Asociacion Argentina AMCL

de Mecanica Computacional

Mecénica Computacional Vol XXIX, pags. 841-849 (articulo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)
Buenos Aires, Argentina, 15-18 Noviembre 2010

SIMPLE BENDING ANALYSIS OF BUILDING FLOOR STRUCTURE S
BY A BEM FORMULATION BASED ON REISSNER'S THEORY

Gabriela R. Fernandeg and Danilo H. Konda

Civil Engineering Department, Federal University@bias (UFG) CAC — Campus Cataldo Av. Dr.
Lamartine Pinto de Avelar, 1120, Setor Universid@EP 75700-000 Cataldo — GO,
grezfernandes@itelefonica.com.br

PElectric Engineering Department, Federal InstitafeEducation, Science and Technology (IFET) —
Campus Vitoria da Conquista Av. Amazonas, 3150r8@iabelé CEP 45030-220 Vitéria da
Conquista — BA Brasitihkonda@gmail.com

Keywords: Plate bending, Boundary elements, Building fldouctures, Reissner’s theory.

Abstract. In this work, the plate bending formulation oéthoundary element method - BEM, based
on the Reissner’s hypothesis, is extended to tlysis of plates reinforced by beams. Equilibrium
and compatibility conditions are automatically irspd by the integral equations, which treat this
composed structure as a single body. In order tvedse the number of degrees of freedom, some
approximations are considered for the displacemandstractions along the beam width. Therefore
the problem values remain defined only on the beaxisand on the plate boundary without beams.
The accuracy of the proposed model is showed byaong the numerical results with a well-known
finite element code.
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1 INTRODUCTION

The boundary element method (BEM) has already préwdye a suitable numerical tool to
deal with plate bending problems. The method idiqdarly recommended to evaluate
internal force concentrations due to loads distatdwver small regions that very often appear
in practical problems. Moreover, the same ordereobrs is expected when computing
deflections, slopes, moments and shear forces.r $treas, for instance, are not obtained by
differentiating approximation function as for othmemmerical techniques.

Bezine (1981) apparently was the first to use anaty element to analyse building floor
structures by considering plates with internal pauapports. Recently, some authors have
presented BEM formulations (without coupling BEMtlwiFEM) to analyse stiffened plates
(Sapountzakis and Katsikadelis (2000), Tanaka add (2000), Paiva and Aliabadi (2004)).
In Fernandes and Venturini (2002) a BEM formulatlmsed on Kirchhoff's hypothesis to
perform simple bending analysis of building flotmustures is developed, which is modelled
by a zoned plate where each sub-region definesam lwe a slab. Along the interfaces the
tractions are eliminated and in order to reduce dbgrees of freedom some Kinematic
assumptions were made along the beam width. InaRdes and Venturini (2005) the same
authors have extended this previous formulaticiakte into account membrane effects.

In this work the BEM formulation developed in Fendas and Venturini (2002) is
modified to take into account the Reissner’s hypeit instead of the Kirchhoff's (see
Fernandes and Konda (2008)). The inaccuracy otlassical theory (Kirchhoff's) turns
out to be important for thick plates, especiallytire edge zone of the plate and around
holes whose diameter is not larger than the plaitkhess. In the Reissner’s theory [see
Reissner (1947), Weén (1982), Palermo (2003)], twhdan be used either for thin or
thick plate, takes into account the shear deforomagffect and defines six boundary
values. In the proposed model the tractions isarmgér eliminated on the interfaces as
occurred in the formulation presented in Fernanaed Venturini (2002). Therefore, in
order to reduce the number of degrees of freedasth traction and displacements must
be approximated along the beam width, which leads model where the bending values
are defined only on the beams axis and on the pbatendary without beams. The
accuracy of the proposed model is illustrated byngaring the numerical results with a
well-known finite element code.

2 BASIC EQUATIONS

Without loss of generality, let us consider theeéhsub-region plate depicted in Figure 1,
where 1, t; and t are the sub-regions thickness. The plate sub-dmrassumed as isolated
plates are denoted kQ,, Q, and Q,, with boundariesl;, I, and I;, respectively.

Alternatively, when the whole solid is considerl 1 gives the total external boundary, while
I, represents interfaces, for which the subscript®tiethe adjacent sub-regions (see Figure

1). For a point placed at any of those plate sgiors, the following equations are defined:
-The equilibrium equations in terms of internalckes:

Mij,j—Q,ZO i,j:1,2 (1)
Q.,+g=0 (2)

where g is the distributed load acting on the ptaigdle surface, gare bending and twisting
moments and Qepresents shear forces.
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Figure 1: a) General zoned plate domain; b) Reteresnrface view.

-The generalised internal forces written in terrhdisplacement:

Mij D(l V)(W (ng+ @k ”j+(1 Vg)/]25u i,j,k=1,2 (3)

Q= (12 V)A2(¢p+w ) i=1,2 (4)

where w, is the rotation in the direction, w the deflection, ¢, the plate curvature,
W, =@ +w, the shear deformatiotD =ER /(1-v?) the flexural rigidity,v the Poisson’s

ration,Z a constant related to shear effect giverA =+/10/h and 9, is the Kronecker delta.
-Finally, the plate bending differential equati@re given by:

1 1 0dg 0 -
 —— [0 +——— 2 = D——[1? =1, 2 5
QTR ey T Pax ®)
1 (2-v)
O'w==|g- 0? 6
D{g (1-v)p g} ©)
where w,; =0*w, being 0* the bi-harmonic operatow,; =0°w being O® the bi-Laplacian
operator.

Equations (5) and (6) result into the set of ddfdral equations, being (5) and. (6) a
second and fourth order equation, respectivelyitgptherefore to six independent boundary
values:M ; M, Q,, w, ¢ and g, being (n, s) the local co-ordinate system, witiind s
referred to the plate boundary normal and tangedtractions, respectively. The problem
definition is then completed by assuming the follmgvboundary conditions owvI : U, =U,

on I, (generalised displacements: deflections and oots}iandP, =P on I, (generalised
tractions: bending and twisting moments and stwaes), wher [, UT" ) =T,

3 INTEGRAL REPRESENTATIONS

Initially, the integral equations for zoned domaiate subject to simple bending will be
derived, considering the case where the thicknesg \rary from one sub-region to another.
The beams will be considered as small sub-regioith Varger rigidities. Then some
approximations will be adopted along the beam csession in order to decrease the number
of degrees of freedom. The equations are deriveapblying the weighted residual method to
each sub-region and summing them to obtain thetiequi@r the whole body.

Considering the plate equilibrium equations (Eqg. &bhd (2)) the following weighted
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residual equation can be obtained for a simpleplat

[ldi(v;.,-@)+ @ +apibio = H(cﬂ gy, +w-wQi, jor
—r_[l_(Mi—Mi)(q;+(Qn—Qn)\N;br. ij=1,2 k=1,2,3 (7)

where k = 1, 2 refers to unit moments applied mxhand % directions and k=3 refers to a
unit load acting in theadirection.

Integrating Eq. (7) by parts twice, considering E@ and (4) and writing the values in
terms of the local system of coordinates (n, sg fbllowing integral equation of the
generalised displacements can be obtained:

@, ()= | g[w;(q, o) g i p)}dsz

Q

-I[fﬂn (0. P)+ 2 (PM,.(a, P)+ W(P)Q., (a, P)r

+HM P)in(0 P)+ M, (PYA(a P)+Q, (P (aP)r  k=ml3 =12 (8)

whereQ  is the area where the load g is distributed, the ferm value(q) depends on the

position of the point gc(q)=0 for external pointg(q)=1 for internal points and(Q) =0.5for
boundary pointstn= @, , U=¢, andUs=w, beingm and| either the local system (n, s) for
boundary points or any direction for internal psint

Let us now consider a zoned plate as the one @ebiotthe Figure 1 for example. In this
case Eq. (8) is valid to each sub-region separaidign, taking into account the equilibrium
and compatibility conditions, writing Eq. (8) tol aub-regions and summing them the
following integral equation for the zoned plate t&nobtained:

ZI Q{Wk q.p)- @ —||//)/12 4., (. p)}dQ

llg

-3 [l (10 P+ 2 (P32 P) - WP Pl

-3 [{aPIM;i(a.P)-M:2(a.P)]+ 2 (PIM;i(a. P) - M2 q.P)] + W(P)Qia(a. P) - Qi (a, P)iar

i=lr,

+ 3 (M, (Plail(a. P)+ M,(P)i (a.P)+ @, (PJwi (o, Pl +Q, (PlwiZ(a. P)-vi(g, P)ar

i=lr,

+ TZl [{M. (Pl (e P)- (. P)]+ M, (Pl (o P) - 2(ai P)] 9)

whereN; is the sub-regions numbei; the interfaces numbel”, represents an interface for
which the subscript a denotes the adjacent suliegio ; u,?, R{”, U/ and R’ indicate
their values in the sub-regicQ;, .

Note that in both integrals along the interfil",, all values are related to the local system
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defined onl", and the fundamental valuU,? and B;* are given in terms of the rigidiy
and thickness of the sub-regio®.
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Figure 2: (a) Reinforced plate view; b) Deflections approximations along interfaces

Let us now consider the bearg EBpresented in Figure 2a by the sub-regdnin order to
reduce the number of degrees of freedom, the displants w¢ and ¢, had been assumed

to be linear along the beam width. Thus the interfdisplacement vector related to the beam
interfaces are translated to the skeleton linéolasws:

A7 =q +@..b/2 k=n,s (10a)
@ =-a-a.b/2 (10b)
w==w +w, b, /2 (11a)
W =w -w, b, /2 (11b)

where R is the beam width@rij andw' are displacement components along the interface

Cis @, W, ¢, andw,, are components along the skeleton line.

Observe that adopting these approximations (Edy. ddd (11)), new values are defined
on the beam axis: the rotation,wand the curvature¢s, and ¢, being all of them

considered constant along the beam width as wehesaction Ms (see Eq. (12)). Different
approximations for Mand Q have been adopted, depending on the boundarytaordiln
the case of having both internal beams ends frae G the beam coincident to the external
boundary) the interface tractions,Mnd Q are written in terms of their values on the beam
axis as follow:

MZ=M =M (12)
Q¥=-Q*=Q, (13)
Mi?=M_+Qp,/2 (14a)
M= =M -Qp,/2 (14b)

whereM,, Mys andQ, refers to the beam axis while the direction:M', M andQ' are

given by the local coordinate system defined oerfates.
On the other hand, in the case of having one beainfiged or simply supported, the
following linear approximations have been considere

Ql==05Q, (15a)
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Q»=-15Q, (15b)
M ==15M, (16a)
M = 05M (16b)

For external beams whose sides are free we hawdediQ, andM, into two parts whose
summation result into constant approximation actbssbeam width. Moreover, the linear
part due to the shear forces has also been coedidetheM, expression. Thus for beaBy
considered in Figure 2a as the sub-regianve have assumed:

Q) =240, -15Q,, (172)
Pl 1

==A + = , l7b

Q =580+, (17b)

M/ :—%AMH+1.5MH—an4, (18a)
P 1

M[ =2AM, +ZM,+Qb,: (18b)

where M| and Q"' refer to the interfacé; while M| and Q| are related to the external

boundary’; 4Q, and4AM, are written in terms of displacements by using. E8jsand (4) .
Along simple supported or fixed sides the followeggproximations have been adopted for
the momenM,, and shear force:

M r|1-i =M n _an4 (19a)
I\/Ir: =M, +Q,b, (19b)
Qr =-2Q, (20a)
Q, =-15Q, (20b)

Note that the approximations along the beam widdsgnted here (Eqgs 10 to 20) are valid
only for the case of beams with constant width b.

Then the remaining values on the external boundéhout beams are six and on the beam
axis are nine¢n, ¢s, ¢sn Enn W, Wn, Mn, Mys and Q, requiring therefore nine algebraic
representations for each internal beam axis notlee®e that the integral representations of
wW,m or ¢xm can be easily obtained by differentiating Eq. (9).

Note that despite of the values being defined alilvegbeam axis, the integrals are still
performed on the interfaces. Thus as the colloogimnts are adopted on the beam axis there
is no problem of singularities.

4 ALGEBRAIC EQUATIONS

To obtain the problem solution, the integral reprgation (10) has to be transformed into
algebraic expressions after discretizing the bogndad interfaces into elements. It has been
adopted linear elements to approximate the prolgeametry while the variables have been
approximated by quadratic shape functions.
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Along the external boundary without beams six valaee definedw, ¢, ¢s Qn, M, and

Mns, being three of them prescribed. Thus three afgelequations have to be written for each
boundary node. It has been adopted to write Eqef@jed to the displacements ¢} and ¢ ¢

for an external collocation point very near to theundary. On the other hand, for each
external or internal beam node nine values areédeéf¢n, ¢s, ¢sn ¢nnm W, Wn, My, Mpsand

Qn. All these values remain as unknowns in the ilebbeams, requiring therefore nine
algebraic equations. It has been chosen to wriecthresponding unknowns equations for
collocation points on the beam skeleton line. Baemmal beams the displaceme¢sy ¢nn

andw, are problem unknowns while three of the six renmgirvalues must be prescribed,
leading to six unknowns for each external beam ndtdbas been adopted to write, for
collocations points on the beam axis, the followathgebraic equationsv, ¢n, ¢s, ¢sn ¢nn

andw,. In both cases the collocations can be coincidetit the chosen node or defined at
element internal points when variable discontinigtyequired at the element end.

After writing the recommended algebraic relationg @btains the set of equations defined
bellow which can be solved after applying the bamgdonditions.

HU=GP+T (21)

In Eq. (16) {U} and {P} are displacements and trant vectors; {T} is the vector due to
the applied loads; [H] and [G] are matrices achiewwy integrating all boundary and
interfaces.

5 NUMERICAL APPLICATION

The building floor depicted in Figure 3a is now lgead. The Young's modulus, the
Poisson’s ratio, the plate and beams thicknesse€a25.0x18kN/m?, v=0.25, =8.0cm and
t,=25cm. A distributed load of 20kN/nis applied on the whole surface of the structure a
all external beams axes have been assumed simppodad. The adopted mesh has 30
elements resulting into 77 nodes (see Figure Biojuding 24 nodes defined in the corners
that are no represented in the figure becauseafeegutomatically generated by the code. The
results are compared to a well-known finite elemmde (ANSYS, version 9), where shell
elements (shell143) have been used to model bethgéhms and slabs.
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Figure 3— a) Plate geometry b) Plate discrétina

The deflecitons and moments along the plate midglig X' and the beam axispas well
are depicted in Figures (4) and (5) where can lsemed that the values obtained with the
proposed model are similar to the ones relatedN&YAS and bigger than the ones obtained
with the model proposed by Fernandes (2003), wihaktes into account the Kirchhoff's
theory instead of Reissner’'s. This evidences theomance of considering the shear
deformation in this numerical application.
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Figure 4 — a)Deflections along the plate axis X’  b)Deflections along the beam axis X
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Figure 5 — a) Moments along the plate axis X’ b) Moments along the beam axig X

6 CONCLUSIONS

The BEM formulation based on Reissner’s hypoth&sisanalysing zoned plate-bending
problem has been extended to deal with plate neatbby beams. Beam rigidity is taken into
account by assuming narrow sub-regions, withoutldig the reinforced plate into beam and
plate elements. Therefore this composed structardrdated as a single body, where
equilibrium and compatibility conditions are autdioally guaranteed by the global integral
equations. In order to reduce the number of degoédseedom some approximations are
considered for both the displacements and tractdosy the beam cross section, leading to a
model where the problem values are defined on #embaxis and on the plate boundary
without beams. The performance of the proposed d@ation has been confirmed by
comparing the results with a well-known finite eksmcode.
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