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Abstract. In this work, the building floor structure is makkd by a BEM (Boundary Element Method)
formulation based on Kirchhoff’'s hypothesis. Theganted BEM formulation to perform linear bending
analysis is derived by applying the reciprocitydiem to zoned plates, where the beams are treatddna
sub-regions with larger rigidities. This composédicture is treated as a single body, being thdibgum

and compatibility conditions automatically takemoiraccount. In order to reduce the number of degoée
freedom some kinematics hypothesis are assumed #henbeam cross section. Thus the values remain
defined on the beam skeleton line instead of itsriace. The columns are introduced into the foatioih

by considering domain points where tractions caprescribed. Some numerical examples are presémted
show the accuracy of the proposed model.
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1 INTRODUCTION

The boundary element method (BEM) has already pfdéode a suitable numerical tool to deal
with plate bending problems. The method is pardidylrecommended to evaluate internal force
concentrations due to loads distributed over smegjons that very often appear in practical
problems. Moreover, the same order of errors iseetqel when computing deflections, slopes,
moments and shear forces. Shear forces, for instare much better evaluated when compared
with other numerical methods. They are not obtaibgdlifferentiating approximation function as
for other numerical techniques.

Bezine (1981) apparently was the first to use andaty element to analyse building floor
structures by considering plates with internal paupports. More recently, several woks using
BEM to model stiffened plates have been preser@agduntzakis and Katsikadelis (2000), Tanaka
and Oida (2000), Paiva and Aliabadi (2004)).

Recently Fernandes and Venturini (2002) and (20@dk proposed two numerical models to
perform bending analysis of plates reinforced bgne using only a BEM formulation based on
Kirchhoff's hypothesis. In these works the buildifigor is modelled by a zoned plate where the
beams are considered as narrow sub-regions witferlathickness for which some kinematic
approximations were assumed to reduce the numbelegifees of freedom. In Fernandes and
Venturini (2002) the authors present a formulatormperform simple bending analysis of building
floor structures. Then this formulation is extended-ernandes and Venturini (2005) to consider
the membrane effects.

In this paper the formulation presented in Fernarated Venturin{2002) is extended to define
columns in the stiffened plate domain. Initiallyeantroduced into the formulation domain points
where bending tractions can be prescribed. Thendhenns reactions over the plate are considered
as prescribed tractions in the central point of cbkimn-plate interface. A numerical example is
then presented to illustrate the accuracy of tisaillte and the capability of the formulation to
analyse complex building floor structures.

2 BASIC EQUATIONS

The Without loss of generality, let us consider plege depicted in Figure 1a, whegett and §
are the thicknesses of the sub-regitisQ, andQs;, whose external boundaries &g I'; andIs,
respectively. The total external boundary is gilegd’ while I'yc represents the interface between the
adjacent sub-regionQ; andQ. In the simple bending analysis all sub-regiores rapresented by
their middle surface, as shown in Figure 1b. Fpoiat placed at any of those plate sub-regions one
can define the following equilibrium equations émrhs of internal forces:

m;,; =G = 0 1,j=1,2 1)
G, +g=0 i=1,2 ()
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whereg is the distributed load acting on the plate midsligface m; are bending and twisting
moments and; represents shear forces.
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Figure 1. a) General zoned plate domain; b) Pladelle surface view

The plate bending differential equation is given by
W,; =9/D (,j=12) 3)
where D =Et* /(L-v?) is the flexural rigidity andw, . =0*w, being O* the bi-harmonic

operator.
Finally, the generalised internal forgadisplacement relations and the effective sheaefor
V, are defined as follow:

ii

m; = _D(Vdij W,y +A=V)W ) (4)
a; = -Dw, (5)
Vn =qn+dnn3/$ (6)

where (n, s) are the local co-ordinate system, witand s referred to the plate boundary
normal and tangential directions, respectively.

The problem definition is then completed by assugrihre following boundary conditions
over /: u =0 on 7/, (generalised displacements, deflections and raitsti@and p =p on

I, (generalised tractions, normal bending momentgcégtfe shear forces), wherg o, =r.

3 INTEGRAL REPRESENTATIONS

In this section, we are going to derive the integrpuations for the general case of zoned
domain plate problems where the thickness of tlaepmiay vary from one sub-region to
another. The equations will be derived by applytimg reciprocity theorem to each sub-region
and summing them to obtain the reciprocity relaidar the whole body. Let us initially
consider a single sub-regidd,, for which the reciprocity relation can be writtenterms of
moments and curvatures (see Fernandes and VentR@6R). In this work, the Poisson’s
ration is adopted the same for all sub-regionghab we can say that moments fundamental
values are the same for all sub-regions, € =m, , while the curvature fundamental

solution w,i; can be written in terms of the values, andD referred to the sub-region
where the load point is placed (see Fernandes awtu¥ini, 2002). Thus, the following
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reciprocity relation can be derived for the enkiogly:

N
J.W,*jk m,dQ=> —" J-W, % M, dQ (7)
Q m=1
wherew,, andm, are fundamental solutions with the unit load agtmthe direction x3, no
summation is implied on niNs is the number of sub-regions adgl is the flexural rigidity in
the sub-regiom,,.

Equation (7) can be integrated by parts to givedifiection representation:

Ng Dm . oW Na D. . Ne2tNes [ D . —Da .
K(a)w(a) = Z 5 j( w-M —Jdr Z D’ Ryw, = > (J—]chwcj

m= M j=1 j=1 D

AL A . OW & R an” \

= j( j(vnw—Mn—jdl' +> R,W, +I(VnWD—Mn jdr+ [ogwda (8
i=lr,, on =1 r 2 Qq

whereq is the collocation point, no summation is impl@un ands that are local normal and
shear direction co-ordinates, respectively; thesesuptsb and a refers, respectively, to the
beam sub-region and its adjacent sub-redian,is the number of interfaces;, ¢, andcs are
different kinds of corners (for their definitionadatheir corresponding free term values (see
Fernandes and Venturini, 20028, is the plate loaded areds(q)=1, K(Q)=0.5 and
K(Q)=0.5(1+Da/D), respectively, for internal, boundary and integfgoints,N. is the total
number of corners.

Note that in Eg. (8) the tractions have been elat@d along interfaces. Although Eqg. (8)
can be used to solve the bending problem of s#fleplates, we can reduce further the
number of degrees of freedom associated with taie fleam interface by assuming, along the
beam cross section, linear approximation for daéflecand constant approximation for the
deflection derivativew,, with respect to the skeleton line normal direcfisee Fernandes and
Venturini, 2002). Thus, by adopting these approxioms the number of values at each beam
skeleton node remains two: the displacements wvand It is important to stress that all
values are referred to nodes defined along the baams) while the integrals are still
performed along the interfaces. Thus, no singulahyper-singular term is found when
transforming the integrals representations intelaigic ones.

To consider the inclusion of columns into the folation developed previously, initially
the column bending reactions (momeMs and M§ and normal force R) over the plate (see
Fig. 2 where§/ and x indicate the column principal directions) will ingitten in terms of the
normal stress¢*) uniformly distributed over the column cross sect., as follow:

|v|, |\/|,

a—ly

9)

|-
y
whereA. is the column cross section arda, and I§ are the moment inertia with respect to

directionsx andY/.
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Figure 2 - Columns reactions over the plate

In order to have the final set of equations giveterms of the column generalized
displacements we have to write Eq. (9) in termdigfilacements. Considering the column
stiffness matrix, we can define the following redas for the bending reactions:

M, = (@Bl /L Jw.y ), (10a)
M. =(a.E.l5 /L fwy), (10b)
R:L_(ECAC / LC)WC 10@)

c

where @3 for simply supported columns and ac=4 for fixamlumns, Ec and Lc are,
respectively, the Young’'s modulus and the columngte; w,, (w,;). and (W’v)c are

generalized displacements in the column crossmecti
Replacing (10) into (9), the normal streéBsin terms of displacements is given by:

o° =[~(a.E. /L, Wiy ). X+ |- (@ E. /L, Nwiy ). Iy — Eow, /L, (11)

Considering nowo® as additional distributed load acting on the pkib-regionQ. and
the generalized displacements constant over thengolcross sectiod)., one obtains the
integral representation of deflection for the ccéitbon point q:

NSub Na D, NegtNes( D =D, | _,
i) =~ 3% f[viw; 20hr =50, "5 [0 e,

+j(vnwﬂ—|v| jdl’ Zj( j( —M;g‘—gjdr
S0 Jwen Joven S,
j=1 j X
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a E. _ E.
g [a_v_vj J‘yWDdch ‘_JWJ IWDdQcJ (12)
L] ay ] Qci L] Qci
whereNg is the columns number.
Considering this scheme three new values remainnksowns on the column-plate
interface:w, w,; and w. Note that the integral representationsvgf can be easily obtained

by differentiating Eq. (12). To obtain the curvauintegral representations one has to
differentiate once more Eq. (12). Then, bending tanisting moment integral representations
are obtained by simply applying the definition given Eq. (4). To obtain the shear force
integral representation, completing the internaicdovalues at internal points, one can
differentiate the curvature equation once to apipdydefinition given in Eq.(5).

4 ALGEBRAIC EQUATIONS

The integral representations are transformed ifgebaaic expressions after discretizing
the boundary and beam axes into geometrically lirdaments, where quadratic shape
functions were adopted to approximate the variables

The corresponding boundary nodal values remainethén algebraic system are: one
deflectionw and its normal derivativey, ., the momentM ; normal to the boundary and the

effective shear forc&/, . Thus, for each boundary node we define two catioo points,

where the deflection representation is written:ftret point is the node itself or another point
placed along the adjacent element when boundanewdikcontinuity is assumed; the second
collocation is an external point very near the lotarg. In each corner are defined two values:
the deflection and the corner reaction. Thus, s tase, we have chosen to write the
deflection representation at each corner. The gkeleodal values maintained in the algebraic
system are: one deflectioi and one deflection derivative,, with respect to the skeleton

line normal direction, being the counterpart valaksg interfaces eliminated. Thus, for each
beam skeleton node we write one deflection relatind one slope relation at collocations
defined along the skeleton line. They are coindiddgth the node when variable continuity is
assumed or defined at skeleton element internalt pdien variable discontinuity is required.
In the central points of the column-plate interfa@@e defined the following generalized
displacements: ww,- and W, . Thus we write the corresponding three displacgmedations

in each one of these points to complete the negessanber of equations to solve the
problem. After selecting the recommended collocapoints and writing the corresponding
algebraic relation for all of them, one obtains fillowing set of equations:

HU =GP+T (13)

where U contains the generalized displacement nadaés defined in the columns, along the
boundary and along skeleton lines, P contains benynalodal tractions, T is the independent
vector due to the applied loads.

5 NUMERICAL APPLICATIONS

In this section two numerical examples are preskntdere the results are compared to
either an ANSYS analysis or a model proposed bywad&1987), where the beams and
columns are modelled by finite elements and theegdg boundary elements. It is important to
stress that the structural systems modelled by AS|S)y the model presented In Paiva (1987)
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and by the proposed formulation are not exactlysémae and therefore the results can be only
similar, we do not expect the same results withttlese different numerical analysis. For the
ANSYS analysis finite solid elements have been usediscretize the slabs, beams and
columns. In the proposed model we have used plateeats and we have treated the whole
body as a solid, therefore without splitting thatpland the beams; beams are inclusions in
the whole body. It is also important to commentt tf@a the meshes considered in the
examples the results convergence had been achieved.

The first example consists of analysing a squaatepivhose length side (between external
beam axis) is adopted equal to 9m, reinforced ersé internal and external beams and
supported on four columns, as depicted in Fig. ({Blere the distance between beam axis is
equal to 3m. A distributed load 10kN/m2 is applacer all stiffened plate surface. For the
columns, external and internal beams, the crossiosedimensions are, respectively:
0x%03m? =~ 0.x08m* gnd 0%08m  For the slabs and beams we have adopted elasticlos
E=15x106kN/m2 and Poisson's ratws1/6, while for the columns has been considered
E=21x106kN /m2. The plate thickness was assumedl| ¢qD.08m and the columns length
equal to 4m.

IEI . Q‘QCM %pcm #Ocm #OCLM IEI

%ﬁl ||
300cm 300cm 300cm
c 10
I === — 112
£]
3
F————Ht——
A 3
5 120
S 124
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O
~
£
SO | m_ 1
S 900cm |

Figure 3 — a) Plate middle surface view b) Plasermditization c) Building floor geometry

The results for displacements and moments willdmeputed along the local axis A and B
defined in Figure 3a. The adopted discretizatisshswn in Fig 3b, where are defined 252
nodes resulting into108 elements along the beamsy4elements on each side where the
beam has an interface with a slab and 1 elementendre beam cross another one). Some
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necessary elements at beams ends are not sholdirstretization, because they are
automatically generated by the code. In Figureeddasplayed the displacement w along the
axis A-A and B-B, where the results are comparedl fiaite element analysis presented in
Paiva (1987) and the model proposed by Paiva (198¥re the building floor analysis is
obtained by coupling BEM with FEM. As can be obgelin Fig. 4b, the results along the
internal beam axis (axis B-B) compare very wellhvite finite element analysis and the
model proposed by PAIVA (1987). On the other haatdng the slab middle axis (Fig 4a) the
displacements obtained with the proposed modebigger than the ones obtained with the
other two models. This can be explained by thetfadtnear to the internal beam the
displacements decrease strongly, evidencing threasmg of rigidity due to the beam. This
does not happen in the FEM analysis. As can berobdewe have obtained bigger curvatures
along the plate which has flexure rigidity much #erahan the beams. The model behaves as
the slabs were partially supported on the beanthemodel presented by Paiva [30], the
beams are considered as inclusions into the plateuation. Note that the plate and the
beams present the same curvature; it seems thle#imes increase the plate flexure rigidity
decreasing the displacements along the plate.

IEI 4.0

3.5

A ——FEM

3.0

2.5 e
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15 1 B Paiva (1987)
1.0

0.5
0.0

w (cm)

0 100 200 300 400 —&— Proposed Model

x (cm) (axis A-A)

IEI 2.0
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Figure 4: a)Displacement w along the axis A-A bjilasement w along the axis B-B

In the second example a plate reinforced by extdyreams along all its boundaries and
supported by four columns defined on the corne@nelysed (see Figure 5a). The Young's
modulus, the Poisson’s ratio, the plate and behiokriesses adopted to analyse this structure
are, respectively: E=25.0x¥N/m?, v=0.2, $=0.1m and #=0.3m A distributed load of
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20kN/n? is applied on the whole surface of the structure all external beams axes have
been assumed free. For the columns, which are a&skfired on their bases, the following
data are adopted: length Lc=3m and square crosisrsedgth sides equal tLy =L =0.2m.

In the ANSYS discretization we have used solid eets (solid brick 8 node 45) whose sides
have been adopted equal to 10 cm (see Figure &iv).tHe proposed model the finer

discretization used to solve this problem, showrrigure 5c, contains 220 nodes with 104
quadratic elements along the beam axes (includingo2les and 8 elements used for the beam
intersections which are automatically generatethbycode).

Figure 5 — a) View of the plate reinforced by emtdibeams b)ANSYS discretization c)Discretizationthe
proposed model

Figure (6) shows, the displacements computed aloadpeam axis and the A-A axis.
As can be observed the results related to the pempdormulation are smaller than those
referred to the commercial pack ANSYS, but theysanglar.
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Figure 6 — a)Displacements along the beam axissp)@tements along the axis A

6 CONCLUSIONS

A BEM formulation for bending analysis of platesnferced by beams has been extended
to consider columns inside the plate domain. Thariseare considered as thin sub-regions
with larger thickness, being the displacements @pprated along the beam cross section to
reduce the number of degrees of freedom. Equilibrand compatibility conditions are
automatically guaranteed by the global integralagigns. The columns are introduced into the
formulation by considering domain points wheretitats can be prescribed. The performance
of the proposed formulation has been confirmed dmmaring the results with solutions
obtained by using other numerical models.
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