel AISI 304) to be given as: YoungdMos E = 1935Pa, Poisson's ratio

v =0.29. The distributed loadt = 207,00kN/ m. The reference temperature of the body is
T, =20°C, the temperature of the fluid i§ =25°C and the prescribed temperature at the
clamped edge i§,=100°C. The yield stressS,= 20MPa. The heat conductivity of the
material, k=16.6W/nf C. The coefficient #=17x10° m/m°C. The convection heat
transfer coefficienth=5W/ nf° C.
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optimum mass distribution and failure function respvely.

Fig. 14: Representation of optimum topology witt340 tri3 elements.

6.2 Problem Case (2)

Here we consider the problem illustrated in Figafe which the material properties
(stainless steel AISI 304) to be given as: YoungdMos E = 1935Pa, Poisson's ratio

v =0.29. The distributed loadt = 207,00kN/ m. The reference temperature of the body is
T, =20°C, the temperature of the fluid i =25°C and the prescribed temperature at the

clamped edge i§,=100°C. The yield stressS, = 20WIPa. The heat conductivity of the
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material, k=16.6W/ n? C. The coefficient #=17x10° m/m°C. The convection heat
transfer coefficienth=5W/ nf° C.
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Fig. 16: Symmetrical Model of the Problem Caset¢2)e solved.
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Fig. 18: Results of initial mesh with 416 elemestsl 237 nodes only in the symmetrical half, optimmass
distribution and failure function, respectively.
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Fig. 20: Reéults of first h-refined meéh with 1X98ments and 659 nodes only in the symmétricaj bptfimum
mass distribution and failure function, respectivel
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Fig. 22: Results of second h-refined mesh with 3&esents and 1814 nodes only in the symmetridgl ha
optimum mass distribution and failure function,pestively.
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Fig. 23: Representation of optimum topology witli@Q@ri3 elements.
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6.3 Problem Case (3)

Here we consider the problem illustrated in Fig@ee which the material properties
(stainless steel AISI 304) to be given as: YoungdMos E = 1935Pa, Poisson's ratio

v =0.29. The distributed loadt = 207,00kN/ m. The reference temperature of the body is
T, =20°C, the temperature of the fluid i§ =25°C and the prescribed temperature at the
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clamped edge i§,=100°C. The yield stressS, = 20WPa. The heat conductivity of the
material, k=16.6W/ n? C. The coefficient #=17x10° m/m°C. The convection heat

transfer coefficienth=5W/ nf° C.
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Fig. 24: Definition of the Problem Case (3).
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Fig. 26: Initial mesh with 316 elements and 185e®dnly in the symmetrical half, results of optimomass
distribution and failure function, respectively.
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Fig. 27: Second h-refined mesh with 991 elements=&8 nodes only in the symmetrical half, results o
optimum mass distribution and failure function,pestively.
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Fig. 29: Representation of optimum topology atftheth level of h-refinement with 12178 tri3 elen®n

7 CONCLUSION

The usage of a multigrid approach or remeshingeamtore is important to increase the rate
of convergence to the optimum layout of the probl&kith this approach, we are able to
handle problem with a large number of design véegb

The usage of a non-uniform refinement has showmldorease the number of design
variables and this decrease becomes even morantlgwve refine the problem with a very
large number of elements, Carey (1997).

The results were promising, given the stress camétand tested in meshes with few
elements, but for a sharp optimum layout requirgesy refined mesh, suggesting high
computational cost. Hence, the implementation ch@aptive process of refinement was very
prudent.

One of the disadvantages of the adopted approablatisve need to determine the element
matrices and vectors what increase the computatomsa when compared with the pixel type
of strategy employed by many Authors. However,ghxel approach requires a refined mesh
in order to describe the material boundary with sqrecision.
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