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Abstract.

This paper presents a boundary element formulation to investigate theabmsstiability of elastic
plates with a wide variety of boundary conditions and arbitrary geometriessses caused by external
loads are calculated by the formulation of plane elasticity boundary elementandthen, these stresses
are introduced as body forces in the classical formulation of plates. dimaid integrals due to body
forces are transformed into boundary integrals using the radial integragthod. In this method, body
forces are approximated by a sum of radial basis functions, calledxdppation functions, multiplied by
coefficients to be determined. Functions used for approximations arenkamthin plate splines. Various
numerical examples are analyzed in which critical loads, buckling modds;aetficients of buckling
are calculated. The accuracy of the proposed formulation is assegsetparison with results from
literature.
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1 INTRODUCTION

An understanding of buckling of structural components urdenpressive load has become
particularly important with the introduction of steel anglirstrength alloys in engineering
structures, which resulted in more optimized componeras those used in previous projects.
Buckling analysis of compression panels also is particylanportant in aerospace structures.
Structures built with these materials and slender membens fail when subjected to com-
pressive loads in your plan. In some cases these failuresadrey direct compression, but
for lateral buckling. The finite element method (FEM) is ety one of the most used tools
by researchers to study the engineering problems of bugkifrplates. Potentially powerful
and relatively new, the numerical method of boundary eldsm@EM), has also shown excel-
lent results in the study of buckling of plateSyngellakis and Elzei(L994) present solutions
for the buckling of plates by boundary element method basddi@hhoff’s theory in different
load conditions and suppoftlerantzaki and Katsikadel{2996 developed a boundary element
method for analysis of buckling of plates with variable &mess. Linear buckling analysis of
plates using the boundary element method also can be foun &t al. (1999. Buckling anal-
ysis of shear deformable isotropic plates was presentdtlbyolaksono and Aliaba@0035.

In this paper, a boundary element formulation for the sitgtanalysis of general isotropic
plates with no domain discretization is presented. Clakpiete bending and plane elasticity
formulations are used and the domain integrals due to ndoronbody forces are transformed
into boundary integrals using the radial integration mdthidumerical results are presented to
assess the accuracy of the method. Buckling coefficients etadpsing the proposed formu-
lation is compared with results available in literature.

2 GOVERNING EQUATIONS

Basically, the classic problem of buckling, is a geomethjcabnlinear problem described
by a set of three differential equations which can be uncmlpind linearized in the case of
elastic critical loads. In the absence of body forces, theggns that describe the buckling of
plates is given by:

aNJ"L + 8Nzy — 0
)

Jy
dN” + 5 =0, (1)
2 Pw _ L (N, 2w 9N, Pw i N Puw 2
dx4 + 8m20y2 + oyt wre + Y Hxdy + Yoy ( )

wherew is the displacement in normal directionsandy, that is, displacement in the normal
direction of the plate surfacey;; are the stress components; afnuis plate stiffness constants.

2.1 Boundary integral equations

Here, in-plane stress fields, due to stress concentratiotieigeometry, are non-uniform,
and stress resultants in the domain due to external loadseohdundary is considered to be
unknown. Therefore, determination of in-plane stressltasts in the domain is the first step
in the solution of plate buckling. Next, the plate bucklinguations are derived from the plate
bending equations. Critical load factors are are introduectxthe equations as multiplication
factors of body forces or transverse loads.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 699-705 (2010) 701

The in-plane boundary integral equation for displacemestisained by applying the reci-
procity and Green theorems in equatidi, s given by Aliabadi, 2002:

cijui(Q) + /

r

£2,(Q. P)ug(P)dL(P) = / W (Q, PYte(P)dL(P), 3)

wheret; = N;;n; is the traction in the boundary of the plate in the plane- z,, andn;

is the normal at the boundary poin®, is the field point;(Q is the source point; and asterisks

denote fundamental solutions. The constants introduced in order to take into account the

possibility that the poinf) can be placed in the domain, on the boundary, or outside tmaitho
The in-plane stress resultants at a pérk €2 are written as:

N (Q) + /F “(Q. Puy(P / D2 (@, PYta(P)AT(P), @)

whereD;;; andS;;; are linear combinations of the plane-elasticity fundarakeslutions. The
integral equation for the plate buckling formulation, ab&al by applying reciprocity and Green
theorems at equatior2), is given by:
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where2! is the derivative in the direction of the outward veatdhat is normal to the boundary
r; m, e V are, respectively, the normal bending moment and the Koffldguivalent shear
force on the boundarl; R. is the thin-plate reaction of corners; _ is the transverse displace-
ment of corners is the critical load factor; the constaft is introduced in order to take into
account the possibility that the poi@tcan be placed in the domain, on the boundary, or outside
the domain. As in the previous equation, an asterisk derofi@sdamental solution.

A second integral equation is necessary in order to obtarhim plate buckling boundary
element formulation. This equation is given by:

K22(Q) + fy [92(Q, Pyw(P) - 2@, )25 dr(P) + X FE(Q, Pyus, (P)

= 30 B (P) 5 (@, [Va(P) &L — i, (P) 53, (@Q, P)| dT(P)

| Jo s Ny Zgit 2 + [ (b %t — tiug % ) ar| (6)

where ) is the derivative in the direction of the outward veataithat is normal to the bound-
aryT, at t the source poir®.
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Domain integrals arise in the formulation owing to the cidmttion of in-plane stresses to the
out of plane direction. In order to transform these integiratio boundary integrals, consider that
a body force is approximated over the domain as a sumbproducts between approximation
functionsf,, and unknown coefficients,,, that is:

M
b(P) = Y fom- (7)
m=1
The approximation function used in this work is:

fn =1 logr, (8)

Equation ) can be written in a matrix form, considering all boundarg aomain source
points, as:

b =Fy 9)

Thus,~y can be computed as:

v =F b (10)

Body forces of integral equationS)(and @) depend on displacements. So, using equation
(10) and following the procedure presentedAlipuquerque et ali2007), domain integrals that
come from these body forces can be transformed into bouniggrals.

As can be seen in equatiors) @nd @), the body force that generates domain integrals is
given by:

So, we need to comput¥;; in each integration points. However, we have only the vadiies
N;; at nodes and internal points. Values/gf; in integration points is computed by:

Ni(x1,%2) = f(r)F_lNij- (12)

2.2 Matrix Equations

After the discretization of equationS)(and 6) into boundary elements and collocation of
the source points in all boundary nodes, a linear systemrisrgéed. It is worth notice that
the only loads considered in the linear buckling equatioedizat related to the in-plane stress
N;; and tractiong; that are multiplied by the critical load factar Furthermore, all the known
values ofug, dus/on, M,, V,, w., R. (boundary conditions) are set to zero. Dividing the
boundary intd"; eI'; (Figurel), this linear system can be written as:

Hi: Hiz W1 ( G G2 Vi — )\ Mii Mi2 w1 (13)

Hz; Ha» W2 Ga1 Goo V, Mz Ma, W2 ’
wherel'; stands for the part of the boundary where displacementsaatians are zero and,
stands for the part of the boundary where bending momentraatians are zero. Indicdsand
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Iy Vi = Mp=0
Figure 1: Domain with constrained and free degrees of freedo
2 stand for boundarieB; andT'y, respectively. Matricebl, G, andM are influence matrices of

the boundary element method due to integral terms of equaf) and ©).
Asw; = 0 andV, = 0, equation {3) can be written as:

Hiowe — G11V: = AMiowg,
Hoowe — G21 Vi = AMaowy (14)

or,

Hw, = \Mwo, (15)
where,H e M, are given by:

H = Hy — G2:G11Hya,

~

M = Mgy — G21 G Mys. (16)

The matrix equation() can be rewritten as an eigen vector problem

1
Aw, = sz, (17)
where,
A=H'™M. (18)

Provided thatA is non-symmetric, eigenvalues and eigenvectors of equdtid) can be
found using standard numerical procedures for non symoigirices.

2.3 Numerical results

The numerical results are presented in terms of the dimelesi® parametek’.,. which is
given by:

N, a?

2D

where, N, is the critical load and is the edge length of the square plate.
In this work it was considered a square plate with a square totler different boundary

conditions. The ratio between lengthand thickness: of the square plate is/h = 100.

K., = (19)
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The ratio between the edge length of the plate and the edgghler the hole isa/b = 5.
The material properties are: elastic modtli= 210 G Pa and Poisson ratie = 0,25. The
mesh used has 24 quadratic discontinuous boundary eleifi@h&dements of equal length at
the external boundary and 12 elements of equal length atateg With uniformly distributed
internal points.
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Figure 2: Boundary element model (24 discontinuous boynel@ment and 32 internal points).

The plate is under uniformly uniaxial compression and thecef load paramete¥., is
computed considering all edges simply-supported (SSSbakhedges clamped (CCCC).

Table 1: Critical load parameté{,.,. for a square plate with a square hole in the center (simpbpsried).

No. | Boundary| Internal| K K Error.
elements|| points | BEM | Analytical | %

1 24 32 3.620| 3.720 2,60

2 24 60 3.769| 3.720 1.30

3 24 96 3.694| 3.720 0.07

Table 2: Critical load parameté{,.,. for a square plate with a square hole in the center (clamped).

No. | Boundary| Internal| K K Error.
elements| points | BEM | Analytical | %

1 24 32 7.892| 8.766 9.97

2 24 60 8.495| 8.766 3.10

3 24 96 8.841| 8.766 0.08

The first buckling mode are shown in figure 4 and 5. Critical lpachmeterg( .. obtained by
the boundary element formulation using different numbentdrnal points are shown in table
1 and table 2, for simply-supported and clamped edges, ceegply, together with analytical
results presented bilayash et al(1971). As it can be seen, errors decrease with increasing
number of internal points.

As it can be seen, there is a good agreement between thesrebtdined in this work and
those presented in literature.
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Figure 3: First buckling mode - all edges SSSS Figure 4: First buckling mode - all edges CCCC

3 CONCLUSIONS

This paper presented a boundary element formulation fosttizlity analysis of plates with
non-uniform stress field. Domain integrals are transformezboundary integrals by the radial
integration method. As the radial integration method dagisdemand particular solutions, it
is easier to implement than the dual reciprocity boundagyneint method. The formulation is
applied for a square plate with a square hole. Results olotaiité the proposed formulation
are in good agreement with results presented in literatlireias shown that errors decrease
with an increasing number of internal points.
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