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Abstract. In this work, we study the frequency response of a plate (host structure ) with an elastically
attached mass. The plate is harmonically excited with a sinusoidal force of variable frequency and its
amplitude is then observed at a given predetermined point. The attached mass is modelled as a three
degree of freedom (3-DOF) system and is elastically attached to the plate by four springs and dashpots
in parallel with the plate. After solving the dynamics of the coupled system, we analyze the frequency
response of the plate as the parameters of the 3-DOF system are changed. Then, it is reasonable to think
the 3-DOF system as a dynamic vibration absorber to control the vibration amplitude of the plate for
the set of values of the parameters that give the best results for the required performances. The range of
frequencies under study includes the first three resonance frequencies of the plate.
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1 INTRODUCTION

The study of the dynamic characteristics of discrete systems attached to continuum ones
(host structures) is of great technological importance. This is because discrete systems, as
mounted to other systems, provide a way to control undesirable high amplitudes of vibration
that may be produced on the later. The idea is simple, the attached system, frequently called
dynamic vibration absorber (DVA) (see Ormondroid and DenHartog (1928)) reduces the vibra-
tional levels on the host structure by an increment of its displacement amplitude when properly
tuned. A properly tuned DVA means that if the natural frequency of the DVA is equal or near
the natural frequency of the host structure an important transfer of energy occurs, producing a
considerable reduction of its vibration amplitude. To know the way this mechanism of energy
transfer takes place, it is necessary to study the dynamic characteristics of the total system (host
structure + DVA). In our case, the DVA is modelled as an attached mass (3-DOF system) elas-
tically mounted on a plate.
The dynamic characteristics of plates with elastically attached masses has been the work of
many researchers over the past thirty years. Examples of them are the works of Laura et al.
(1977), Dowell (1979) and Rossit and Laura (2001), to cite a few of them. These works studied
only 1 DOF systems attached to primary systems. Two DOF attached to structural elements are
studied less frequently. An interesting approach in the case of beam vibrations was given by
Jen and Magrab (1993), and more recently by Vera et al. (2005). In the case of 3-DOF systems
attached to continuum elements, the authors are not aware of studies involving this type of com-
plexity. Possibly one paper in this direction is the work of Febbo et al. (2010) which calculates
the natural frequencies and normal modes of the title problem. In this sense, the present work
increases substantially the scope of previously developed analysis and provides the frame for
further studies.

The aim of this work is to observe how the dynamic characteristics of a plate with an attached
3-DOF system change as the parameters of the 3-DOF (mass, moment of inertia, damping,
tuning ratio) are modified. In this sense, this provides a basis upon which a proper design of
a DVA may rely on. The paper is organized as follows. In the first section, the mathematical
formulation of the problem is presented. Section two is the main section of the work. There
we present the frequency response curves of the plate as the parameters of the 3-DOF vary and
discuss how the plate is affected in comparison with a bare plate (plate without attachments).
Finally, the paper is concluded with a summary of the results in a last section.

2 MATHEMATICAL FORMULATION

Here, the derivation of the equations of motion of a plate carrying a three (3) degree-of-
freedom system is derived. To this purpose, we select a Lagrangian formalism to model the
plate-type structure and then we add the 3 DOF system as restrictions through Lagrange multi-
plier approach.

Figure 1 a) presents the system under study which consists in a plate (primary or main sys-
tem) and a three degree-of-freedom system attached to it (subsidiary or secondary system). As
stated in the introduction, the secondary system is used as a dynamic vibration absorber (DVA)
to minimize the amplitude of vibration at a given point of the primary structure. The interven-
ing parameters of the 3 DOF DVA, me, Iex and Iey are, respectively, the lumped mass and mass
moments of inertia in a direction parallel to x and y axes; k1, k2, k3, k4, and c1, c2, c3, c4 are
the spring and damper constants and a1, a2, a3, a4 are the distances between the center of mass
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and the sides of the rigid mass of the 3 DOF DVA (see Fig. 1 b)). The total kinetic and strain
energies and the dissipation function of the system (plate + 3 DOF DVA) are:
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Figure 1: (a) Plate with a three degree-of-freedom DVA attached to it. (b) Nomenclature for the coordinates
selected to describe the motion of the 3 DOF DVA.
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where the cij’s are the normal mode amplitudes, ωij the eigenfrequencies of the primary
system and the m′

ijs are given by ρh
∫
Ω

φijφmndΩ = δijmij (δij is Kronecker’s delta, ρ is the
plate’s mass density and h its thickness, see Fig. 1 (a)). Plate’s internal damping is assumed
to be of viscous type with dij as the modal damping parameters. Additionally, the transverse
displacement of the plate is represented by w(x, y, t) =

∑n,n′

i,j cij(t)φij(x, y) where the φij(x, y)
are the normal mode shapes of the selected plate. The summation is carried out up to the
n, n′ normal mode where the first N = n × n′ modes are considered in increasing order of
frequencies. Four restriction functions fl’s has to be imposed for the system of equations to be
complete and solvable. This can be expressed by:

fl =

n,n′∑

i,j

cij(t)φij(xl, yl) − zl(t) = 0, l = 1, ..., 4; (4)
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which represent the connection of the 3 DOF DVA to the plate at the points xl, yl, l = 1, 2, 3, 4
(see Fig. 1 (b)). At the same time, a fifth restriction is needed, which has to be defined to satisfy
the rigidity condition of the mass of the 3 DOF DVA (rigid solid):

f5 = zm4 − (zm1 + zm3 − zm2) (5)

Then, the equations of motion can be obtained from Lagrange’s equations:

d

dt

(
∂T

∂ṡk

)
+

∂D

∂ṡk

+
∂V

∂sk

= Qk +
5∑

l=1

λl

∂fl

∂sk

k = 1, ...N + 8 (6)

where Qk represent the generalized forces applied at the point (xf , yf ) and λl are Lagrange’s
multipliers. Finally, Lagrange’s equations of motion yield, after the elimination of the λ′

ls, a set
of N + 3 coupled linear second order differential equations in terms of the new independent set
of coordinates q ≡ [q1, ......qN , qN+1, qN+2, qN+3] ≡ [c11, .....cnn′ , zm1, zm2, zm3], and the set of
generalized forces Q ≡ [Q1, ......QN , 0, 0, 0]:

Mq̈(t) + Cq̇(t) + Kq(t) = Q (7)

Matrices (N + 3 × N + 3) M, C and K are given by:

M=

[
Mp 0
0T M3DOF

]
; C =

[
Cp + Csub Cc

CT
c C3DOF

]
;

K =

[
Kp + Ksub Kc

KT
c K3DOF

]
;

where the (N × N ) matrices Mp, Cp and Kp are diagonal matrices whose elements are mk,
2ξkmkωk (ξk = dk/2mkωk) and mkω

2
k (k = 1, 2, ...N), respectively. The rest of the matrices,

Ksub,Csub, Kc, Cc and M3DOF,C3DOF,K3DOF are given in appendix (A). In order to calculate
the displacement amplitude q(t) of the coupled system, a simple harmonic motion of vector
q(t) = q̄eiωt is imposed. Then, vector q̄ is obtained by solving

q̄ = [−ω2M + iωC + K]−1Φ̃(xf , yf ) (8)

where Φ̃(xf , yf ) = [φ1(xf , yf )...φN(xf , yf ) 0 0 0]T . Finally, the displacement of the primary
system at the point (xa, ya) is

w(xa, ya, t) =
N∑

k=1

q̄ke
iωtφk(xa, ya)

3 EFFECTIVENESS OF A 3-DOF SYSTEM UNDER PARAMETER CHANGE

In this section, a thorough study on the dynamic behavior of a 3-DOF system mounted on a
plate is carried out. The main concern is to observe how the variation of some of the parameters
of the 3-DOF systems affects the dynamics of the plate.
A totally simply supported steel plate is considered for all cases whose physical constants are
shown in table 1. Its first natural frequencies are: ωnat1 = 100.0720 (15.927 Hz), ωnat2 =
160.1153, (25.483 Hz), ωnat3 = 260.1873 (41.41 Hz). The parameters of the 3-DOF system are
selected in order to have approximately its natural frequencies equal to the first three natural
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frequencies of the plate. Given a mass of me = mp/20 = 3.9250 kg (mass), and a height of
he = 0.356 m then, being a1 = a2 = 0.07 m; a3 = a4 = 0.47 m, the natural frequencies of the
3 DOF system results:

• ω3DOF1 = 100.6518 ; α1 = 1.005 (mainly rotation about y axis)

• ω3DOF2 = 160.3340 ; α2 = 1.001 (mainly translation)

• ω3DOF3 = 260.0878 ; α3 = 0.999 (mainly rotation about x axis)

where αi = ω3DOFi

ωnati
is the tuning ratio, i. e. the ratio between a natural frequency of the 3

DOF system and any natural frequency of the plate. With those values, the moments of inertia
are Iex = me

12
(h2

e + (a3 + a4)
2) = 0.330464066666667 kgm2, Iey = me

12
(h2

e + (a1 + a2)
2) =

0.047864066666667 kgm2. The observation point (xa, ya) = (0.8125, 0.3125) is selected in
order to obtain a non-vanishing displacement amplitude for the first three modes of a totally
simply supported rectangular plate. The plate is excited by a sinusoidal source located at
(xf , yf ) = (0.3, 0.3).

Table 1: Physical constants of the considered plate.

ρ [kg/m3] a [m] E[N/m2] h [m] b [m] mp [kg] ξ [adim]
density length Young modulus height width mass damping coeff.

7.850 × 103 2 2.051×1011 0.005 1 78.5 0.01

3.1 Variation of the damping constants

In order to evaluate the influence of the dampers of the attached discrete system, its damping
constants are varied. Figure 2 shows the typical behavior when there’s no dampers in the 3-DOF
system (ci = 0), duplicating the first three resonances (see, for example DenHartog (1956)).
It can be observed in each case that the new two natural frequencies differ slightly from the
original. Increasing the damping constant of the dampers (see ci = 10) cause, as it is expected,
the missing of this duplication.

3.2 Variation of the location

The effect of the position of the 3 DOF system on the displacement amplitude of the plate
is studied in this section. The 3-DOF system is located at the four different positions shown in
Fig. 3(varying the orientation). The coordinates of the extreme points (x1, y1) and (x3, y3) are
presented in table 2 for a better understanding of the results.

Clearly, it can be seen from Figs. 4, 5 and 6 that the best performance of the 3-DOF system
thinking of it as an absorber is at the second frequency of the bare plate: the displacement
amplitude is reduced significantly and the “new" two frequencies are well separated from the
second resonance of the bare plate. One must remember that this second frequency tunes to the
translational mode of the 3-DOF system. For the first and third natural frequencies of the bare
plate, the reduction performed by the 3-DOF system is not significative. However, different
locations of the 3-DOF system perform different levels of reduction. At this stage is important
to point out that the rigidity constant of the four springs are different. Another point of interest
results the performance of location B. It is not difficult to see that it has the lowest influence
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Figure 2: Displacement amplitude of a plate with a 3-DOF system for varying damping constant of the 3-DOF.

Table 2: Different considered locations of the 3-DOF.

Position (x1; y1) (x3; y3)
A (0.53;0.57) (1.47;0.43)
B (0.93;0.03) (1.07;0.97)
C (0.5483;0.2272) (1.4517;0.6476)
D (0.6109;0.7728) (1.3891;0.2272)
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Figure 3: Different locations of the 3 DOF system on the plate to study the effect of its location on the dynamic
behavior of the plate to which it is mounted.

on the dynamic behavior of the plate. This may be understood bearing in mind that, at the first
resonance of the plate, the corresponding mode of the 3-DOF system is mainly a rotation about
y axis. Next, at the second resonance of the plate (one nodal line in the y direction), the mode
of the 3-DOF is pure translational and its location, almost totally over a nodal line, has no effect
on the dynamics of the plate. Finally, at the third resonance of the plate (two nodal lines in the
y direction) the 3-DOF pure rotational mode about x axis affects again poorly the dynamics of
the plate.

3.3 Variation of the mass

Figures 7, 8 and 9 show the influence of the coefficient µ = me/mp that represents the
ratio of the attached mass to the mass of the bare plate. As the mass of the discrete system is
varied, the remaining parameters of the 3-DOF system also vary in order to preserve the tuning
to the natural frequencies of the bare plate. Clearly, the increment in the magnitude of the mass,
increases the effect in the dynamic behavior of the plate for the three frequencies. This means
that the separation between the peaks and the reduction at the frequency of maximum reduction
is substantially modified as well. Again, for the second frequency, the effect is more important,
acting as a well behaved vibration absorber at the tuned frequency.

3.4 Variation of the tuning ratio

Different values of αi are considered. In every case, the value of the tuning ratio is the same
for the three frequencies. The variation of the tuning ratio is attained modifying the moment of
inertia and the stiffness constants of the 3-DOF system.

Figures 10, 11, and 12 show the results for frequencies near the first, second and third reso-
nances of the plate respectively. It can be observed that the effect is rather wandering, varying
for each frequency. Generally speaking, it can be mentioned that the “exact" tuning (αi = 1)
does not mean advantage in suppression of vibration. Analyzing the first frequency Fig. 9, it
is observed that the major separation between the peaks is attained for αi = 0.85 and also the
best reduction. However, for the second frequency (Fig. 10) it seems that the best performance
is for αi = 1. Remarkably, the effect of the 3-DOF system at the third frequency is rather poor.
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Figure 4: Displacement amplitude of a plate with a 3-DOF system for different locations of it. Frequencies near
the first resonance of the plate.
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Figure 5: Idem Fig. 4. Frequencies near the second resonance of the plate.
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Figure 6: Idem Fig. 4. Frequencies near the third resonance of the plate.
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Figure 7: Displacement amplitude of a plate with a 3 DOF system for varying mass ratio. Frequencies near the
first resonance of the plate.
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Figure 8: Idem Fig. 7. Frequencies near the second resonance of the plate.
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Figure 9: Idem Fig. 7. Frequencies near the third resonance of the plate.
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Figure 10: Displacement amplitude of a plate with a 3 DOF system for varying tuning ratio. Frequencies near the
first resonance of the plate.

Neither the amplitude nor the peaks show a good reduction or separation.

4 CONCLUSIONS

In this paper, the forced vibration characteristics of a rectangular plate carrying a 3-DOF
spring-mass system were calculated and analyzed by means of Lagrange multipliers method
(analytical approach). In order to perform a systematic study of problem, we analyzed the
influence of the parameters of the 3-DOF system (damping constant, mass, location, tuning
ratio) in the dynamic behavior of the compound system (plate + 3-DOF). Summarizing the
results it can be concluded that the strongest effect in the suppression of vibrations is obtained
for the second frequency of the plate. As it was stated, this frequency tunes to the (mainly)
translational mode of the discrete attached system. Consequently, one may suppose that the
behavior of the 3-DOF system acting as a Dynamic Vibration Absorber (DVA) for translational
modes is not so different from the behavior of a 1-DOF DVA. On the contrary, predominantly
rotational modes of the discrete system seem to be not effective in order to control vibrations
if properly tuned. Nevertheless, this is an introductory study in the subject and the quantity
and variability of the geometric and mechanical parameters involved in the description of the
dynamical behavior of these kinds of structures, does not allow drawing definitive conclusions.
Additional and thorough studies must be performed in order to understand the behavior of the
3-DOF system as a Dynamic Vibration Absorber.
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Figure 11: Idem Fig. 10. Frequencies near the second resonance of the plate
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Figure 12: Idem Fig. 10. Frequencies near the third resonance of the plate
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A APPENDIX: MASS, DAMPING AND STIFFNESS MATRICES

The (N × N ) Csub and Ksub matrices and the (N × 3) Cc and Kc rectangular matrices are:

Φ(xl, yl)=[φ1(xl, yl)φ2(xl, yl)...φN(xl, yl)]
T

Ksub =
∑4

l=1 klΦ(xl, yl)Φ
T (xl, yl); Csub =

∑4
l=1 clΦ(xl, yl)Φ

T (xl, yl);
Kc = [−k1Φ(x1, y1) − k4Φ(x4, y4) − k2Φ(x2, y2) + k4Φ(x4, y4) − k3Φ(x3, y3) − k4Φ(x4, y4)]
Cc = [−c1Φ(x1, y1) − c4Φ(x4, y4) − c2Φ(x2, y2) + c4Φ(x4, y4) − c3Φ(x3, y3) − c4Φ(x4, y4)]

and the (3 × 3) symmetric matrices M3DOF C3DOF and K3DOF are:

M3DOF =




(mea2

2
+Iey)

(a1+a2)2
mea2(a4a1−a3a2)−Iey(a3+a4)

(a1+a2)2(a3+a4)
(mea2a3)

(a1+a2)(a3+a4)
mea2(a4a1−a3a2)−Iey(a3+a4)

(a1+a2)2(a3+a4)

me(a4a1−a3a2)2+Iey(a3+a4)2+Iex(a1+a2)2

(a1+a2)2(a3+a4)2
mea3(a4a1−a3a2)−Iex(a1+a2)

(a1+a2)(a3+a4)2

(mea2a3)
(a1+a2)(a3+a4)

mea3(a4a1−a3a2)−Iex(a1+a2)
(a1+a2)(a3+a4)2

(mea2

3
+Iex)

(a3+a4)2




C3DOF =




c1 + c4 −c4 c4

−c4 c2 + c4 −c4

c4 −c4 c3 + c4




K3DOF =




k1 + k4 −k4 k4

−k4 k2 + k4 −k4

k4 −k4 k3 + k4
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