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Abstract. The goal of this work is to analyze and identify the post-critical behavior from 

trusses structures by obtaining its equilibrium path. Until the critical behavior, detection 

methods are sufficient for determining the critical load in the structure. However, to the 

entire equilibrium path, such methods have no capacity to overcome the critical point of the 

structure, therefore, is necessary the continuation methods, just as the arc-length. The 

propose models present geometrically nonlinear behavior and the structural theory adopted 

use exact kinematic formulation. The reach results are analyzed against benchmark problems 

and classical analytical results. 
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1 INTRODUCTION 

 

The resolution of nonlinear systems appears with frequency in several fields of 

science and engineering. Especially, in structural engineering, a problem that lies in 

solving a nonlinear system, occurs when we want to obtain the equilibrium path, It is 

necessary to determine the curve that relates the displacement of a specific system 

options equilibrium (stable or unstable) that the structure can get to a certain level of 

loading. 

Incremental methods as the Newton-Rapshon can reach and detect some points 

from them in which the structure becomes unstable, but he cannot represent all post-

critical equilibrium paths. To obtain the complete curve, it is necessary to use a 

continuation method that allows obtaining all points to the limit of loading desired. 

In this work we use to obtain such path equilibrium the arc-length method described 

by Crisfield (1997) applied to a truss geometrically exact model developed by 

Pimenta (1986). 

 

2 FORMULATION GEOMETRICALLY EXACT OF TRUSS 

 

According to Pimenta (1986), whether the truss bars represented in its initial and deformed 

configuration in figure 1 below. 
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Figure 1:Kinematic configuration 
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The vector of nodal coordinates of element in the reference configuration rx and the 

vector of nodal coordinates in the deformed configuration x are given by: 

 

r
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é ù é ù
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ê ú ê ú
ë û ë û

x x

x x
x x

 (1)   

Being r
ax  and r

bx  the coordinates of nodes “a ” and “b ” in the reference coordinates 

ax  e bx the coordinates of nodes “a ” and “b ” in the deformed configuration. The 

vector l  that associates the direction of the bar with direction appointed of “a ”to “b

” may be represented by: 
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The matrix 
3
I is the identity matrix of order 3. The nodal displacements can be 

represented by: 

 

r
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r
b b b
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d x x
d

d x x  (3) 

The vector modulus l  is 1, then:    

 
2

e e
T T= = TΨ Ψx xl l l  (4) 

The stretching is given by: 

 /T rL = ll l  (5) 

The virtual increase of bar length is given by stretching variation: 

 
1 1T T T

e ed d d- -= =Ψ Ψ Ψx x xl l l l
 (6) 

The virtual work of internal strength of a truss is given bellow jointly with the internal 

forces vector from the truss er : 
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rV is the truss volume in reference configuration, being that V / 1rV » . Where the 

family of strain measure is defined through: 
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To this work, the m value is considered 1, which represents Green’s strain. The total 

virtual work from internal forces of structure is given by: 

 1 1

Nel Nel
T T

I e e e e
e e

W Ad d d
= =
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 (9) 

Where eA  is a filled matrix with zeros and ones, which lists the degree of freedom of 

an element with degree of freedom of structure and Nel  is the total number of bars 

from structure.  The virtual work of external forces is provided by: 

 
T

E extWd d= f x  (10) 

Where  
ex t
f  is the external forces vector applied on nodes of structure. For virtual 

work theorem, can be match (9) and (10), coming in:    

 
0ext - =f r

 (11) 

 1

Nel
T
e e

e=

= år A r
 (12) 

Deriving by the time (11) can be obtained the equations which describe the 

incremental balance from structure: 

 
0ext- =f r

g g

 (13) 

extf
g

 is the boundary condition, since (12) deriving coming to r
g

: 
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Being that er
g

 is obtained by derivation (7) and with mathematical coming to: 
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G
K  is the geometrically stiffness matrix and 

M
K  is the constitutive stiffness matrix of 

element and mD  is the modulus of elasticity defined by: 

 
m

¶
=

¶
m

m

D
s

e  (17) 

The ms  is the conjugated stress related to me . 

 

3      CRISFIELD ARC-LENGTH METHOD 

The arc-length method, generally speaking, is a solution strategy in which the path 

through a converged solution, at any step, follows a direction orthogonal to the 

tangent of the solution curve. In this procedure, both the load vector and the 

displacement vary. The method is presented in the in two forms. First the arc-length 

method is introduced in its general formulation; this is followed by the presentation 

of the method in a discrete formulation, as implemented in computer programs. The 

algorithm bellow is based in the work of Ritto-Corrêa and Camotin (2007) and Tiago 

(2007).                                                                                          

3.1     The linearized equilibrium equation 
 

The equilibrium equation can be written: 
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 ( , ) ( )l l= - =extg d r d f 0  (18) 

Being l  the load factor. With an iterative strategy is possible to get a collection of 

points describing the path equilibrium.  The Newton-Raphson method can be 

formulated using the Taylor’s series expansion in the equilibrium equation around A 

point, 

 

 ...B A A Dl= - + =extg g + K d f 0D  (19) 

where 
Ag and 

Bg  are the out-of-balance nodal forces evaluated at A and B point. The 

tangent matrixK  and the tangent load vectorq  can be written, 
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d
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 (20) 

The solution of equation (19) can be represented by: 

 cD Dl=d dg+ dqD  (21) 

Being cD  a non-dimensional quantity ( )0 c 1< D £ . So due to (21), results: 
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Defining the vector t  tangent to the path equilibrium, can be written, around B point, 

 c
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or simply, 

 cD Dl= + +B At t tg tq  (24) 

The predictor-corrector approach consists in two steps. First, in the predictor step 

calculates an approximation of the desired quantity, then in the corrector step do an 

iterative refinement. 

Predictor: from a point of equilibrium and previously calculated by applying a slight 

variation in the value Dl predicts the new value of the displacement, 

B O Dl= +d d dq . 
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Corrector: from a non-equilibrium point A, corrects displacement by, 

cB A D Dl= + +d d dg dq ,  keeping the load parameter unchanged, or updating by 

B Al l Dl= + , until convergence. 

3.2     The constrain equation  

Setting the following dot product by 

 2t
A By l l= +A B A Bt t d do  (25) 

being 2y  a scaling factor that makes the product dimensionally consistent. The arc-

length measured SD is the norm of vector( )Ot - t , then the constrain equation can 

be written: 

 ( ) ( ) ( )2 2t

OSD y l l= = + -O O Ot - t d - d d - d  (26) 

3.3     Crisfield’s method  

Assuming that A and B two successive points obtained in the course of the iterative 

process and considering equation (24), 

 cD Dl- = - + +B O A Ot t t t tg tq  (27) 

And using the dot product defining in (25), 

 ( ) ( )2 c cSD D Dl D Dl= - + + - + +A O A Ot t tg tq t t tg tqo  (28) 

which results: 
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Where 2SD is prescript arc-length. For the predictor using: ( )A =Od - d 0 ,

( ) 0Al l =O- , =dg 0 ,then (29) becomes: 
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where the signal is positive in first load step, afterward based in the previous 

increment. Thus, at the end of an increment, 
PDl  has a sign of 

 
( )   if   

  otherwise

0
q

1 0
c

1

í - ³ïï= ì
ï -ïî

tq t to
 (31) 

to correct the forward direction of the equilibrium path. For de subsequent iterations 

CDl is a roots of quadratic equation (29), such that, 

 
   if   

  otherwise

1 1 2

2
C

t tDl Dl Dl
Dl

Dl

í >ïï= ì
ïïî

 (32) 

While,  2
2 1 34 0a a a- > , the roots stay in real values. When this condition is not met, 

the usual practice consists of cutting the step length down to half and resuming the 

iterative procedure with a new prediction, followed by new correction. 

 

3.4     The flow chart Crisfield’s algorithm – Tiago (2007)  

Input data: 

 number of steps
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Variables data: 
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 calculate global stiffness update
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Figure 2 – Flow chart. 
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Figure 3: Flow chart continuation. 

Mecánica Computacional Vol XXIX, págs. 1013-1028 (2010) 1023

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

Figure 4: Flow chart continuation. 
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4     Examples 

First example: Fafard and Massicotte (1991) 

EA(1)=1000 and EA(2)=500 

Bar1: (0.000, 0.000)-(0.965, 3.000) 

Bar2: (0.965, 3.000)- (1.930, 0.000) 

 

Figure 5: Initial and current truss configuration. 

The graphics below show themselves consistent with the results obtained by Fafard 

(1991). The load factor, in our models represents the own load because they use such 

as loading a unit load, which will be varied by the load factor. 

 

Figure 6: a) path equilibrium 3D; b) path equilibrium to y direction; c) path equilibrium to x direction; d) 

trajectory of load application point. 
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Second  example: Arch Truss – Hrinda (2006)   

Arch truss with 101 elements and 126 dof, its geometry can be found in Hrinda (2006) 

or in Crisfield (1997), EA=1,00x107 

 

Figure 7: a) path equilibrium; b) Initial and current truss configuration. 

 

The curve confirms the results obtained by Hrinda (2006). The curve obtained can 

achieve results beyond those obtained in the article that was used as a comparison. 

Third Example: Sixteen-Member Shallow Truss – Hrinda (2006) 

3D Structure with 16 elements  and 15 dof, its geometry can be found in [3], 

EA=1,00x107.

 

Figure 8: Initial and current truss configuration. 

a) 

b) 
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Figure 9: path equilibrium. 

 

Again, the curve which is in agreement obtained by Hrinda (2006) 

5      CONCLUSION 

Aiming to validate the computational implementation based on the formulation 

presented in section 2 and to evaluate its effectiveness, we analyzed three examples 

with numerical results already established in the literature. From these examples, it 

can be observed that the results from formulation of nonlinear analysis of spatial 

trusses geometrically exact in Pimenta (1986) are consistent with other authors.  

The strategy of non-linear solution becomes more significant as the equilibrium path 

becomes more nonlinear. The values of the load-displacement curve provided by the 

literature are reproduced only with the use of arc-length method, in this case the 

version implemented by Crisfield (1997). This method uses not only load control, 

displacement control but also for overcoming the limit trajectory points of 

equilibrium, making possible to obtain the complete curve.  

Arc-length adopted allowed the observation of behavior of snap-through and snap-

back that appeared in the structures shown in the examples. It cannot be affirmed 

that this method always works, however, it possible reach the equilibrium trajectory 

of several 2D and 3D structures, with symmetries or not, with nonlinearity from 

geometry or the material. 
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