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Abstract.
This paper presents a boundary element formulation to investigate the onsetof instability of elastic

plates with a wide variety of boundary conditions and arbitrary geometries. Stresses caused by external
loads are calculated by the formulation of plane elasticity boundary element method. Then, these stresses
are introduced as body forces in the classical formulation of plates. The domain integrals due to body
forces are transformed into boundary integrals using the radial integration method. In this method, body
forces are approximated by a sum of radial basis functions, called approximation functions, multiplied by
coefficients to be determined. Functions used for approximations are known as thin plate splines. Various
numerical examples are analyzed in which critical loads, buckling modes, and coefficients of buckling
are calculated. The accuracy of the proposed formulation is assessed by comparison with results from
literature.
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1 INTRODUCTION

An understanding of buckling of structural components under compressive load has become
particularly important with the introduction of steel and high-strength alloys in engineering
structures, which resulted in more optimized components than those used in previous projects.
Buckling analysis of compression panels also is particularly important in aerospace structures.
Structures built with these materials and slender members may fail when subjected to com-
pressive loads in your plan. In some cases these failures arenot by direct compression, but
for lateral buckling. The finite element method (FEM) is currently one of the most used tools
by researchers to study the engineering problems of buckling of plates. Potentially powerful
and relatively new, the numerical method of boundary elements (BEM), has also shown excel-
lent results in the study of buckling of plates.Syngellakis and Elzein(1994) present solutions
for the buckling of plates by boundary element method based on Kirchhoff’s theory in different
load conditions and support.Nerantzaki and Katsikadelis(1996) developed a boundary element
method for analysis of buckling of plates with variable thickness. Linear buckling analysis of
plates using the boundary element method also can be found inLin et al.(1999). Buckling anal-
ysis of shear deformable isotropic plates was presented byPurbolaksono and Aliabadi(2005).

In this paper, a boundary element formulation for the stability analysis of general isotropic
plates with no domain discretization is presented. Classical plate bending and plane elasticity
formulations are used and the domain integrals due to non-uniform body forces are transformed
into boundary integrals using the radial integration method. Numerical results are presented to
assess the accuracy of the method. Buckling coefficients computed using the proposed formu-
lation is compared with results available in literature.

2 GOVERNING EQUATIONS

Basically, the classic problem of buckling, is a geometrically nonlinear problem described
by a set of three differential equations which can be uncoupled and linearized in the case of
elastic critical loads. In the absence of body forces, the equations that describe the buckling of
plates is given by:
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wherew is the displacement in normal directionsx andy, that is, displacement in the normal
direction of the plate surface;Nij are the stress components; and,D is plate stiffness constants.

2.1 Boundary integral equations

Here, in-plane stress fields, due to stress concentrations in the geometry, are non-uniform,
and stress resultants in the domain due to external loads on the boundary is considered to be
unknown. Therefore, determination of in-plane stress resultants in the domain is the first step
in the solution of plate buckling. Next, the plate buckling equations are derived from the plate
bending equations. Critical load factors are are introducedinto the equations as multiplication
factors of body forces or transverse loads.
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The in-plane boundary integral equation for displacements, obtained by applying the reci-
procity and Green theorems in equation (1), is given by (Aliabadi, 2002):

cijuj(Q) +

∫

Γ

t∗ik(Q,P )uk(P )dΓ(P ) =

∫

Γ

u∗

ik(Q,P )tk(P )dΓ(P ), (3)

whereti = Nijnj is the traction in the boundary of the plate in the planex1 − x2, andnj

is the normal at the boundary point;P is the field point;Q is the source point; and asterisks
denote fundamental solutions. The constantcij is introduced in order to take into account the
possibility that the pointQ can be placed in the domain, on the boundary, or outside the domain.

The in-plane stress resultants at a pointQ ∈ Ω are written as:
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whereDikj andSikj are linear combinations of the plane-elasticity fundamental solutions. The
integral equation for the plate buckling formulation, obtained by applying reciprocity and Green
theorems at equation (2), is given by:
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where∂()
∂n

is the derivative in the direction of the outward vectorn that is normal to the boundary
Γ; mn e Vn are, respectively, the normal bending moment and the Kirchhoff equivalent shear
force on the boundaryΓ; Rc is the thin-plate reaction of corners;u∗

3ci
is the transverse displace-

ment of corners;λ is the critical load factor; the constantK is introduced in order to take into
account the possibility that the pointQ can be placed in the domain, on the boundary, or outside
the domain. As in the previous equation, an asterisk denotesa fundamental solution.

A second integral equation is necessary in order to obtain the thin plate buckling boundary
element formulation. This equation is given by:
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where∂()
∂m

is the derivative in the direction of the outward vectorm that is normal to the bound-
aryΓ, at the source pointQ.
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Domain integrals arise in the formulation owing to the contribution of in-plane stresses to the
out of plane direction. In order to transform these integrals into boundary integrals, consider that
a body forceb is approximated over the domain as a sum ofM products between approximation
functionsfm and unknown coefficientsγm, that is:

b(P ) ∼=

M
∑

m=1

γmfm. (7)

The approximation function used in this work is:

fm = r2 log r, (8)

Equation (7) can be written in a matrix form, considering all boundary and domain source
points, as:

b = Fγ (9)

Thus,γ can be computed as:

γ = F
−1

b. (10)

Body forces of integral equations (5) and (6) depend on displacements. So, using equation
(10) and following the procedure presented byAlbuquerque et al.(2007), domain integrals that
come from these body forces can be transformed into boundaryintegrals.

As can be seen in equations (5) and (6), the body force that generates domain integrals is
given by:

b = Niju3. (11)

So, we need to computeNij in each integration points. However, we have only the valuesof
Nij at nodes and internal points. Values ofNij in integration points is computed by:

Ni(x1,x2) = f(r)F−1
Nij. (12)

2.2 Matrix Equations

After the discretization of equations (5) and (6) into boundary elements and collocation of
the source points in all boundary nodes, a linear system is generated. It is worth notice that
the only loads considered in the linear buckling equations are that related to the in-plane stress
Nij and tractionsti that are multiplied by the critical load factorλ. Furthermore, all the known
values ofu3, ∂u3/∂n, Mn, Vn, wci, Rci (boundary conditions) are set to zero. Dividing the
boundary intoΓ1 eΓ2 (Figure1), this linear system can be written as:

[

H11 H12

H21 H22

]{

w1

w2

}

−

[

G11 G12

G21 G22

]{

V1

V2

}

= λ

[

M11 M12

M21 M22

]{

w1

w2

}

, (13)

whereΓ1 stands for the part of the boundary where displacements and rotations are zero andΓ2

stands for the part of the boundary where bending moment and tractions are zero. Indices1 and
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Γ1: u3 =
∂u3

∂n
= 0

Γ2: Vn = Mn=0

Ω

Figure 1: Domain with constrained and free degrees of freedom.

2 stand for boundariesΓ1 andΓ2, respectively. MatricesH, G, andM are influence matrices of
the boundary element method due to integral terms of equations (5) and (6).

Asw1 = 0 andV2 = 0, equation (13) can be written as:

H12w2 −G11V1 = λM12w2,

H22w2 −G21V1 = λM22w2 (14)

or,

Ĥw2 = λM̂w2, (15)

where,Ĥ eM̂, are given by:

Ĥ = H22 −G21G
−1
11H12,

M̂ = M22 −G21G
−1
11M12. (16)

The matrix equation (15) can be rewritten as an eigen vector problem

Aw2 =
1

λ
w2, (17)

where,

A = Ĥ
−1

M̂. (18)

Provided thatA is non-symmetric, eigenvalues and eigenvectors of equation (17) can be
found using standard numerical procedures for non symmetric matrices.

2.3 Numerical results

The numerical results are presented in terms of the dimensionless parameterKcr which is
given by:

Kcr =
Ncra

2

π2D
(19)

where,Ncr is the critical load anda is the edge length of the square plate.
In this work it was considered a square plate with a square hole under different boundary

conditions. The ratio between lengtha and thicknessh of the square plate isa/h = 100.
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The ratio between the edge length of the plate and the edge length of the hole isa/b = 5.
The material properties are: elastic moduliE = 210 GPa and Poisson ratioν = 0, 25. The
mesh used has 24 quadratic discontinuous boundary elements(12 elements of equal length at
the external boundary and 12 elements of equal length at the hole) with uniformly distributed
internal points.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 2: Boundary element model (24 discontinuous boundary element and 32 internal points).

The plate is under uniformly uniaxial compression and the critical load parameterKcr is
computed considering all edges simply-supported (SSSS) and all edges clamped (CCCC).

Table 1: Critical load parameterKcr for a square plate with a square hole in the center (simply-supported).

No. Boundary Internal K K Error.
elements points BEM Analytical %

1 24 32 3.620 3.720 2,60
2 24 60 3.769 3.720 1.30
3 24 96 3.694 3.720 0.07

Table 2: Critical load parameterKcr for a square plate with a square hole in the center (clamped).

No. Boundary Internal K K Error.
elements points BEM Analytical %

1 24 32 7.892 8.766 9.97
2 24 60 8.495 8.766 3.10
3 24 96 8.841 8.766 0.08

The first buckling mode are shown in figure 4 and 5. Critical loadparametersKcr obtained by
the boundary element formulation using different number ofinternal points are shown in table
1 and table 2, for simply-supported and clamped edges, respectively, together with analytical
results presented byHayash et al.(1971). As it can be seen, errors decrease with increasing
number of internal points.

As it can be seen, there is a good agreement between the results obtained in this work and
those presented in literature.
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Figure 3: First buckling mode - all edges SSSS Figure 4: First buckling mode - all edges CCCC

3 CONCLUSIONS

This paper presented a boundary element formulation for thestability analysis of plates with
non-uniform stress field. Domain integrals are transformedinto boundary integrals by the radial
integration method. As the radial integration method does not demand particular solutions, it
is easier to implement than the dual reciprocity boundary element method. The formulation is
applied for a square plate with a square hole. Results obtained with the proposed formulation
are in good agreement with results presented in literature.It was shown that errors decrease
with an increasing number of internal points.
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