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Abstract. Fundamental solutions for bending of orthotropic thick plates are obtained using Hérmander
operator and Radon transform. So, they do not have a closed form and numerical integration is neces-
sary to compute fundamental solutions in each field point. In this paper an analysis of the fundamental
solution for orthotropic thick plate is presented. Integration aspects are taking into account. It is dis-
cussed different approachesin order to carry out the numerical integration in afast and accurate way. An
analysis of computer cost is presented and someresults are compared with literature.
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1 INTRODUCTION

In the case of laminates composite, the difference betweepioperties elastic fiber and
matrix, results in most applications, in a high ratio betwéfge modulus of elasticity in the
direction of the fibers and the modulus of shear in the transsvdirection. Therefore, the defor-
mation due to shear can be significant even in thin platess,Ttheories that take into account
the transverse shear deformation are more suitable forimgd@&he first paper on the boundary
element analysis of thick Reissner plates was introduced/&geén(1982, who employed the
Hormander method for the derivation of the fundamentaltgmiu Barcellos and Silvg1989
used similar formulations to treat Mindlin’s model. Aftéretoriginal works oWeeén(1982),
many references have reported the application of boundargents to bending analysis of
thick plates, most of them using the Reissner model as, fanpbgKaram and Telle$1989,
Long et al.(1988, Katsikadelis and Yoti§1993, Yan (1995, andRashed et a(1997). A field
decomposition was presented Balermo Jr(2003 to obtain a boundary element formula-
tion for the classical model (Kirchhoff plates) from thatedsfor the Reissner-Mindlin one.
As we can see, a large number of articles with the analysisaifapic plates can be found
in literature. However, only few works can be found with thealysis of orthotropic plates.
Wang and Huan@l1991) presented a boundary element method of moderately thibktopic
plates. InWang and Schweizerh@1996 the previous formulation was extended to laminated
composites. This work presents a boundary element formoal&tr orthotropic thick plates. It
uses the fundamental solution proposedigng and Huan@1991) that takes into account the
effects of shear deformation and was derived by means of Bitder operator and the Radom
transform. Domain integrals which come from transverspliad loads are exactly transformed
into boundary integrals by a radial integration techniqoné & used the Telles transformation
(Telles 1987 for treat singular or nearly singular integrals. Some nuoa¢examples concer-
ning orthotropic plate bending problems are analyzed viithBEM.

2 DIFFERENTIAL EQUATIONS OF EQUILIBRIUM
Equations of equilibrium for the plate are given by:

Ma,@,ﬁ - ro - 07

Qa,a"’q - Oa (l)

wheregq is the distributed transverse load per unit area inth@irection. M,z are the moments
and,(,, are the shear forces that relate displacements and slopes by

Mo = Dap(Uas +Upa) + Caplyy,
Qoz - Ca(Ui’),a + Ua)a (2)

wherelU,, are the rotations andl; is the deflection in the thickness direction. Throughout the
formulations Greek indices take values of 1 and 2, and Latiices 1, 2 and 3.

The generalized Navier equations can be formed by subsgtthie values of the constants
into the equilibrium equationd) and (1) to give:

LijUj + bz - 0, (3)
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in which

DLt D _ De 4 Doy
Ly = Dugp + Desgz — Cr, Loa = Desgz + Daagz — Co,

0? o)
L12 - L21 - (Dlll/yx + D66)8x18m2’ L13 - _L31 - _Cl dx1’ (4)
2 2
Log = =L = —023%2, L3 = Claa_x% + Czaa—mg,

whereb, represents 0, @, respectivelyL;; is the generalized Navier differential operator. The
values of the constants are found to be:

Cia = Cy =0, Ch = Dllyyxa Coy = D22me7
o E.h? o Eyh? _ Ggyh?
Dy = 12(1—vayrya)’ Doy = 12(1—vayrya)’ Des = =55 (5)

Dllyyz = D22yxya Cl = szkha C12 = Gzykh7

whereE, andE, are elastic moduliy,, andv,, are Poisson ratiog;,,, G.,, andG', are shear
moduli; i is the thickness of the plate, akd= 5/6.

3 FUNDAMENTAL SOLUTIONS

The fundamental solutions of the orthotropic thick platartg into account the transverse
shear deformation are a set of particular solutions of tfferéntial Eq. 8) under a unit con-
centrated load, i.e., the solutions satisfy the followingdmogeneous differential equations:

LU (C ) = —6(C, )0, ©6)

in which §(¢, ) denotes the Dirac delta functiog,represents the source poiat,is a field
point, andL‘;jd] is the adjoint operator (sé&ang and Huan@1991)). Following Hérmander’s
operator method, the solutions of E®) ¢an be written as:

U;;(Cw%) = L;lzdj¢(é7x)7 (7)

whereg((, ) is a unknown scalar function aﬁﬁLjidj is the cofactor matrix of the operatbgfj
that is given by:

dj 2v2 A i
copadj  _ Eavv —Ba—_CO ’
afB B k 'Baxaal’ﬁ ! anaaxﬁ
| 9 0 o°
COLadJ — —CoLadJ = Ea a 9 BO‘ 55— GG °
o ad 8%( o2 + Bas o7 2), (8)
di o 2,2 7
“Lsg = D11D66% + (D11 Dgy — Diyvy, — 2D11D66VW)W -
1 e
hL o A
—|—D22D668_x421 (DG + ClDGﬁ)a_x% — (C1 Dy + CQDGG)a_x% + C1Cs.
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The following symbols have been introduced:

Bll = D21 - D667 BQ2 = Dll - D667 Ell = D227
By = Bay = (DnVyx + Dgs), Eyy = Dy, Eiy = Ey =0,
Ey3 = C1Dgy — CQ(Dlll/yx + Dk), B3 = C} Degg, Eys = CyDg, (9)
Bys = Cy D1y — C1(D1ivys + D), Vi=Ciin + 0oy V=gt i
Now, the potentiab((, x) can be evaluated as follows:
det[LiB6(¢, ) = —6(C, ). (10)

By the above procedure, the derivation of the fundamentatisol of Eq. 6) is reduced to
that of Eg. (0). As soon as the solution of EdL) is obtained, substituting it into Eq7)and
by differentiation we can get the solutions of E).(Eqg. (L0) is a sixth order partial differential
equation. Using the plane wave decomposition method, tit@apdifferential Eq. (0) can be
reduced to an ordinary differential equation, which sirigdi the treatment of the problem. We
first expandy (¢, =) into a plane wave (see, for exampigang and Huan§1991)):

o(C, ) = _4_;2/0 W | wi(z —¢) +w,(y —n) | 7% db, (11)

in which (wy, w,) are the coordinates of a point on the unit circle, ikg.= cos(6), wy = sin(h),
(z,y) and((,n) are the coordinates of a field point and a source point, réispgc Similarly,
®(¢, z) can be written as:

o(C, ) = / " o(p)o, (12)

wherep = wi(x — {) + wa(y — 1), p(p) is a function depending only gn

By substituting Eq. 11) and Eq. (2) into Eq. (L0), and considering differential relationship

8 o d . . . .
Jon = Way, We obtain the following equation:

d* [ d? 1

i (=) e = g 11 (19
in which
(Z2 = ClDllDGGW? + Cl <D11D22 - D%lij - 2D11D661/yl,)wilw§ +01D22D66(.U%W§+
+Cy D1y Degwiwi 4 Co Do Degw§ +Co (D11 Doy — D%ij — 2D Deglys )wiws,
b2 = Cng[Duwf + 2(2D66 + Dnl/ym)w%w% + Dggwﬁ,
p? =0?/a’.

The solution of Eq. 10) is now reduced to solve the ordinary differential EG3)( After

four times integration of Eq.1Q3) and leaving out the constants of integration, we obtain:

d? 1
A Polp) = g o8 | (14

The solution of Eq. 14) can be written as follows:

©(p) = f1(p) exp(pp) + fa(p) exp(—pp). (15)
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By the method of variation of parameters, the coefficightg) and f,(p) can be obtained.
By substitutingf(p) and f»(p) into Eq. (L5), we obtain:

8m2pta?

—exp(—pp) /_ ! eXp—(p@dU} : (16)

0o o

! > exp(—po
v(p) = 5 {pzﬁ log | p | +2log | p | +3 + exp(pp) / —<U ) dor+
p

Substituting Eq. 16) into Eq. (L2) and integrating, we can obtain the functidf(, z). The
generalized displacement and boundary tractions can bessqd in the following forms:

U(Ga) = | Gitoras
Pi(Cox) = / "By (p)ds. (17)

Details of the implementation of equatiori&Zf can be found i'Wang and Huan@1991).
3.1 Integration of fundamental solutions

It can be seen in equation$?) that, in order to obtain fundamental solutiali§ and F;;,
it is necessary to integraiéij and Rj. As its is carried out numerically, the way in which
this integrals are computed is a key point in the performasfdde boundary element code.
Figuresl to 6 show the behaviour of kerneléj and]—:’ij, considering as source poifQit= 0.5,
n = 0, and as field point = 0 andy = 0.0094. The material properties ag;, = 20.0485
GPa;Er = 6.0039 GPa;Gr = 0.5 GPa;Grr = 0.2 GPa;vrr = 0.0417; h = 0.25 m, and
componentes of normal vector ate= —1 andn, = 0.
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Figuresl to 6 show that all kernels are symmetric in relationfto= arctan —ﬁ . So,
it is necessary to carried out integration just in half of iterval [0, 27]. On the other hand,
it can be seen that all kernels are functions that are vefigulifto integrate because some of
them present singular behaviour néarand oscillaions in the integration interval. Although

these graphics are for a specific problem, similar behavsfiaund in other problems.
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In this work, two approaches are used to compute integradgadtion 17). In the first one,
standard Gauss point quadrature is used. In second, Tellesfdrmation is used in order to
concentrate integration points near singularity. A briegctiption of Telles transformation is

given in the next section.

4 TELLES TRANSFORMATION
Telles(1987 introduce an efficient mean of computing singular or neantgular integrals
found in two-dimensional, axisymmetric and three-dimenal boundary element applications.

Emphasis is given to a new third degree polynomial transébion which was found greatly to
improve the accuracy of Gaussian quadrature schemes whithinear-singularity range. The
procedure can easily be implemented into boundary elenteigscand presents the important
feature of being self-adaptive, i.e., it produces a vaedhat depends on the minimum distance
from the source point to the element. The self-adaptiveoithe scheme also makes it inactive
when not useful (large source distances) which makes itsafg/ for general usage.

Consider the integral:
1
R (18)
—1

in which f(n) is singular at a poin.
The idea is to transform the coordinatgt v where the jacobiagg vanishes at the point

wheref(n) is singular.
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In this article, it is choosen a third-degree relation:
n(y) = ay’ +b7* + ey + 4, (19)

such that the following requirements are met:

d*n,
d_72|" = 0,
dn B
nn =
n(l) = 1, (20)
n(-1) = -1
Thus, expression becomeld|
o= 7 +3(° +3)]/(1+37°)}13(y = 7°) /(1 + 37°)dn, (21)

wherey is simply the value ofy which satisfies)(7) = 7; this parameter can be calculated by:
¥ =~/ + ne]) + v/ (e = |n*]) +m, (22)
andn* = > — 1.

5 BOUNDARY INTEGRAL EQUATIONS

The integral equation can be derived by considering thgriateepresentation of the gover-
ning Eq.(@) via the following integral identity:

/Q (Mass — Qu)U? + (Qun + Q)US)AQ = 0, (23)

whereU (i = «, 3) are the weighting functions. Integrating by parts (apmy@reen’s second
identity) and making use of the algebraic relationshipgivies:

U,(C) + / (¢, 1)U, ()T = / (¢, 2)Py(x)dT + / (UL 0)dQ.  (24)

By taking the point to the boundary at the positiaghe I', Eq. 24) can be written as:

w00+ § Picats@ar = [Uycap@i+ [ wuscaie. @)

wheref denotes a Cauchy Principal Value integaly € T are source point and field point,
respectively. The value af;;(z) is equal tod;; /2 whenz is located on a smooth boundary.
Equation R5) represents three integral equations, two< o = 1,2) for rotations and one
(: = 3) for deflection. The last integral on the right hand side ofiampn @5), that is a
domain integral, is transformed into a boundary integrahgishe procedures presented by
Albuquerque et al(2008.
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6 MODELING SYMMETRIC CROSS-PLY LAMINATES

Although the formulation presented in this paper is for Enigyer orthotropic material,
symmetric crossply laminates can be also modeled usinga&equi global stiffness constants.
The bending stiffiness matrix of a laminate composite ismgive

D= Qulti —t]), (26)
where
Qe =T'Q(T™)™, (27)
Qu Qi 0
Q = Q12 Q22 0 ; (28)
0 0 Qes
and
Qu = EL/(1 - VLTVTL), Q22 = ET/(1 - VLTVTL)a
Qes = Grr, Q16 = Q26 = 0, (29)

Q2 =vrLEr/(1 —vprvrn) = virEs /(1 — vprvrr).

The inverse oD is theS matrix given by:

12 1/Ez —Vgl/E;: 0
S=D1'= o5 | —ve/EL /B 0 , (30)
0 0 1/G%
whereF;, EX., vir, v, andG’  are the equivalent material properties of the symmetrisscro

ply laminatest is total thickeness of the laminate.
From equation30) we can obtain:

E: — 1/S4,
Er = 1/Sy,
Gir = 1/53,
vir = —S1by. (31)

7 NUMERICAL RESULTS

To validate the procedures implemented and to assess theaag®f solutions, consider a
square plate of simply supported boundary with five layets90°/0°/90°/0°] subjected to a
sinusoidally distributed load = g, sin(%*)sin(%) and,a/t = 10, a/t = 20 anda/t = 100.
The material constants are, = 25 GPa,Er = 1 GPa,Grr = 0.5 GPa,Grr = 0.2 GPa,
vrr = 0.25. Results are compared withhosh and Dey1992 e Pagano and HatfielL972),
as shown in Tablel). The laminate is discretized into two discontinuous qatidrelements
per side. Where) = w7T4Q/(1290tS4) andQ =4Gr+ {EL + ET(1 + 2VLT)}/(1 — VLTVTL)-

The displacement at the central point of the plate is showrabie 1. In this tablewr is
the solution obtained by Telles Transformation with 20 gn&tion points; refl. is the result of
Pagano and Hatfiel(l972); ref2. is the result ofShosh and Dey1992); wy, is the solution

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 673-682 (2010) 681

computed by standard Gauss Quadrature with 20 integrabamspandwy, is the solution
computed by standard Gauss Quadrature with 80 integratimnsp

We can see that there is a good agreement among results teraiure, displacements
computed using standard Gauss quadrature with 80 integnadints, and Telles transformation
with 20 integration points. On the other hand, the agreeroktite displacement obtained by
standard Gauss quadrature using 20 integration pointsyspeer.

We can conclude that the use of Telles transformation slyaegluces the amount of inte-
gration points necessary to obtain accurate results.

S =ua/t| wr |wrefl.)| w(ref2.)| wy | wy
10 142, 1.57 1.42 |1.49| 1.43
20 1.11} 1.15 1.10 |3.35| 1.14
100 1.01, 1.01 1.01 |0.59|-0.11

Table 1: Center deflection of the orthotropic thick squasgepbf simply supported boundary with five layers.

8 CONCLUSIONS

This paper presented a boundary element formulation fbotwpic thick plates. The fun-
damental solution was derived by means of Hormander opaaatbthe Radom transform. Ker-
nels of fundamental solutions were integrated by standaas& quadrature and Telles trans-
formation. It has been shown that the use of Telles tranfoomatrongly reduces the amount
of integration points necessary to obtain accurate results
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