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Abstract. The classical Theory of Shells has been exposedugh the contributions of many
authors, within the framework of Euclidean Geomdtey, based on the classical theory of surfaces i
three-dimensional space, which is invariant underdlations and rotations. For diverse viewpoifits o
presentation see (F. John, Comm. Pure Appl. M&(1/2): 235-267 (1965); 24(5): 583-615 (1971))
and other references therein.

More recently, we ourselves have been working ime& development of this theory based, from the
geometrical viewpoint, in those objects which remavariant under the action of the Unimodular
Affine Group, i.e., dealing with Affine Surface Guetry (S. Gigena et al., Mec. Comp., 21: 1862-
1881 (2002); 22: 1953-1963 (2003); 23: 639-652 LOR4: 2745-2758 (2005)).

In this paper we study exclusively the behavioploysical objects of the shell in the interior, vaith
reference to any boundary conditions at the edgethe interior behavior one needs as the only tool
a certain kind of a priori estimates. These interegularity estimates, similar to those occurning
the theory of Partial Differential Equations, rigasly assign a definite order of magnitude to every
quantity occurring in the theory.

Our main goal here is to establish those estinfatethe strain and stress tensors, as well ashior t
higher order covariant derivatives of both, wittiie framework of the Theory of Affine Shells.
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1 INTRODUCTION

The Theory of Shells is a scientific and technatagiopic with quite a rich history and
many, diverse applications to the real world: Eeging, Industry, Avionics, and so on. The
usual viewpoint of presentation, which is exposadeed in the great majority of texts and
research articles, makes use of classical, Euclidgeametry of surfaces in three-dimensional
space, particularly with regards to the invariasftthe Euclidean group, ASO ®B,), i.e., the
group of transformations generated by translatiand rotations of the space. See, for
instance, John (1965 and 1971), Koiter (1970), Lgh&44), Mollmann (1981). Within that
context what it is called “normal” is the Euclideame, and the “distance” is the measure with
respect to the norm induced by the usual scalatyatoof vectors (positive definite), which is
the main, fundamental invariant in Euclidean geomets exposed, for example, in the book
by Millman and Parker (1977).

On our part, for the latter few years we have b&erking on an alternative foundation,
exposure and development of the theory of shellglwls invariant, from the geometrical
point of view, under the action of the unimoduléime& group, ASL (3R ). See Gigena et al.
(2002, 2003, 2004, and 2005) for full details. T,Hos the case in treatment, this gives rise to
the so called affine geometry of surfaces. Forvamisurface in the three-dimensional space
we use, within this context, concepts such as riaffnormal” and “affine distance”,
corresponding to the above mentioned ones in Eemfidjeometry. See the description of the
corresponding theory as exposed, in a much wideesen Gigena (1993, 19964, b) and, with
somehow different kind of notation, also in Nomand Sasaki (1994).

We introduce, in Section 2 of the present artiale abbreviated version of the concept of
Affine Shell, already developed in the previousijted articles. The treatment of
Compatibility Conditions occupies Section 3, white Basic Inequalities of the Theory are
considered in Section 4. The further developmerthefTheory consists in the presentation of
the Strain-Stress Relations in Affine Shells whishaken care of in Section 5. Section 6 is
devoted to the treatment of the Estimates for lthéNorms of Second Order and, finally, in

section 7 we come to conclude this article by ekmpthe estimates of Higher Order
Derivatives, both partial and covariant.

2 AN ABBREVIATED VERSION OF AFFINE SHELLS

We consider the middle surface of a (solid) shrelts original (undeformed) state, denoted
by M,, parametrized locally by a vector functiok,:U - R®, whereU 0O R?, which is
assumed to be enough smooth. Coordinates in thaidcene denoted bgu',u?). Thus, we
can write locally M, = X,(u*, u*) and assume besides, as it is usually understbati X ,
is a topological immersion (embedding). Particlesthe original state have curvilinear
Lagrange coordinate@)*,U?,U®) that for our present purposes shall be chosensipeaial

way, by writing: (U*,U?U%) = U u?u), X (u',u*,u)= X (U, #)= %X (d, &)+ ua,
where we have obviously extended the previous fondb X :U x(-h,h) - R®, andfi is
the vector field normal to the middle surface. Tismal can be the Euclidean normal,,,
of the classical, Euclidean Theory of SurfacegherUnimodular Affine normalN,,, of our
own, current development. In each case, we shalifglthe situation when we deal with one
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or the other.

In the Euclidean case we shall use the followintatiens regarding the main geometrical
objects, defined on the middle surface prior todehtion, that take part in the formulation of
the theory, as treated mainly in Gigena et al. 2@003, 2004, 2005); John (1965 and 1971);
Millman and Parker (1977).

l, = a,dudf  with a,= Xy 9%o (1)

a7 ou® 9u’

denotes the Euclidean first fundamental form, whilh the expression
Il =D Ldu®du’  where L, =N 0", (2)
- @ urdue
we represent the second fundamental form, and with

i, ZZ;;‘M LAu’du’ . where M, = ; L Ls = ZA:aW Loa Lg, (3)

a, 1z

the Euclidean third fundamental form.
In the state previous to deformation the bordethef shell is made up of two “faces”,
which are surfaces parallel to the middle surfiteat respective distande, measured along

the Euclidean normalN,,, and of the “border” constituted by segments nortmahe faces.
Therefore, along the normal toM, coordinatesU',U* remain constant whildJ®:=u
measures the signed distance fravh,. Faces can be represented, then, by equations
U*® =u==h while the middle surface is given by’ =u=0.

Now if a,, L,, M,,,are respectively the coefficients of the first, et and third
Euclidean fundamental forms of the middle surfddg, the Euclidean structure of the

ambient space induces a Riemannian structure oshttle and we can obtain, by means of a
straightforward computation, the following express in normal coordinates

(UHU?,U3=@u'u?u):
o0X _0X

Pop =57 b7 = Bop ~2U Ly + U My, (4)
oX QX 0X
= = = :O, 5
Ab?} A3a aua at aug ENeu ( )
oX ﬁx
=— = [N, =1. 6
A§33 6t at eu eu ( )

Corresponding to the shell, and its middle surfat¢he state previous to deformation, we
can consider the geometrical objects belongingp¢cshell in the deformed state that we shall

denote with an upper right asterisk. Thus, for exem X;:U - R*, where U O R?,
represents the parametrization of the deformed Imiddrface M, = X, (4, (), and we

remark that the domain of definition of this immiers U O R?, and the parametels*, u?)

used in it, are the same as those belonging tonibddle surface of the shell in the original
state, previous to deformation.
Consequently, the rest of geometrical objects chdngm one state to the other and the
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problem is to determine the nature and extensiosush changes for every one of them
reducing, under appropriate hypotheses, the olitkeriaformation to both middle surfaces.
One such hypothesis is the one concerning the adsopaof the thickness paramethr,
which it is usually assumed to be small with respeche other dimensions of the shell. This
introduces in the theory the concept of “thin” $kndlich has important uses and applications.
Considering now the Unimodular Affine Geometry ofirfaces, we need to assume
defined, in the ambient spadg® an exterior 3-form, or non-trivial determinant ftion,

denoted by the symbo[l , ,]: de. Then, given the same previous mean surface, we

represent the objects of that geometry by theioilg expressions:
In order to construct the Unimodular first fundanakform we define, firstly

X, 90X, 08X
h = 0o “70. o_ | 7
i {aul ou? au’ad’} (7)

then, if we assume that the surface is non-degenere., H =det(,; )# O, we can write

go,ﬁ:|H|_%1 h,, obtaining the Unimodular Affine First Fundamenfabrm expressed by
equation

lua :Zgaﬁdu”dug ! (8)
a.B

that turns out to be a semi-Riemannian structuigei@ (1993, 1996a, b); Nomizu and Sasaki
(1994). The Unimodular Affine Normal is defined ntwvthe expression

N, =3A(X,), 9)

whereA is the Laplacian operator with respect to the gemetricl ,, i.e.:

\/, (\/7 > g”ﬁ ] with g=det(g,).  (10)

From the above we obtain three connections:

1) The Levi-Civita connection with respect to the Edehn metricl,, that we shall label
here asll,, and which coincides with the projection oveM, of the usual, flat
connectionD of R? in the direction of the classical Euclidean normg] .

2) The Levi-Civita connection with respect to pseudbiud ,: 0.

3) Theaffine normal inducedconnection:[], i.e., the projection oD in the direction of
N

ua*

Dpr = proyNua( @pY). (11)

We define next the Unimodular Affine Second Fundatale Form, as previously
introduced in Gigena (1993, 1996a, b):

O(1a) = 11 e (12)

that we also represent in local coordinates by:
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o = D9 ,5du"du’ du (13)

apy

with the coefficientsg,,, totally symmetric in their indices. Some authorsfer to refer to

the latter as th€ubic Form, see Nomizu and Sasaki (1994).

Finally, we consider théffine Third Fundamental Form that we can describe in the
following way: similar to the Euclidean case regagdthe Weingarten equation, it turns out
too in affine geometry of surfaces that the loaaichtives of the affine normal belong to the
tangent plane of the surface at each point, i.e.can write

ON 0X 90X 0%,
w=-NB—0=-B —2-B -2, 14
ou” Zﬁ: 7o’ Tou Tou 14

and define théffine Third Fundamental Formby the expression:

I, =B,du’dy” with B,=> g, B} . (15)
14

As we have previously seen, the definition of slaslla three-dimensional body and, in
particular, the Riemannian structure induced on thigect by the ambient space metric is
generated in a natural fashion. In the present chsenimodular Affine Geometry that
extension is not at all that immediate. Howeverwasshall see, it can also be realized in a
canonical way. We start from the affine invariasepdometricl ., defined on the middle

surfaceM,:

ua?

0X, 0X
gaﬁ = Iua(ﬁ! au;;)) . (16)

In the present context we define on the shell aiggenetric, which is a Unimodular
Affine invariant, to be denoted by
G=) Gdddd, (17)

., with G, := G("_X,f’_x_j.
ou' ou
Let us observe first of all that, since bilineantyst be preserved, we have to write in
affine normal coordinates of the shell

o0X o0X
G, =G —,—
w (au” auﬁj

(18)
=G(6XO N uaNua 0X0+ ua Nuaj
ou’  ou” o AU
where, by definition
Gp:= 0y —2UB, + LFZ B B (19)
A

and where, as stated previously, Greek indicedram 1 to 2. Thus, in order to extend that
definition to the third index, we also write:
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0X 0X
G,=G,=G ——,-=|=G(X,N,)=0 20
3a a3 (aug augj (XJ NJ) ( )
and, finally,
oX 0X

It is easy to see that, fon = u®> enough small, it holds:
det(G; ) # 0 (22)

and, consequently, the latter is a pseudo-Riemantimimodular affine invariant metric
defined on the shell, as it was our purpose totcocis

3 COMPATIBILITY CONDITIONS

One of the main aspects in the theory of shellshés determination of compatibility
conditions. These are conditions obtained on thewer of the various difference tensors
that can be defined by comparing the two stateshef shell. The natural tool here is
represented by the integrability conditions thastrhe satisfied, in all cases, by both middle
surfaces. These conditions are very well knownhia tase of Euclidean shells, see, for
example John (1965 and 1971), Koiter (1970), Moiim&1981), and can be described, in our
present own notation, as follows:

For the tensor with components defineddgy=%(a;ﬁ - aaﬁ), it is proven that
ghs —€55 = L - L + gl (LU - 5L5) -0, 0 (Q G- G G))  (23)
while for the difference tensow,, := L'f,ﬁ - L, it holds

Wi, =W = 07 (W, =W, 5) = §°( G, b= G 1) (24)

In both equations the symbd/;, represent the components of the difference tensor

between the Levi-Civita connection dl, and that of M.

Now, for the case of affine shells the correspogadiompatibility conditions were obtained
in our previous article Gigena et al. (2002), aad be summarized as follows.

For the difference tensors defined by the variogwressions that establish comparisons
between the first, second and third fundamentah$oi.e.,

Eap = %(g;ﬁ B gaﬂ) » Oag = g;ﬁy ~ Yapy s Wop - = B;ﬁ B B”ﬁ ' (25)

and the tensor defined by comparison between theesgonding Levi-Civita connections,
represented by equatioﬁ;‘;; =Cl + fgﬁ there hold the following conditions:

1) Affine Gauss condition
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ehi-eii =Bl B B - B ) 6 6 B0 B0)-
+1f (B + AT ) -6, & 9 (G G- G )
2) Affine Mainardi-Codazzi condition
Tapys ™ Tapsy = By Cis + Yoy G = Gips Gy = Qs G+
+B;59*,/3y + Bﬁé é}/y - Qy *935 - By*gé - (27)
_Badgﬁy - Bﬂd g]y + %y 93'5 + %y gé
3) Codazzi condition for the affine shape operators
W, W= o7 Bu(Got AD- B(Gi+ B)+ B B (28)

4 BASIC INEQUALITIES FOR AFFINE SHELLS

The following basic inequalities, involving the geetrical objects treated before, were
previously obtained in Gigena et al. (2004). Whepresented in the form of Monge’s, i.e., as
a graph, the middle surface of the shelll, has all of its geometrical properties related to a
given function f assumed to be enough differentiable and, in teegmt context of affine
geometry, satisfying a partial differential equataf Monge-Ampere type:

det(d,,f)==F (29)

and for such a kind of equations, with boundaryditbons as in the present case, there hold
bounds for the functionf and its derivatives. Also, since the functiBnis strictly positive
in the (compact) domain wheré is defined, there exist lower an upper bounds Foras
well. It is very convenient, in order to avoid umwed complications in notation, that the
lower bound, which is otherwise positive, be takeibe exactly equal te-1, by means of a
suitable rescaling if it were necessary.

As a consequence, we can also assume that thedseeowatives of f are bounded, i.e.,

the components of the Hessian mat(rbg,ﬂf), the components of the inverse matrix of the
latter, denoted by( f”ﬁ), and the components of the pseudometric tenseariemt as well as

contravariant, i.e.g,, and g® . These facts being expressed in the followingumadities:
outl<i 1)<k, [au] <k Jo7] <K )

Besides, since the higher order derivatives a ladsinded, and in order to unify notation,
we shall assume that there existgemeralized affine upper bound of curvatumgimately
related to the upper bound for the affine principalvatures of the middle surfack!, , that

we shall also denote biR, and that for the present, affine case, remaiesipd by the
conditions that:

1
\a f‘<¥, (31)

apy
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and for the successive derivatives,

fl<RrR?, (32)

‘ apyn

oupt]<(R7) 5 - (33)
be satisfied for as high order of derivatives a=deel in the development of the theory.

By using these hypotheses one obtains the corrdsgphounds for the components of the
tensor representing the third fundamental form:

5, =3[0 (109F) 50, 109F)2, (I0gF) - 3 190,10, (lgF) | (39

if we have in mind, besides, the two following, daiown identities:

0,logF = Z f”"aapgf , (35)
p,0
aaﬁ logF :z f"”aaﬂpgf —z frof “’amfa ﬂf : (36)
p.0 P,
with which it turns out that:
1
<—— 4K +32K? K+ 8K2)=. 37
Bl )=( )= (37)

We compute next the partial derivatives of thesemanents
0,f7 0, f + 170, f-(0,f79,,F)(f70,,f)-
—(£770,,,,, )70 5, )= (770, T)(0, T 0p, f)— |+
(779, F)(F0,,,T)
+i (ayfprarpaf)(fmaﬁmif)+(fprarpayf)(fmaﬂwlf)+ _
16{ (79, 1)@, T 79 5 1) + (£, T)(F 700, F)

1[0, T 7015 F)(F 770, £) + (£ 70,5, F)(£770,, ) +

A (17,5, 1)@, 170, )+ (70,5, T)(£70,,, ) |

afpr

nua Bor

1
y ap Z

(38)

00

apo Apr

Then, by using the identit{ fA”aMf =9, , from which it follows that
A

9,f7 == t7fwq,, 1, (39)
A

we find by direct computation the following estimat

1

‘ayBaﬂ‘ Sg

(K+19K? + 24K°) . (40)
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With the development done so far, we can also oldsiimates for the components of the
pseudometric, i.e., the components of the pseudoi&nnian tensot =ZG”. du dd of the
i
shell in the undeformed state, and its successvieatives, partial as well as covariant. For
example, from

Gupi= 0,5 ~2UB; + LF; 3 B, (41)
we obtain, firstly, that
G, = 0,5 ~2UB, + u:z g” B, B, (42)
H
and, consequently
h h)?
G| < K+2K (1+ BK) o+ 4K? 1+ 8<)(—Rj . (43)

5 STRAIN-STRESS RELATIONS IN AFFINE SHELLS

We recall that for the present case of affinelsh#he contravariant components of the
stress tensort™, are connected with the components of the stemisdr, £,,, by means of

the stress-strain relations
\/ G 0&,

defined in a similar fashion as to the Euclidease¢cantroduced by John (1965), wh&keis
the strain energy density of the given material.
The same expression, in terms of the correspor(diig-tensors is

/G aw
G, t™= 45
z 1k G 08 ( )

Next, we introduce the components of theeudo-stress tensorefined by

TM == t"=5"W, (46)
and we may also write
=(W-wW)are(2wr2w)er (4w W) Yeis i 6 WheEEl  (47)
where |

s=Y.¢, s, =Y &g, s, =Y g (48)

i i ik
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Then, the equations of equilibrium can be written
t,+d, 1 +& 0 =0, (49)
where
Ci =3G" (G:J',k + G~ qkr) (50)

and where we also have, as a consequence, that

K [E} > (™G, - GG, - 17, Gt 17,3 17G,) =0 (51)

mr,s

Additional notations are needed in order to comparmponents of stress and strain
tensors, even those belonging to different spadedeéinition. For example, and very

particularly, in order to compare components ofety(®,2) tensorst’, with those with
components of type (1,4) . Thus, we follow in this respect the kind of riata previously

introduced by Fritz John, see John (1965). Ini@adr the so-called “general form of an
expression” like

F(p.g)(u+ v+ w, (52)

representing a vector, in a suitable space, whekew, p, g are vectors themselves. The
notation indicates that each of the components pp, q)(u+ v+ w) is a sum of a linear form

in the components ofi, a linear form in the components of, and a linear form in the
components ofw. The coefficients of these linear forms are fior of the components of
the vectorspand q defined and differentiable as often as neededfiosufficiently small

“lengths” |p|and |g| . The letterF stands for a different expression in every equatiiobe

considered. Thus, for example, we can write, fa& tdomponents of the stress and strain
tensors, of type (1,1)

t=(t,) ande =(g,), (53)

and in terms of the Lamé coefficiedtsy , the following equation
t"=A > e)d"+2us"+F (£)€?, (54)
j
since such coefficients are defined by the relation

W::%(§)2+u§+ He)e®. (55)

where,s =Y &', 5,=> &g, 5,= > £gle, as in (48), and where we observe that the first
i i ik

two terms, on the right-hand side, are quadratidemnms of the strain tensor (operator)

£=(£,i(), while the third term involves all of those compats of order higher than two,

representing otherwise the “remainder”, of paramoumportance when coming to the
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corresponding numerical estimates.
From now on we establish that in the same sense kavbe interpreted all of the
expressions to follow. Hence, by taking partialiekgives, we can write

ow oW

WSLZEZGSW:A § , W52:£26§W:/J. (56)
From the latter we obtain, successively:
N, +2W, = 2u+ 2 s, (57)
AW, +3W, = 2u+ F( 1) F, (58)
1 2 1 3
W, -W=A §-2A(g) —Su s+ Re)e’. (59)
Then, by using the Taylor’s series development
3
(1+x)7 =1+(—1j x+ﬁ X+, (60)
2 2
we can express
% N\ 72
G G G 1 3,
— = = = = =]1--5 +— + ... 61
G (Gj (G] 2% 8(§) (61)
and
m G m m j
t" = e W, 3" +2W, "+ 3W D e, (62)
i

becomes, first

(=25 30 o ) were 2wer s swT e | (63
i
and, afterwards

t" =W, 0" +2W, &M+ 3%25 !
J
SR ITANETS 3o (64
j
A j m 2
:EZ‘gde"wz,ugi +F(£)£ .
i

From the latter, the trace of the stress tensaréipr) can be written

Zt]’ Z(SA +2/,1jZ£jj +F (&), (65)
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where Ze} itself represents the trace of the strain te(goerator).
j

Hence, from the above we can also write

1 A
eM=—t"-"sd™+ F(t)t 66
"=t T8 F(Y (66)
or, also,
1 1_2,[1 i 2
gM=—q"-—> t1o™+F (t)t°. 67
M T SR 67)

Then, the expression for the components of thedusstress tensor is

Tm=t +_§ Y S+ H ZJ -
i t i t ( ]Jt]t

. L (68)
—%(th;tf —(;—?thfgthqm F(t)t.
We introduce next thtyector” 7= (/7|L) by means of the relation:
Gy =+, (69)

This measures the difference between the pseudaeenneatrix and that corresponding to
the identity. Then, we obtain the following estim&br the components of the corresponding

inverse matrix(Gik ) =(G) ™"

G* =4, +1,+F(n)(n?). (70)

A straightforward computation shows that the cqroesling Christoffel symbols satisfy
the following estimate

M =F(7)(7)- (71)
Then, it also holds the following estimate
t, =t +F(7.t)(nt). (72)
For the metric tensor in the deformed “strainedtestve have, by definition,
Gi =G +25,. (73)
Hence, we can also estimate that
G.’;=<s.k+%tk—2(%j§tfoi+ F(tr) (€ +n1). (74)

For the tensor with components, measuring the change in the Levi-Civita connestion
from the “unstrained” natural state to the deforrfstchined” state, we estimate
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c. = F(n.t)(t+7t). (75)

Then we recall that, for the case of Euclideanlshtie above led also to obtain the two
following estimates:

Ehmm t)(t+nt+t), (76)

Zthk;rr-l_zluztrr;hk :F(,71t)(,7t +( ) +U7t+’7t+,7 t+(,7,)2t+(,7,)2t2+tt”)' (77)

We emphasize that the latter expression, obtamdohn (1965), was derived on the basis
that the ambient of work is precisely Euclidean rgetsy, where the curvature tensor
vanishes. In fact, it was obtained from the cormesiing compatibility conditions and, in that
context, the curvature is equal to zero for bo#ttest of the shell, as expressed in equation (7)
of the cited article, i.e.,

O: R;cdb = gab cd+gcd ab_g ad cb_‘g bc aErZGD(sd g cd d g )u’ (78)
s
On the other case, in the present context of affemmnetry we have
. 1 *
Racdb =€t € € anct € bcad_E(zG Eh chd ZG Rn )"’Z GD(EI éb _cdd q(a) (79)
m ls

since, in the present case, the three-dimensi@mpatibility equations are given in terms of
the comparison between the Riemannian curvatustsrof the affine shell, when passing
from the natural to the deformed state. Such amatemjuis obtained by direct application of
Lemma 2 in our previous work, see Gigena et al0220

Then, if we denote by, the second covariant derivatives with respectht ltevi-

Civita connection associated to the pseudome®@ic we further obtain from the latter
equation

gab;cd +£cd ab_gad cb hc ad ZG gcl g cd d g ))c acdb (Z G Rn bdz G RnT )1(80)
and it is easy to get the following estimates fwse tensors
R =F (7)(n"+(n)" (7)) (8D)

=F(n)((t) () + o tentemt). (62)

In what follows we shall also denote layan upper bound for the absolute values of the
principal strains at all points of the shell. L& be a point on the undeformed middle surface
M, and D the closest affine distance froR to the lateral surface of the shell. Als2h

represents the thickness of the shell @&ds the typical length associated with the middle
surface, all these quantities having been prewaunsioduced above and in our article Gigena
et al. (2004).

Then, we introduce the quantity
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_ h [h
9= mao{B ,\/% ,\/Ej (83)

and assume, besides, that the circumstances drehsic
6<86,, (84)

where g, is a constant which depends only on the choi¢bebtrain energy density .

We assume that all of the calculations shall beedfor a system of normal affine
coordinates, as indicated previously, and alsoy fdéscribed in Gigena et al. (2002). The
middle surface of the shell is represented theherform of Monge'’s, i.e. as a graph function,
where the origin of coordinates is located pregiselP, 0 M,, with the axis of coordinates
chosen to lie at the tangent planeNty at that point, and with the third axis in the rdfi
normal direction at the same point. The estimatdsetoomputed for the partial derivatives of
the function representingVl,, in the system chosen, shall be used immediateigake the
corresponding estimates for the successive covadarnivativest,.. , so that the latter

estimates shall be independent of the system aiflginsed.
Thus, we define

é,h : h
A === min| D,vRh,— 85
51=aumin{0.4R 7 .
and obtain the inequalities
h<A<Rh, h<§, /1<% (86)
which are easily seen to be satisfied if we ass@ioneexample, that
1
g, <= 87
b <5 (87)
and from this we obtain that
1 2 h 1 16 »h? K
—<(§) =<60=<——, e<(6) 5<—. 88
r=(0) 522003237 (&) % <2 (89)

It is to be further assumed next thé} is chosen so small that for the given strain gyner
function W all of the above formulae are valid in the regi@fined by

M :{(ul,uz,u3):Z(Lf’)2</]2,‘u3‘< f} (89)

Also, from now on we shall use the same symbolappiroximation as described in John
(1965), represented by'O" and "o" , i.e., the first symbol is used in the convengipn
classical way except that dependenceWinis allowed. Thus, the relation

A=0(B) (90)

where B>0 , means that for a given strain energy functérihere exists a positive number
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K such that
|Al< KB. (91)

The second one shall be used in an unconventienaksand only in combination with the
first. The relation

A=0(B)+0(C), (92)

where B=0 and C =0, shall mean that for a given strain energy functd/ there exists a
function K (k), defined for all positivek such that

|Al< K(k) B+ kC (93)
forall k>0.
Thus, for example, we may write from previous iradies that
gaﬂ,y = O( R_}é) ’ gaﬁ,yy = O( R_l) ! gaﬁ,Wv = O( R_%) o (94)
0, =0(7%). 8 =0(R). Bpn=0[R7). 9

n=o“ﬁ§&,/f=o(}é%j,n"=o(}g%j,m, (96)

Besides, we shall assume that the strain energstifum W(q, S, §) is defined for all

values of |§| enough small and is as differentiable as neddete § are the traces of the
successive powers of the strain operator. By deimithe “length” of such “strain operator”,

(1,1)-tensor with components™, is |£| = {Zeimgim. For the metric tenso6 sufficiently
im

close to the unit matrix, i.e., foly| sufficiently small, we can estimate| in terms of the
eigenvalues of the matri>€£i’“) , 1.e., in terms of the so-called principal stgin

Then, there exists a positig only depending on the choice of the strain enéuggtion
W such that the strain-stress relations hold fak< &, , and it also follows that, for such
values, t" =0(|]).

Hence, for a given functionV we can also find bounds, , 77, such that for|t| <t, and

|/7| <1, all of the previously stated estimates are vatd, dnesides|,£| <§&.

6 ESTIMATES FOR THE L,-NORMS OF SECOND ORDER DERIVATIVES

In what follows, we shall use the following expriessof the norm |w| for any vector

W= W(u", W, LF) defined in the working regiorM specified above
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||w||=\/j£j|vx4ddd& dd . (97)

The symbolw shall denote the gradient a¥, i.e., the vector whose components are the
first derivatives of the components of with respect tou',u®, u’>. We shall denote, besides,

with w the “surface” coordinates gradient of, i.e., the vector of first derivatives with
respect tou',u” only. It is well-known that the components of 8ieess tensot, satisfy the

symmetry conditiont, =t,;. We can represent the estimates obtained fronedbations of
equilibrium for the Euclidean casg(see Gigena et al. (2003), John (1965) for fatads) by

D tmm =P = F(n.t)(t+7t+nt) (98)
and the estimates resulting from tdwmpatibility conditions Gigena et al. (2002), by

zthk; r + 2qutrr hk = Qhk

(99)
=F (/],t) (/7 t,,+ (t,)Z +t/]’t,+/7,t’+/7”t + (”,)Zt + (,7,)21:2 +tt”) .
We obtain correspondingly for thfine Theory of Shells
D tm = P = F(n,1) (47t +1t), (100)
(tl)2 +,7!ttr +(,71t)2 +(,7!)2+t" +/7"t +
D tior T2t =Qu = F(m.1)| +#7t +nt+n"+(n) +7' ¢+ (1) + | (101)
+(t)” +nmt+(n) t+m(n)
In fact, by using the previous estimates one matewr
Eapcd TEcqab™ € ad o € 1 ad - EStimated term, (102)

and, consequently,

1 v

_ h .
thk; " +1+_|/ mhk — m(tl,rr d\k _tlrka—r _tlkr dr) +, kk i pr +..+ higher order term, (103)

with

tij K =E,- Ki _(rill: )l thj _riﬁujl _(rﬂr(n)L T _rjﬁm I _rnh(Tnkj _rhjr‘:k _rkjSLh )~

_r??(trni,k =Tl — Titsn) — T (t i~ T ;itri h ri?tsq)

(104)

In the two latter equations, and also in what fw8p we have used the summation
convention whenever repeated indices appear.

Finally, by using all of the above expressions oray write, for the case of Affine Shells,
estimates which resemble the ones obtained fdEtieidean case.

In fact, we develop estimates for the norms ofgbeond derivatives of the (symmetric)
tensor components, , in terms of the above quantitiés and Q,,, introducing the auxiliary

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecanica Computacional Vol XXIX, pags. 969-988 (2010)

function ¢: M - R, defined by:
Y= (1—/]‘2u"u")2.

One verifies easily the following properties

O<g<1 and 2,9=0
6]=\B.00,05% 0"
"= o= 0.

Next, we consider the integral

A= \/ [[] #9010, ta AU dUF ol

Whereas, in a similar fashion to the Euclidean caseobtains the estimates
ot |=0(A+|eP|+ledq+17| 1)
with
(aaﬁtlk) Pl:(ak FI))’ QZ(QK)’
and
et =0(An (A+e P+l d+27] ).
Similarly, one may estimate the above expresgion
A= 0(1 7 t|+leq+ Ao Pl)+ d[ ot |+27 o t])

Then, it follows that

ot =047t +loQl +[o ¢ +ar o)

o= (12 t|+led+|o <[ +112|o ).

985

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

Next, we make use of the particular form of theoselcand third members in equations

(100) and (101):
(V) e+ () + (') + "+t
R =F(n.t)(t+nt+nt), Qu=F(n.t)| +n't +ntn"+(n) +n"t +(nt)"+
+(n't)" +nn"t+(n) t+nt (')’

as well as on the respective (gradient) derivatiesP" .
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Thus, by having into account these differences WighEuclidean case we find, by taking
at the same time a sufficiently small value for tbestantd,, that

et | =0(a) 7). (117)

ot =02 t]f). (118)

7 ESTIMATES FOR THE L,-NORMS OF HIGHER ORDER DERIVATIVES

From the previous development we observe that alasimapproach can be made by
considering again the differential equations (1&ed (101), by taking partial derivatives, i.e.,
for a fix value ofy, the 4 t, quantities satisfy the same equations if we sultstR y Q,,

H On
the other hand, the remaining componggbd .4, | may also be estimated if one observes

that all those of the form. &, are expressible in terms of the quantitdest, and suitable

derivatives of the expressios and Q,, . In such a fashion we are led to obtain estimiétes
the following ones:

o |=0 (47 [+l oQ | oP | At |07 @19

respectively byd, P andd,Q,, . Thus, we obtain estimates #gd ,t, | and| @o,.t,

o [=0(am (7] ¢ [+] 0@+ 0P |+ 2 1% P ). (120)

So far, in all of the previous development we kiéypéd the value ofAd regarding the
defining region\, the functiong, the norm| w|, all of those depending oh. However, for

estimating higher order estimates we shall neecedoice further and further the region of
work. Thus, we are led to rename all of those dbjdor example by callingV , instead of

M, ¢ in place ofg, and| w|, for |w|. Moreover, we shall also proceed in our work by

replacing A for % Consequently, we replace t@éh for H%, i.e., in doing so we restrict

now to valuesd such that0<0%. Next, we observe that=0(g,) in the regionM,, , so
that:

lol,=o(la«l,). (121)

It follows that

with the corresponding expression ﬂm/zt"'

/) , (122)

~o(1?|at],+|a.Q

gt +la.P], +1mg, 7

%

y and also the corresponding changes for the

(gradient) derivative$” and P™".
Then, a similar argument to the one in the Euchdesse allows us to conclude first that:
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m

lo,t7], =o(a=n1). (123)

ot H/ =o(A=[t[3). (124)

This kind of process can be repeated over and ay&n, with the corresponding changes.
For example, by applying the relations (100) an@®1flto t**, in place oft and,

simultaneously replacing by % P by P”™ and Q by Q™ , we find that

o], =[] e |, +|a. @], +|a. 7], am]a P ). a29)

Y

nn

with a similar expression fq‘mAt

"
Therefore, we obtain the following estimates fortiphderivatives of higher order

9 t=0(2A""h?), (126)

ki Ko igiz i

t=0(2A"). (127)

K ko0 5,3,

On the other hand by using the estimate expresseduation (71), i.e.l}, =F (7)(7),
and its successive derivatives, together with tiesgreviously determined in (96), i.e.,

ol 17 ) 75 ) -

we come to the conclusion that the same kind ahesés are valid for the corresponding
covariant derivatives respect to the Levi-Civitagection:
=0(e2A"h).

t o
ke, Ko i 9,
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