
 
 

TOPOLOGY OPTIMIZATION WITH h-ADAPTIVE REFINEMENT 
PROCESS IN THERMOELASTIC BIDIMENSIONAL PROBLEMS 

João C. A. Costa Jr.a, Marcelo K. Alvesb, Paulo S. R. da Silvac and Hilbeth P. A de Deusd 

a UFRN – Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova, Centro 
Tecnológico, Depto. de Eng. Mecânica, CEP 59072-790, Natal – RN, Brazil, arantes@ufrnet.br, 

http://www.dem.ufrn.br. 

b UFSC – Federal University of Santa Catarina, Campus Universitário, Trindade, Centro 
Tecnológico, Cx. Postal - 476, CEP 88040-900, Florianópolis – SC, Brazil, krajnc@emc.ufsc.br, 

http://www.gmac.ufsc.br. 

c IFBA – Federal Institute of Bahia, Campus de Salvador, Salvador – BA, Brazil, 
http://www.portal.ifba.edu.br. 

d UTFPR – Federal Technological University of Paraná, Campus Curitiba, DAMEC - Departamento 
Acadêmico de Mecânica, NuMAT, Av. Sete de Setembro, 3165, CEP 80230-901, Rebouças, Curitiba – 
PR, Brazil, azikri@utfpr.edu.br, http://www.numat.ct.utfpr.edu.br. PPGEM-UTFPR/PPGMNE-UFPR. 

Keywords: topology optimization, thermoelasticity, FEM, adaptivity, error estimator. 

Abstract. This work proposes a formulation for optimization of bidimensional (2D) structure layouts 
submitted to mechanic and thermal shipments and applied an h-adaptive filter process which 
conduced to computational low spend and high definition structural layouts. The main goal of the 
formulation is to minimize the structure mass submitted to an effective state of stress of von Mises, 
with stability and lateral constraint variants. A criterion of global measurement was used for intents a 
parametric condition of stress fields. To avoid singularity problems was considerate a release on the 
stress constraint. On the optimization was used a material approach where the homogenized 
constructive equation was function of the material relative density. The intermediary density effective 
properties were represented for a Solid Isotropic Microstructures with Penalization (SIMP) type 
artificial model. The problem was simplified by use of the method of finite elements of Galerkin using 
triangles with linear Lagrangian basis. On the solution of the optimization problem, was applied the 
augmented Lagrangian Method, that consists on minimum problem sequence solution with box-type 
constraints, resolved by a second order projection method which uses the method of the quasi-Newton 
without memory, during the problem process solution. This process reduces computational expends 
showing be more effective and solid. The results materialize more refined layouts with accurate 
topologic and shape of structure definitions. On the other hand formulation of mass minimization with 
global stress criterion provides to modeling "ready" structural layouts, with violation of the criterion 
of homogeneous distributed stress. 
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1 INTRODUCTION 

The reduction of the cost of manufacturing a given component or product may be obtained 
by applying some optimization tool. In the particular case of components or products obtained 
by an injection process (plastic or metal powder), the possibility to consider complex 
geometry allow us to explore the flexibility of the process by designing optimized molds with 
an optimum topology for the domain of the component.  

One of the most difficult decisions in the designing phase is to specify the layout of the 
geometry of the component. Once the layout or topology of the component is defined we may 
concentrate in the definition of the optimum shape of the domain, sizing of some additional 
geometric parameters used to define the model and some material properties, (Suzuki and 
Kikuchi, 1990; Suzuki and Kikuchi, 1991; Bendsoe and Kikuchi, 1998; Bendsoe, 1995). 

In general, the appropriate choice of the layout is strongly dependent of the designer, what 
implies in the necessity of a designer with a large practical experience. The decision process 
associated with the definition of the optimum layout of component may be done automatically 
by employing a topology optimization software, (Bendsoe and Sigmund,  2003; Bendsoe and 
Rodrigues, 1991; Bendsoe et al. 1993). 

In this work, the layout optimization is done by considering a Solid Isotropic 
Microstructure with Penalization (SIMP). The material density function ρ  are the design 
parameters and varies continuously from 0 to 1, taking the value of 1.0 for a solid material and 
0.0 for a void material, Costa Jr. and Alves (2003). To avoid numerical singularity, the lower 
bound of material, minρ , is introduced as 

 min0 1ρ ρ< ≤ ≤ . (1) 

2 FORMULATION OF THE PROBLEM 

2.1 Determination of the Thermo Mechanical Problem 

The thermal problem considered in this work is illustrated in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
Here ;T q T q∂Ω = Γ ∪Γ Γ ∩Γ =∅ . Denoting by TΓ  and qΓ  the part of the boundary 

where the temperature and the heat flux are prescribed respectively. At this point, we define 
the set of admissible temperatures, TW , and the set of the temperature variations, TVar , to be 

given as: { }1( ) :   at T TW T T H T T= ∈ Ω = Γ  and { }1ˆ ˆ ˆ( ) :  0 at T TVar T T H T= ∈ Ω = Γ , where 

T  is a prescribed temperature imposed over the temperature boundary TΓ . We consider the 

Fig. 1: Definition of the Thermal Problem. 
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source/sink to be given by a convection heat transfer from the body to a fluid, i. e., 
( )r h T T∞= − −  where T∞  denotes the temperature of the fluid and h  the convection heat 

transfer coefficient. Notice that, if T T∞>  then heat is removed from the body and if T T∞<  

heat is given to the body, (Alves and Alves, 1999; Silva, 2007). 
The weak formulation of the thermal problem may be stated as: Let *

pT T T= + , 

where p TT W∈  is a known field. The problem consists in the determination of *
TT Var∈  such 

that, 

 * ˆ ˆ ˆ( , ) ( ),T T Ta T T l T T Var= ∀ ∈  (2) 

where 

 * * *ˆ ˆ ˆ( , ) H
Ta T T T T d hT T d

Ω Ω

= ∇ ⋅∇ Ω+ Ω∫ ∫K  (3) 

and 

 ˆ ˆ ˆ( ) ( )
q

H
T p pl T h T T Td q Td T Td∞

Ω Γ Ω

= − Ω+ Γ − ∇ ⋅∇ Ω∫ ∫ ∫K  (4) 

Here, the conductivity matrix H Hk=K I , where Hk  is the homogenized thermal 
conductivity of the material that is porous material dependent, such that 

 Hk kηρ=  (5) 

where k  is the conductivity parameter for the fully density material, ρ  the relative density 
material and η  is the SIMP penalty parameter, (Cho and Choi, 2005; Rodrigues and 
Fernandes, 1993). 

 
The mechanical problem considered in this work is illustrated in Figure 2. 
 

 
 
 
 
 
 
 

Fig. 2: Definition of the Mechanical Problem. 
 

Here ;u t u t∂Ω = Γ ∪Γ Γ ∩Γ =∅ . Here, uΓ  and tΓ  represent the part of the boundary 

where the displacement and the traction are prescribed respectively. At this point we define 
the set of admissible displacements, uW , and the set of the displacement variations, uVar , to 

be given as: { }1 3[ ( ) ] :  at u uW H= ∈ Ω = Γu u u u  and { }1 3[ ( ) ] : 0 at u uVar H= ∈ Ω = Γv v v . 

Here, for simplicity we consider 0=u . As a result, uW = uVar . 

The weak formulation of the mechanical problem may be stated as: Let TT W∈  be the 

solution of the problem. Then, the problem consists in the determination of uW∈u  such that 

t  
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 ( , ) ( ),u u ua l Var= ∀ ∈u v v v . (6) 

where 

 ( , ) ( ) ( )ua dσ ε
Ω

= ⋅ Ω∫u v u v , (7) 

 ( )
t

ul d d
Ω Γ

= ⋅ Ω+ ⋅ Γ∫ ∫v b v t v , (8) 

and been 0T  the reference temperature of the body 

 0( ) ( ) ( )H HT Tσ ε= − −u D u B  (9) 

Now, since we consider the material (matrix) to be isotropic, we have: 

 0 0,            
1 2ij ij

E
B B B

αδ
ν

= =
−

. (10) 

Here, α is the linear thermal expansion coefficient, ( )0 ijT T B−  is the thermal stress tensor 

and D  is the generalized Hooke's law for a linear elastic body, (Brahim-Otsmane et al., 1989; 
Francfort, 1983). Moreover, 

 ( )ijrs ij rs ir js is jrD λδ δ µ δ δ δ δ= + +  (11) 

with 

 ,               = =
(1 )(1 2 ) 2(1 )

vE E
G

v v v
λ µ=

− − −
. (12) 

Where λ and µ are the Lame´s constants, ν  is the Poisson´s ratio and E  is the Young 
modulus. 

The constitutive matrix HD  adapted to intermediary density material, proposed by Cho and 
Choi (2005) is given 

 H
ijkl ijkl

ηρ=D D . (13) 

2.2 Formulation of the Problem 

 
The objective of this work is to determine the optimum layout of the structure obtained as 

solution to an optimization problem. The optimization problem consists in the minimization 
of the mass of the structure subjected to an effective von Mises equivalent stress and side 
constraints. The design variable is the relative density of the material, represented by ρ , for 
dealing with the problem of stress criteria in mass minimization was used SIMP exponential 
penalty system to describe the constitutive relation of the material, which is used 3η = , with 
this choice, proposed by Sigmund and Petersson (1998), we get a description of feasible 
microstructure material. 

 
The problem may than be formulated as: 
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( )

min
x

d
ρ

ρ
Ω

Ω∫ , (14) 

such that 

 ( ) ( )( )( )* , , , , 0eq yT Tσ ρ ρ σ− ≤x u x x  (15) 

 inf 0ρ ρ− ≤  (16) 

 sup 0,        ρ ρ− ≤ ∀ ∈Ωx  (17) 

where u(a) and T(a) are obtained as a solution to the problem: 

 * ˆ ˆ ˆ( , ) ( ),      T T Ta T T l T T Var= ∀ ∈  (18) 

 ( , ) ( ),        u u ua l Var= ∀ ∈u v v v  (19) 

and *
pT T T= + , for a given p TT W∈ . The effective von Mises stress, for this microstructure is 

considered to be given as: 

 * eq
eq η

σ
σ

ρ
= . (20) 

The Karush-Kuhn-Tucker necessary optimality conditions associated with this problem is 
given by: Let ( )L •  denote the lagrangian functional associated with the problem, i. e., 

 

( )* * * *

inf sup

( , , , , , ) ( , ( , , ), )

 ( ) ( )

i s eq y

i s

L T d T T d

d d

σ σρ λ λ λ ρ λ σ ρ ρ σ

λ ρ ρ λ ρ ρ
Ω Ω

Ω Ω

= Ω+ − Ω

+ − Ω+ − Ω

∫ ∫
∫ ∫

u u x

, (21) 

where σλ , iλ , and sλ  are the Lagrange multipliers associated with the inequality constraints, 

Costa Jr. and Alves (2003). Then, the optimality conditions are given by: 

 i s0,        0,         0,σλ λ λ≥ ≥ ≥  (22) 

 i inf s sup( ) 0,      ( ) 0,       ( ) 0,eq yσλ σ σ λ ρ ρ λ ρ ρ− = − = − =  (23) 

 inf sup0,      0,       0eq yσ σ ρ ρ ρ ρ− ≤ − ≤ − ≤     and (24) 

 
*

1 0,  eq
i sσ

σλ λ λρ
∂

+ − + = ∀ ∈Ω
∂

x . (25) 

2.3 Stress Singularity Problem 

In order to open the degenerated parts of the design space with the possibility of creating or 
removing holes without violating the effective stress constraint we apply the κ - relaxation 
technique (Duysinx, 1998; Duysinx and Sigmund, 1998; Duysinx and Bendsoe, 1998). In this 
work, we implement an automatic and systematic strategy to reduce the initial perturbation 
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parameter κ. The stress relaxation parameter is decremented as we get closer to the solution. 
Now, let sup 1ρ =  be the relative density associated with the full material condition. Then, 

knowing that ( )( ), ,Tρ=u u x x , the relaxed admensionalized effective stress constraint may 

be written as: 

 ( )( ) ( ) ( )( ) ( )( )*

sup

, ,
, , 1 0eq

y

T
g T

σ ρ
ρ ρ κ ρ ρ

σ
 = − + − ≤   

x u
x u x x . (26) 

From this consideration, the relaxed minimization problem may be formatted as: 

 min d
ρ

ρ
Ω

Ω∫  (27) 

such that 

 
*

sup1 ( ) 0eq

y

σ
ρ κ ρ ρ

σ
 − + − ≤   

 (28) 

 inf 0ρ ρ− ≤  (29) 

 sup 0,         ρ ρ− ≤ ∀ ∈Ωx  (30) 

3 DISCRETIZATION OF THE PROBLEM 

In order to solve the thermo-mechanical problem we apply the Galerkin Finite Element 
Method. Moreover, we consider the material density associated with each finite element 
linearly distributed. Consequently, the material properties related to given element are 
characterized by a single microstructure. Thus, for each element we have a design variable “a” 
which represents the size of the void of the microstructure that fully represents the given finite 
element material properties. From this consideration, the number of design variables is given 
by the number of finite elements in the mesh. 

Furthermore, we make use of the slope-constrained conditions proposed by Petersson and 
Sigmund (1998). These conditions are employed in order to ensure the existence of a solution 
to the layout optimization problem and to eliminate the well-known checkerboard instability 
problem (Bendsoe, 1995; Sigmund and Petersson, 1998), that occur in the Galerkin finite 
element discretization, when using a low order interpolation base function, in the 
approximation space. Thus, 

 
2

2
xC

x

ρ∂  ≤ ∂   (31) 

and 

 
2

2
yC

y

ρ ∂ ≤ ∂   (32) 
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Here, the constants xC  and yC  define the bounds for the components of the gradient of the 

relative density. These bounds are imposed component wise with the objective of properly 
imposing a symmetry condition, which may be used in some particular cases. 

The discretized problem may be formulated as: 

 min d
ρ

ρ
Ω

Ω∫  (33) 

such that 

 
( ) ( )( )( )*

0

, , , , 1 1
1 0,    

eq

y

T Tσ ρ ρ
κ

σ ρ ρ
 + − − ≤ ∀ ∈Ω  

x u x x
x  (34) 

and 

 inf 0iρ ρ− ≤ , (35) 

 sup 0,         =1,...,  (number of nodes in the mesh)i i nρ ρ− ≤  (36) 

3.1 Global Stress Condition 

Notice that, the effective stress constraint is a parametric constraint that must be satisfied 
for ∀ ∈Ωx . In order to handle this parametric constraint we relax the pointwise criteria and 
consider a global integrated constraint. This can be done by replacing a parametric constraint 
of the type 

 ( ) ( )( ) ( )( )*, , , , 0,      g T Tρ ρ ρ ≤ ∀ ∈Ωx u x x x  (37) 

by the following associated global constraint: 

 ( ) ( )( ) ( )( ) ( ) ( )( ) ( )
1

* *1
, , , , , , , , 0

p
p

g T T T T dρ ρ ρ ρ ρ ρ
Ω

 = Ω = Ω ∫x u x x x u x x . (38) 

Here, in order to enforce the point wise constraint we must consider p→ +∞ . However, 

for practical purposes we consider 2p =  where ( )g •  denotes the positive part of the 

function g(•), i. e., { }( ) max 0, ( )g g• = • , Silva (2007). 

3.2 Formulation of the Discretized Problem 

The discretized formulation of the relaxed problem may be stated as: Determine ∈℘ρ , 

with { }inf sup, 1, ,n
i i i i nρ ρ ρ℘= ∈ ≤ ≤ =ρ � … , where n  is the total number of nodes, so that it 

is the solution of: 

 min d
Ω

Ω∫ρ
ρ . (39) 

such that 
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 ( ) ( )( ) ( ) ( )
1

* *1
, , ( , , 0

p
p

g T g T dρ ρ ρ ρ
Ω

 = Ω = Ω ∫x u x u , (40) 

 inf 0iρ ρ− ≤ , (41) 

 sup 0,         =1,...,i i nρ ρ− ≤ . (42) 

 ( )
2

2
2 1

1
0,e xg C

x

ρρ β−

 ∂ = − ≤  ∂   
 (43) 

 ( )
2

2
2

1
0, 1, ,e y eg C e n

y

ρρ β
  ∂= − ≤ =  ∂   

… , (44) 

denoting by en  is the total number of elements. The values *( ) and ( )Tu ρ ρ  are the solution of: 

 *  ˆ ˆ ˆ( , ) ( ),      n
T T T Ta T T T T Var Varρ= ∀ ∈ ⊂     and (45) 

  ( , ) ( ),      n
u u u ua l Var Var= ∀ ∈ ⊂u v v v  (46) 

4 MESH REFINEMENT AND ADAPTIVITY 

4.1 General description of the method 

The objective, here, is to describe the new proposed procedure which combines the 
topology optimization and the h-adaptive finite element methods. The main relevant 
advantages of the procedure are: the improvement of the definition of the material contour, the 
reduction of the number of design variables and the decrease of the error of the solution of the 
state equation.  

The procedure is defined by setting a priori the total number of h-refinement levels and to 
solve, at each level, a topology optimization problem. A general description of the algorithm 
is given as follows:  
 
1. Initialize the design variables  
2. Read the data and generate the initial finite element data structure 
3. For each h-refinement level, do:  
 3.1. Solve the layout optimization problem 
 3.2. Apply the mesh refinement procedure 
  3.2.1. Get the mesh data structure 
  3.2.2. Perform the mesh refinement 
   3.2.2.1. Identify which elements must be refined 
   3.2.2.2. Perform the refinement of the elements and introduce the 
    necessary transition elements in order to maintain the mesh  
    compatibility 
   3.2.2.3. Apply a constrained Laplacian smoothing procedure in order 
    to improve the mesh quality 
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  3.2.3. Optimize the element nodal incidence for the profile reduction 
  3.2.4. Update the mesh and finite element data structure 

4.2 Mesh Refinement Strategy 

The objective at this point is to determine the subset of all elements in the mesh that will be 
refined. Once this subset is defined, an introduction of the transition elements is performed in 
order to maintain the mesh compatibility. The refined and transition elements are illustrated in 
Figure 3 and Figure 4, the set of refined elements may be obtained with the usage of a pointer 
Pref(i), i=1…n. The default value is Pref(i)=0 representing no action. However, if Pref(i)=1 
then we refine the i-th element. The mesh refinement strategy may be described as follows: 
 

a

b c

d

e

f

a

b c

 
(a) Initial element                                          (b) Refined element 

Figura 3: Scheme of refinement of the element Tri3. 

d

e

f

a

b c

g

d

e

f

a

b c

g

 
Figura 4: Scheme of transition element. 

1. Set Pref=0. 
2. Determine the global and the elements average errors denoted respectively by GEΘ  and  

 EΘ , e=1…n. Now, for each element we verify if ( )E GE1 ηΘ > + Θ , for some given 1η > . 

 If true, we set Pref(e)=1, i.e., the e-th element will be refined. 
3. Determine the quality measure Q of each element in the mesh, given by 

 
max

6

3

A
Q

L P
=  (47) 

where 
 A is the area of the triangle 
 P is the one half of the perimeter of the triangle 

 { }max max , ,L ab ac bc=
��� ��� ���

 is the length of the element’s largest side 

 Also, for each element we verify if ( ) 0.55Q e ≤ . If true, we set Pref(e)=1. 
4. Identify all the elements which have a face common with the material contour and set their  
 pointer  reference Pref(e)=1. 
5. Perform an additional smoothing refinement criterion. Here, for each element whose 
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 Pref(e)=0 we identify their neighbors. If the element has 2 or more neighbors 
 whose  Pref(.)=1, then refine the given element, i.e., set Pref(e)=1. 

4.3 Material boundary identification 

The objective here is to define a criterion for the definition of the material boundary 
contour and to refine the elements that have a face common to the given identified material 
contour. A description of the procedure is given as follows: 
 
1. For each element, e=1...n, do: 
1.1.   If the relative density of the element, Eρ , is such that Eρ β> , (0.5,1)β ∈  then 

 1.1.1. Get the element neighbors list associated with the e-th element. 
 1.1.2. For each of k-th neighbor elements do: 
  1.1.2.1. If (1 )kρ β< −  then set both Pref(e)=1 and Pref(k)=1. 

 
As a result, this procedure refines all the elements whose relative density Eρ β>  and also 

the elements whose relative density Eρ β<  but have at least a side that forms the material 

boundary.  

4.4 Additional smoothing refinement criteria 

The objective here is to avoid having a given non-refined element having 2 or more 
neighbors to be refined. This may lead to the generation of sharp edges in the material contour 
or may lead to the generation of internal void regions with a poor material contour definition. 
As a result, we refine these elements. 

4.5 Conditional Laplacian smoothing procedure 

In order to improve the mesh, after the refinement step, we employ a constrained Laplacian 
smoothing, which is illustrated in Figure 5. Here, n is the number of adjacent nodes associated 
with node nx . 

xn

x
5

x
4

x
3

x
2

x
1

x
5

x
4

x
3

x
2

x
1

x =
n

1
x
iΣ

n = 1

n
v

n
v

x
n

 
Figura 5: Laplacian Smoothing Scheme. 

The Laplacian process is conditional since it will only be implemented if the mesh quality 
of the set of elements, as illustrated in Figure 5, improves. The mesh quality of the set of 
elements is given by the quality of the worst element in the set. The measure of quality of a 
given element is given by eqn. (47).  

 
As a result, the refinement strategy may be summarized as: A given element is refined if, 

 
(i) The measure of the quality of the element is smaller than a given lower bound; 
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(ii) The element has a side which forms the material boundary of the given topology of the 
domain;  
(iii) The error estimate is larger than a relative prescribed value.  
 

Once these elements are defined we also refine the elements which have two or more 
elements to be refined, obtained by the application of the criteria in (i), (ii) and (iii). 

4.6 Error Estimator and refinement criteria 

Here, for simplicity, we employ an error estimator based on the work of Zienkiewics and 
Zhu (1990, 1991). Notice, however, that the constitutive equation depends on the relative 
density of the material and that the relative density field is considered as a constant field 
within the element domain but discontinuous across different elements. As a result of this 
consideration, we obtain a discontinuous stress field. Thus, in order to apply the Zienkiewics 
and Zhu approach we make use of the strain field. Hence, the modified method estimates the 
discretization error of the problem using a gradient recovery technique, now in terms of the 
strain field, by means of the energy norm. Let ρ  be a given realizable distribution of the 
relative density of the material. Then, the local displacement error may be defined as: 

 ( ) ( ) ( )h= −e ρ u ρ u ρ  (48) 

where u ( )ρ  is the exact solution and hu ( )ρ  is the approximate solution of the problem. Then, 

the energy norm may be written as: 

 ( ) ( )2

E
( ) ( ) ( ) ( )He D dε ε

Ω

= ⋅ Ω∫ρ ρ e ρ e ρ  . (49) 

Thus, the local strain error may be expressed in terms of the local displacement error as 
follows: 

 ( ) ( )( ) ( ) ( ) ( ) ( )h hε ε ε ε ε= − = −e ρ ρ ρ u ρ u ρ  (50) 

and the energy norm may be written as: 

 ( ) ( )2

E
( ) ( ) ( ) ( ) . ( ) ( )H

h hD dε ε ε ε
Ω

 = − − Ω ∫e ρ ρ ρ ρ ρ ρ . (51) 

Since the exact strain distribution is unknown, we approximate ε ( )ρ  by an improved solution 
* ( )ε ρ , which is more refined then ( )hε ρ . Thus, the error indicator is approximated by: 

 ( ) ( )2 * *

E
( ) ( ) ( ) ( ) . ( ) ( )H

h hD dε ε ε ε
Ω

 = − − Ω ∫e ρ ρ ρ ρ ρ ρ . (52) 

Determination of * ( )ε ρ  

In order to determine the improved solution, * ( )ε ρ , we apply the same projection 
technique proposed by Zienkiewicz and Zhu (1990, 1991) but now based on the fact that the 
finite element solution 0( ) ( )h C∈ Ωu ρ  and that the strain field is only piece-wise continuous. 

The determination of * ( )ε ρ  consists in the solution of the least square minimization of the 
potential ( )ψ ρ , given by 
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2*( ) ( ) ( )h dψ ε ε

Ω

= − Ω∫ρ ρ ρ  (53) 

Here, * ( )ε ρ  is interpolated within each element as  

 * *

1

n

i i
k

Nε ε
=

=∑  (54) 

where *
iε  represents the vector of strain components, evaluated at the i-th node of the element, 

and iN  are the classical finite element interpolation functions. 

At this point, once * ( )ε ρ  is determined, we may compute global average error, GEΘ , as: 

 ( ) ( )GE

1
( ) ( ) ( ) . ( ) ( )H

h hD dε ε ε ε
Ω

 Θ = − − Ω Ω ∫ ρ ρ ρ ρ ρ  , (55) 

and the element average error, EΘ , as 

 ( ) ( )
E

* *
E E

E

1
( ) ( ) ( ) . ( ) ( )H

h hD dε ε ε ε
Ω

 Θ = − − Ω Ω ∫ ρ ρ ρ ρ ρ . (56) 

The strategy adopted to verify if a given element should be refined or not, due to the error 
measure criteria, is given by: if ( )E GE1 , with 1η ηΘ > + Θ > , then we refine the element. 
 

5 ALGORITHM 

We are using a bound constrained Truncated-Newton method. The Truncated-Newton 
method is preconditioned by a limited-memory Quasi-Newton method with a further diagonal 
scaling. Similar results were obtained with the TANGO algorithm of Andreani et al (2004), 
Andreani et al (2005) and Birgin and Martinez (2002). 

6 NUMERICAL APPLICATIONS 

6.1 Problem Case (1) 

Here we consider the problem illustrated in Figure 6, which the material properties 
(stainless steel AISI 304) to be given as: Young Modulus 193E GPa= , Poisson's ratio 

0.29ν = . The distributed load, t 207,000kN m= . The reference temperature of the body is 

20RT C= ° , the temperature of the fluid is 25fT C= °  and the prescribed temperature at the 

clamped edge is 100pT C= ° . The yield stress, 207yS MPa= . The heat conductivity of the 

material, 16.6k W m C= ° . The coefficient 617 10 m m Cβ −= × ° . The convection heat 

transfer coefficient, 25h W m C= ° . 
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Fig. 6: Definition of the Problem Case (1). 
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Fig. 7: Symmetrical model of the Problem Case (1) to be solved. 

 

 
Fig. 8: Initial mesh with 1201 elements and 660 nodes. 

 

               
Fig. 9: Results of initial mesh with 1201 elements and 660 nodes only in the symmetrical half, optimum mass 

distribution and failure function respectively. 
 
 

 
Fig. 10: First h-refined mesh with 2298 elements and 1224 nodes. 

 

Mecánica Computacional Vol XXIX, págs. 473-492 (2010) 485

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
 

                 
Fig. 11: Results of first h-refined mesh with 2298 elements and 1224 nodes only in the symmetrical half, 

optimum mass distribution and failure function respectively. 
 
 

 
Fig. 12: Second h-refined mesh with 5172 elements and 2684 nodes. 

 
 

               
 

Fig. 13: Results of second h-refined mesh with 5172 elements and 2684 nodes only in the symmetrical half, 
optimum mass distribution and failure function respectively. 

 
 
 

       
 

Fig. 14: Representation of optimum topology with 10344 tri3 elements. 
 

6.2 Problem Case (2) 

Here we consider the problem illustrated in Figure 15, which the material properties 
(stainless steel AISI 304) to be given as: Young Modulus 193E GPa= , Poisson's ratio 

0.29ν = . The distributed load, t 207,000kN m= . The reference temperature of the body is 

20RT C= ° , the temperature of the fluid is 25fT C= °  and the prescribed temperature at the 

clamped edge is 100pT C= ° . The yield stress, 207yS MPa= . The heat conductivity of the 
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material, 16.6k W m C= ° . The coefficient 617 10 m m Cβ −= × ° . The convection heat 

transfer coefficient, 25h W m C= ° . 
 

 
Fig. 15: Definition of the Problem Case (2). 
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Fig. 16: Symmetrical Model of the Problem Case (2) to be solved. 

 
 

 
Fig. 17: Initial mesh with 416 elements and 237 nodes. 

 

              
Fig. 18: Results of initial mesh with 416 elements and 237 nodes only in the symmetrical half, optimum mass 

distribution and failure function, respectively. 
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Fig. 19: First h-refined mesh with 1193 elements and 639 nodes. 

 

                 
Fig. 20: Results of first h-refined mesh with 1193 elements and 639 nodes only in the symmetrical half, optimum 

mass distribution and failure function, respectively. 
 
 
 

 
Fig. 21: Second h-refined mesh with 3505 elements and 1814 nodes. 

 

              
Fig. 22: Results of second h-refined mesh with 3505 elements and 1814 nodes only in the symmetrical half, 

optimum mass distribution and failure function, respectively. 
 
 

    
Fig. 23: Representation of optimum topology with 7010 tri3 elements. 

6.3 Problem Case (3) 

Here we consider the problem illustrated in Figure 24, which the material properties 
(stainless steel AISI 304) to be given as: Young Modulus 193E GPa= , Poisson's ratio 

0.29ν = . The distributed load, t 207,000kN m= . The reference temperature of the body is 

20RT C= ° , the temperature of the fluid is 25fT C= °  and the prescribed temperature at the 
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clamped edge is 100pT C= ° . The yield stress, 207yS MPa= . The heat conductivity of the 

material, 16.6k W m C= ° . The coefficient 617 10 m m Cβ −= × ° . The convection heat 

transfer coefficient, 25h W m C= ° . 
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Fig. 24: Definition of the Problem Case (3). 
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Fig. 25: Symmetrical Model of the Problem Case (3) to be solved. 

 
 

                     
Fig. 26: Initial mesh with 316 elements and 185 nodes only in the symmetrical half, results of optimum mass 

distribution and failure function, respectively. 
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Fig. 27: Second h-refined mesh with 991 elements and 538 nodes only in the symmetrical half, results of 

optimum mass distribution and failure function, respectively. 
 
 

                     
Fig. 28: Third h-refined mesh with 3316 elements and 1725 nodes only in the symmetrical half, results of 

optimum mass distribution and failure function, respectively. 
 

 
Fig. 29: Representation of optimum topology at the fourth level of h-refinement with 12178 tri3 elements. 

7 CONCLUSION 

The usage of a multigrid approach or remeshing procedure is important to increase the rate 
of convergence to the optimum layout of the problem. With this approach, we are able to 
handle problem with a large number of design variables. 

The usage of a non-uniform refinement has shown to decrease the number of design 
variables and this decrease becomes even more relevant if we refine the problem with a very 
large number of elements, Carey (1997). 

The results were promising, given the stress constraint and tested in meshes with few 
elements, but for a sharp optimum layout require a very refined mesh, suggesting high 
computational cost. Hence, the implementation of an adaptive process of refinement was very 
prudent. 

One of the disadvantages of the adopted approach is that we need to determine the element 
matrices and vectors what increase the computational cost when compared with the pixel type 
of strategy employed by many Authors. However, the pixel approach requires a refined mesh 
in order to describe the material boundary with some precision. 
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