Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXIX, págs. 1225-1241 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.) Buenos Aires, Argentina, 15-18 Noviembre 2010

VIBRACIONES LIBRES DE PLACAS DELGADAS ORTÓTROPAS SÚPER ELÍPTICAS CON MASAS ADOSADAS

Santiago Maiz^{a,c}, Diana V. Bambill^{a,b}, Carlos A. Rossit^{a,b} y Raúl E. Rossi^a

 ^aDepartamento de Ingeniería, Instituto de Mecánica Aplicada (IMA), Universidad Nacional del Sur Av. Alem 1253, 8000 Bahía Blanca, Argentina. http://www.uns.edu.ar
 ^bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
 ^cTenaris University, Industrial School, Dr Simini 250, 2804 Campana, Argentina
 E-mail: smaiz@uns.edu.ar, dbambill@criba.edu.ar, carossit@crib.edu.ar, rerossi@uns.edu.ar

Palabras Claves: vibración, Ritz, masa, ortotropía, placa delgada, súper elipses

Resumen

El presente trabajo trata sobre vibraciones de placas súper elípticas con ortotropía ortogonal. El estudio se centra en el análisis de este tipo de placas sin masas y con masas concentradas. Las direcciones principales de elasticidad coinciden con los ejes de simetría de las placas. Se utilizó el método de Ritz para determinar las frecuencias del sistema. La amplitud del desplazamiento se aproxima con expresiones polinómicas en las coordenadas cartesianas. Los resultados de la presente propuesta presentan excelente concordancia con los valores de frecuencia de casos particulares presentes en la literatura técnica científica; y con los resultados de una solución independiente, obtenidos mediante el método de elementos finitos. También se analizan casos no encontrados en la literatura técnica científica. El presente estudio puede ser aplicado a losas de hormigón armado de propiedades ortótropas conferidas por la estructura de hierro interna, las cuales soportan equipos de dimensiones considerables como pueden ser equipos de uso medicinal y/o de precisión.

1 INTRODUCCION

El estudio de las vibraciones de placas es importante debido a la gran variedad de aplicaciones en diseños de ingeniería. Una vasta literatura es accesible en el tema de placas de diversas formas geométricas con diferentes condiciones de borde. En el caso particular de placas de formas súper elípticas, (Wang et al., 1994; Zhou et al., 2004; Altekin, 2009) los trabajos publicados en la literatura técnica científica son escasos, sobre todo si se consideran otras características adicionales, como la ortotropía de los materiales (Lekhnitskii, 1968; DeCapua y Sun, 1972; Altekin, 2009) y la presencia de objetos vinculados a las placas (masas adosadas).

En muchas situaciones tecnológicas, las exigencias de diseño requieren la utilización de placas de diferentes formas en su contorno y las posibilidades que brindan las formas súper elípticas adquieren trascendencia en el estudio de placas.

El científico, escritor e inventor danés Piet Hein popularizó estas formas para el diseño. (Gardner, 1965) en los años sesenta. Piet Hein debió resolver varios problemas de diseño y propuso una forma intermedia entre el círculo y el cuadrado que denominó súper elipse.

En general, como se sabe, se llama placas súper elípticas a aquellas cuyo contorno está definido por una función súper elíptica con una potencia que se corresponde con una forma que variará entre una elipse y un rectángulo.

No son numerosos los trabajos sobre placas súper elípticas en la literatura. Entre los trabajos sobre este tema merecen consignarse las muchas contribuciones de Sato (1972, 1973, 1976 y 2002) quien investigó en profundidad las vibraciones transversales de placas elípticas bajo distintas condiciones.

Como se sabe una súper elipse es la curva cerrada definida por la ecuación:

$$\left[\frac{x}{a}\right]^{2\alpha} + \left[\frac{y}{b}\right]^{2\alpha} = 1 \tag{1}$$

donde *a* y *b* son los semiejes mayor y menor respectivamente; y α es una potencia que define la forma. Por ejemplo para α =1, la ecuación (1) representa en general una elipse, y como caso particular cuando *a*=*b*, a una circunferencia.

En la Figura 1 se muestran las curvas súper elípticas correspondientes a distintos valores de exponente $\alpha = 1, 2, 4, 5$ y 10, para una relación de semiejes $\frac{a}{b} = \frac{3}{2}$. Obviamente, valores

Figura 1: Contornos de placas súper elípticas con a/b = 3/2, correspondientes a $\alpha = 1, 2, 4, 5 \ge 10$

muy grandes de α aproximarán el contorno al de un rectángulo al reducir significativamente el radio en los vértices. Estas funciones posibilitan una herramienta que permite un tratamiento unificado para un amplio rango de placas considerando placas circulares, elípticas o rectangulares eligiendo el parámetro adecuado.

En el presente estudio se hace un análisis de las vibraciones de placas súper elípticas ortótropas de espesor constante y masas adosadas, por el método de Ritz. Se consideran tres tipos de condiciones de borde: (a) placa completamente libre, (b) placa simplemente apoyada y (c) placa empotrada., Figura 2.

Los resultados se comparan, cuando es posible, con algunos casos particulares encontrados en la literatura de placas ortótropas sin masas, y en otros casos con valores obtenidos por el método de elementos finitos, observándose una buena concordancia con los hallados en este trabajo con el método de Ritz.

En el caso de placas súper elípticas, (Wang et al., 1994) estudió la vibración y el pandeo de este tipo de placas, mientras (DeCapua y Sun, 1972) estudiaron las frecuencias de placas ortótropas súper elípticas utilizando polinomios como funciones aproximantes en el método de Ritz. (Zhou et al., 2004) estudió la vibración tridimensional de placas súper elípticas generalizadas, basado en la teoría lineal de la elasticidad utilizando el método de Ritz para derivar la ecuación de frecuencias.

Figura 2: Placa súper elíptica ortótropa

2 EL MÉTODO DE RITZ

Cuando la placa ejecuta uno de modos normales de vibración, el desplazamiento de la superficie media de la placa w(x, y, t) puede ser representado mediante el producto:

$$w(x, y, t) = W(x, y) e^{i\omega t}$$
⁽²⁾

donde W es una función continua que representa la amplitud de la deformación de la superficie media y ω es la frecuencia circular natural.

Se obtendrá una solución aproximada del problema mediante el método de Ritz. Para ello es necesario utilizar como aproximación para la amplitud W, alguna expresión que satisfaga al menos las condiciones esenciales de borde. En este caso la expresión para W será definida

como una sumatoria con coeficientes indeterminados C_i .

$$W(x,y) \cong W_a(x,y) = \sum_{i=1}^{N} C_i f_i(x,y), \qquad (3)$$

en la que *f* representa funciones continuas:

$$f_i(x,y) = \left[\left(\frac{x}{a}\right)^{2\alpha} + \left(\frac{y}{b}\right)^{2\alpha} - 1 \right]^n \phi_i(x,y)$$
(4)

La expresión en el corchete define el contorno de la placa, el parámetro *n* depende de la vinculación en el borde de la placa (Fig. 2) y los ϕ'_i 's son monomios elegidos de un set de monomios (Fig. 3) de la forma:

$$x^{q-p}y^p \tag{5}$$

Entonces, la solución aproximada (3) deviene en:

$$W_{a}(x,y) = \sum_{i=1}^{N} C_{i} f_{i}(x,y) = \left[\left(\frac{x}{a} \right)^{2\alpha} + \left(\frac{y}{b} \right)^{2\alpha} - 1 \right]^{n} \sum_{q=0}^{s} \sum_{p=0}^{q} C_{i} x^{q-p} y^{p} \\ \left(i = \frac{q(q+1)}{2} + (p+1); N = \frac{(s+1)(s+2)}{2} \right)$$
(6)

Esta expresión satisface las condiciones de borde de placas libres cuando n=0, simplemente apoyadas cuando n=1 y empotradas cuando n=2. Figura 2.

Figura 3: Conjunto de monomios elegidos

El funcional de energía que gobierna el problema de la placa vibrante ortótropa (Lekhnitskii, 1968) de la Figura 4 es:

$$J(W(x,y)) = \frac{1}{2} \int_{A} \left[D_1 \left(\frac{\partial^2 W}{\partial x^2} \right)^2 + D_2 \left(\frac{\partial^2 W}{\partial y^2} \right)^2 + 2D_1 \upsilon_2 \frac{\partial^2 W}{\partial x^2} \frac{\partial^2 W}{\partial y^2} + 4D_k \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 \right] dx dy - \frac{1}{2} \omega^2 \int_{A} \rho h W^2 dx dy - \frac{1}{2} \omega^2 \sum_{j=1}^{4} m_j \left(W_j(x_m, y_m) \right)^2$$
(7)

donde *A* es el dominio de la placa, la función amplitud de desplazamiento transversal de la placa está indicada con $W = W_a(x, y)$, el espesor de la placa se indica con *h*, la densidad del material con ρ , en tanto con m_j se expresa la magnitud de la masa puntual *j*. La ubicación de cada una de las masas puntuales la indican las coordenadas (x_m, y_m) . En tanto que $(W_j(x_m, y_m))$ es la amplitud total del desplazamiento absoluto del punto donde se encuentra vinculada la masa puntual *j*, y ω es la frecuencia natural circular de vibración del sistema estructural placa-masas de la Figura 4.

Figura 4: Placa súper elíptica ortótropa con 4 masas adosadas

En el modelo propuesto para el estudio, las masas puntuales adosadas se supusieron todas iguales, $m_j = m$, con j = 1, 2, 3, 4; y ubicadas a la misma distancia del centro, sobre las diagonales del rectángulo que circunscribe a la familia de súper elipses ($\alpha = 1; 2; ...10, ...\infty$) de relación dada a'_b . En la Figura 4 se muestra el esquema de distribución de las masas adosadas a la placa. La masa $m_1 = m$ del primer cuadrante tiene coordenadas $x_m = \beta a$ y $y_m = \beta b$, donde β puede asumir cualquier valor entre 0 (centro de la placa) y $\frac{1}{2\alpha\sqrt{2}}$ (borde exterior de la placa).

Si se numeran las masas con el subíndice del cuadrante en el que están ubicadas, las coordenadas de cada masa concentrada son:

j	m_{j}	x_m	\mathcal{Y}_m
1	m_1	βа	βb
2	m_2	- βa	βb
3	m_3	- βa	- βb

4
$$m_4 \beta a - \beta b$$

El material ortótropo queda definido por sus constantes elásticas $E_1, E_2, v_1, v_2 y G_{12}$. Donde $E_1 y E_2$ son los módulos de Young en las direcciones principales de elasticidad: $1 \equiv x y 2 \equiv y$; $v_1 y v_2$ son los coeficientes de Poisson y que debido a la simetría cumplen con la relación espejo $E_1v_2 = E_2v_1$; y finalmente G_{12} es el módulo de elasticidad transversal que caracteriza las distorsiones entre las direcciones principales.

Las rigideces flexionales y torsional de la placa en las direcciones elásticas de ortotropía pueden ser representadas en la forma:

$$D_1 = \frac{E_1 h^3}{12(1-\upsilon_1\upsilon_2)}; \ D_2 = \frac{E_2 h^3}{12(1-\upsilon_1\upsilon_2)}; \ D_k = \frac{G_{12} h^3}{12}$$

Si se adimensionalizan las coordenadas según las expresiones siguientes:

$$\xi = \frac{x}{a}, \ \eta = \frac{y}{b}, \ \xi_m = \frac{x_m}{a} = \pm \beta, \ \eta_m = \frac{y_m}{b} = \pm \beta$$
(8)

resulta:

$$W_{a}(\xi,\eta) = \sum_{q=0}^{s} \sum_{p=0}^{q} \overline{C}_{i} \left[\xi^{2\alpha} + \eta^{2\alpha} - 1 \right]^{n} \xi^{q-p} \eta^{p}$$
(9)

donde $\overline{C}_i = C_i a^{q-p} b^p$.

De acuerdo con el método de Ritz, luego de introducir la expresión aproximada $W_a(\xi,\eta)$, Ec. (9) en la Ec. (7), la integración de $J(W_a)$ conduce a una función cuadrática homogénea de los desconocidos coeficientes de desplazamiento \overline{C}_i . La minimización de dicha función lleva a un sistema de ecuaciones homogéneas de primer orden en los \overline{C}_i :

$$\frac{\partial J(W_a)}{\partial \overline{C}_i} = 0 \quad ; \quad i = 1, 2, 3, \dots, N.$$

$$(10)$$

El sistema de ecuaciones obtenido puede ser escrito en la forma:

$$\begin{bmatrix} \mathbf{K} - \Omega^2 \mathbf{L} \end{bmatrix} \overline{\mathbf{C}} = \mathbf{0}$$
(11)

donde $\Omega = \omega ab \sqrt{\frac{\rho h}{D_1}}$ son los coeficientes de frecuencia naturales de vibración del sistema y **K** y **L** son matrices simétricas cuyos elementos vienen dados por:

$$k_{ij} = \iint_{\overline{A}} \left[\left(\frac{b}{a} \right)^2 \varphi_{i,\xi\xi} \varphi_{j,\xi\xi} + \left(\frac{a}{b} \right)^2 \varphi_{i,\eta\eta} \varphi_{j,\eta\eta} + v \left(\varphi_{i,\xi\xi} \varphi_{j,\eta\eta} + \varphi_{j,\xi\xi} \varphi_{i,\eta\eta} \right) + 2 \left(1 - v \right) \varphi_{i,\xi\eta} \varphi_{j,\xi\eta} \right] d\xi d\eta$$

$$l_{ij} = \iint_{\overline{A}} \varphi_i \varphi_j d\xi d\eta + MR \varphi_i \left(\xi_m, \eta_m \right) \varphi_j \left(\xi_m, \eta_m \right) + MRr^2 \left[\varphi_{i,\xi} \varphi_{j,\xi} + \frac{a^2}{b^2} \varphi_{i,\eta} \varphi_{j,\eta} \right]_{(\xi_m, \eta_m)}$$

$$(12)$$

 \overline{A} es el dominio normalizado, *i,j* son enteros (1,2,..., N), $\varphi_i(\xi,\eta) = [\xi^{2\alpha} + \eta^{2\alpha} - 1]^n \xi^{q-p} \eta^p$, $M = M_j = \frac{m}{m_p}$ es la relación entre una masa concentrada *m* y la masa total de la placa súper elíptica, $m_p = \rho abhR$, y *R* es el área del dominio normalizado que es $R=\pi$ para $\alpha=1$ y R=4

para $\alpha \rightarrow \infty$.

Los coeficientes de frecuencia natural Ω son obtenidos estableciendo la nulidad del determinante de la Ec. (11). La condición de no trivialidad conduce a una ecuación trascendente en Ω .

Como es sabido, las raíces de dicha ecuación constituyen límites superiores de los parámetros de frecuencia.

3 MÉTODO DE ELEMENTOS FINITOS

Para el caso de placa súper elíptica sin masa, se disponía de valores de comparación obtenidos mediante un conocido código profesional de elementos finitos (Algor, 2008). Para obtenerlos, se utilizó el elemento tipo placa delgada con formulación de Veubeke (1968), disponible en el software Algor. Se diseñaron mallas con elementos cuadriláteros (cuadrados) tanto para el caso de placas rectangulares como en las súper elípticas, salvo con los elementos finitos que definen el contorno curvo donde pasan a ser cuadriláteros y triángulos. Para el caso de placas súper elípticas con α =2 la cantidad de elementos finitos fue de 37220.

4 RESULTADOS NUMÉRICOS

Para el análisis se adoptaron los valores de ortotropía propuestos en la bibliografía publicada (Altekin, 2009): $\frac{D_2}{D_1} = \frac{1}{2}$; $\frac{D_k}{D_1} = \frac{1}{3}$; $v_2 = \frac{1}{3}$, a fin de realizar comparaciones donde fuera posible. En todos los cálculos con el método de Ritz se utilizó *N*=136. Se eligió este valor de *N* después de realizado un análisis de convergencia del modelo numérico, y se adoptó por considerarse que un mayor número de términos no mejoraban sustancialmente los coeficientes de frecuencia obtenidos. En las Tablas 1, 2 y 3 se indican los valores del coeficiente de frecuencia $\Omega = \omega ab(\rho h/D_1)^{\frac{1}{2}}$, obtenidos con el método de Ritz para placas libres, simplemente apoyadas y empotradas, respectivamente, con diferentes relaciones de semiejes: a/b.

En particular en la Tabla 1, se presentan los coeficientes de frecuencia del trabajo (Altekin, 2009). Por el procedimiento utilizado por Altekin, en el cálculo de las primeras 8 frecuencias se pierden algunos coeficientes de frecuencia. Por ejemplo en la primera fila de la Tabla, para a/b=1; $\alpha=1$, Altekin omite el coeficiente Ω_7 y calcula el coeficiente $\Omega_i=19,8926$, (i>8), que es

posterior al coeficiente Ω_8 , lo mismo sucede en los otros casos tal como se observa en la Tabla.

a/b	α		Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8	Ω_{i}
1	1	R	3,8381	5,1681	8,2891	10,0825	10,8631	17,2310	18,3246	18,7592	-
		Altekin,2009	3,8376	5,1683	8,2878	10,0830	10,8606	17,2313	-	18,7607	19,8926
	2	R	3,5408	3,8964	6,6418	8,8244	8,9207	13,0305	15,4094	16,6276	-
		MEF	3,5409	3,8963	6,6418	8,8229	8,9217	13,0298	15,4079	16,6273	-
		Altekin,2009	3,5401	3,8967	6,6402	8,8222	8,9208	13,0316	15,4052	16,6216	-
	4	R	3,4546	3,4589	5,9866	8,0019	8,4555	11,5520	14,4784	15,5130	-
		Altekin,2009	3,4546	3,4579	5,9836	8,0031	8,4502	11,5543	14,4719	15,5010	-
	5	R	3,3937	3,4427	5,8851	7,8683	8,3785	11,3312	14,3589	15,3541	-
		Altekin,2009	3,4428	3,3924	5,8819	7,8689	8,3731	11,3326	14,3563	15,3427	-
	10	R	3,2950	3,4248	5,7280	7,6544	8,2521	10,9923	14,1781	15,1142	-
		Altekin,2009	3,4249	3,2937	5,7255	7,6529	8,2488	10,9904	14,1786	15,1077	-
	$\rightarrow \infty$	R	3,2554	3,4174	5,6625	7,5611	8,1955	10,8480	14,0944	14,9946	-
		MEF	3,2553	3,4180	5,6621	7,5605	8,1947	10,8466	14,0924	14,9934	-
		Altekin,2009	3,2555	3,4174	5,6625	7,5611	8,1955	10,848	14,0944	15,0124	-
1,5	1	R	3,7251	5,1638	8,5249	9,7702	10,8443	17,1670	17,9201	18,5958	-
	2	R	3,4124	3,8923	6,8844	8,7470	8,7757	12,7710	15,2216	16,5097	-
	4	R	3,3118	3,4559	6,2404	7,9121	8,4251	11,1739	14,2206	15,6923	-
	5	R	3,2970	3,3908	6,1414	7,7768	8,3721	10,9287	14,0805	15,5168	-
	10	R	3,2741	3,2925	5,9888	7,5608	8,2880	10,5472	13,8586	15,1978	-
	$\rightarrow \infty$	R	3,2530	3,2644	5,9253	7,4669	8,2510	10,3835	13,7542	15,0389	-
2	1	R	3,0175	5,1303	7,9061	10,3479	10,5138	14,9293	17,4578	18,0317	-
		Altekin,2009	3,0165	5,1304	7,9027	10,3481	10,514	-	17,4583	18,0324	25,5931
	2	R	2,6891	3,8604	7,2985	8,3604	8,6263	13,0663	14,1038	14,4898	-
		Altekin,2009	2,6874	3,8604	7,29265	8,36065	8,62715	13,0689	14,1038	-	20,7779
	4	R	2,5661	3,4317	7,1311	7,5350	7,9851	11,2510	12,9323	14,3786	-
		Altekin,2009	2,5647	3,4308	7,1274	7,5319	7,9858	11,2514	12,9238	19,4874	-
	5	R	2,5467	3,3682	7,1115	7,4015	7,8894	10,9691	12,7465	14,3623	-
		Altekin,2009	2,5455	3,3671	7,1086	7,3978	7,8897	10,968	12,7373	-	19,3513
	10	R	2,5164	3,2723	7,0839	7,1885	7,7436	10,5281	12,4417	14,3403	-
		Altekin,2009	2,5157	3,2711	7,0827	7,185	7,7427	10,5239	12,4347	-	19,1862
	$\rightarrow \infty$	R	2,5034	3,2340	7,0721	7,0961	7,6838	10,3396	12,2986	14,3318	
		Altekin,2009	2,5035	3,234	7,0721	7,0961	7,6839	10,3397	12,2987	-	19,1238
3	1	R	2,0791	5,0734	5,4369	9,9411	10,3266	14,5304	15,7714	16,7449	-
	2	R	1,8205	3,8061	4,9971	7,9065	9,5607	12,7219	13,1726	14,8552	-
	4	R	1,7215	3,3895	4,8282	7,1522	9,3176	11,6210	12,4429	13,6005	-
	5	R	1,7059	3,3284	4,8007	7,0303	9,2923	11,4398	12,2913	13,3980	-
	10	R	1,6814	3,2367	4,7552	6,8356	9,2627	11,1396	12,0248	13,0875	-
	$\rightarrow \infty$	R	1,6711	3,2002	4,7337	6,7515	9,2522	10,9991	11,8987	12,9617	-

Tabla 1: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica libre.

R: método de Ritz; MEF: método de elementos finitos. (Fig. 2).

a/b	α		Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
1	1	R	4,4875	11,4054	13,5808	20,8654	23,5934	28,0749	33,1606	35,4411
	2	R	4,2879	9,9692	12,1306	18,7989	19,1562	24,9303	29,0714	31,2987
_		MEF	4,3049	9,9908	12,1453	18,8248	19,1759	24,9418	29,0995	31,3119
-	4	R	4,4763	9,9783	12,0615	18,1733	18,8797	24,5272	27,7298	31,0853
_	5	R	4,5185	10,0251	12,0945	18,2079	18,8969	24,5251	27,6972	31,0042
-	10	R	4,5882	10,1251	12,1733	18,3659	18,9797	24,5730	27,8348	31,1372
	$\rightarrow \infty$	R	4,6161	10,1734	12,2130	18,4643	19,0326	24,6122	27,9699	31,3078
		MEF	4,6161	10,1736	12,2132	18,4651	19,0331	24,6126	27,9718	31,3088
1,5	1	R	4,5557	11,1766	14,0992	20,2973	23,8221	29,1895	32,1601	35,4312
_	2	R	4,3406	9,7254	12,6328	18,4246	19,0053	26,1729	28,8036	30,1580
_	4	R	4,5238	9,7420	12,5458	18,1575	18,3633	25,7536	27,4526	29,8112
_	5	R	4,5654	9,7903	12,5759	18,1776	18,3953	25,7478	27,4209	29,7934
_	10	R	4,6342	9,8929	12,6503	18,2648	18,5495	25,7904	27,5605	29,8493
	$\rightarrow \infty$	R	4,6617	9,9422	12,6884	18,3195	18,6466	25,8276	27,6965	29,9058
2	1	R	5,1671	10,6067	17,3213	18,0214	25,9133	27,5659	36,1516	36,4811
-	2	R	4,8263	9,0009	15,6953	15,7422	20,9118	24,7209	28,7551	33,5788
-	4	R	4,9654	9,0203	15,4568	15,5581	20,1293	24,2866	27,2882	33,1083
-	5	R	5,0013	9,0716	15,4863	15,5727	20,1390	24,2851	27,2452	33,0830
-	10	R	5,0621	9,1800	15,5912	15,6243	20,2608	24,3605	27,3708	33,0991
	$\rightarrow \infty$	R	5,0867	9,2322	15,6539	15,6539	20,3467	24,4260	27,5035	33,1266
3	1	R	6,7967	11,2267	16,9073	23,9361	24,1443	31,7728	32,3859	40,5160
_	2	R	6,2190	9,2206	13,9478	20,2005	22,3785	26,4021	27,9931	32,3162
_	4	R	6,2591	9,1376	13,6449	19,7145	22,0548	25,3100	27,3533	30,4685
-	5	R	6,2824	9,1785	13,6729	19,7180	22,0463	25,2673	27,3336	30,3681
-	10	R	6,3258	9,2748	13,7822	19,8093	22,0659	25,3159	27,4015	30,4135
	$\rightarrow \infty$	R	6,3442	9,3233	13,8483	19,8843	22,0844	25,3768	27,4697	30,5201

Tabla 2: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica simplemente apoyada. R: método de Ritz; MEF: método de elementos finitos. (Fig. 2).

a/b	α		Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
1	1	R	9,2024	17,5972	20,5756	28,6224	31,9806	37,5588	42,4741	45,2500
	2	R	8,1604	15,0665	18,2043	25,6432	25,7777	33,3384	37,0902	39,2919
		MEF	8,1598	15,0655	18,2021	25,642	25,7736	33,334	37,0847	39,2933
	4	R	8,0718	14,7670	17,8971	24,7865	25,1488	32,7344	35,4279	39,0369
	5	R	8,0691	14,7547	17,8835	24,7347	25,1214	32,7014	35,3206	39,0149
	10	R	8,0681	14,7485	17,8765	24,7057	25,1065	32,6821	35,2527	38,9989
	$\rightarrow \infty$	R	8,0678	14,7480	17,8760	24,7030	25,1042	32,6799	35,2477	38,9958
		MEF	8,0680	14,7485	17,8764	24,7045	25,1052	32,6806	35,251	38,9974
1,5	1	R	9,3438	17,3321	21,3306	27,9238	32,3445	39,0482	41,2714	45,2905
	2	R	8,2952	14,7586	18,9707	24,7193	26,1229	35,0055	36,8273	37,8367
	4	R	8,2044	14,4539	18,6573	24,2107	25,1163	34,4038	35,1420	37,3237
	5	R	8,2016	14,4412	18,6433	24,1825	25,0631	34,3701	35,0326	37,2821
	10	R	8,2005	14,4349	18,6361	24,1671	25,0333	34,3506	34,9628	37,2545
	$\rightarrow \infty$	R	8,2003	14,4344	18,6356	24,1648	25,0306	34,3485	34,9577	37,2511
2	1	R	10,6180	17,0029	25,4527	26,1415	35,6565	36,0787	46,8507	48,6427
	2	R	9,5182	14,1628	21,5188	23,7992	29,2892	31,4016	37,4987	43,6027
	4	R	9,4067	13,8066	20,9349	23,4375	28,1535	30,6589	35,6292	42,9049
	5	R	9,4027	13,7908	20,9025	23,4190	28,0874	30,6093	35,5026	42,8467
	10	R	9,4010	13,7825	20,8843	23,4085	28,0475	30,5771	35,4177	42,8141
	$\rightarrow \infty$	R	9,4007	13,7820	20,8814	23,4079	28,0444	30,5727	35,4116	42,7931
3	1	R	14,0835	19,1288	25,4525	33,1465	36,5790	42,2774	44,8658	52,8914
	2	R	12,8968	15,8778	20,6183	27,0514	34,2051	35,1732	38,2480	44,1160
	4	R	12,7336	15,3727	19,8160	26,0439	33,7549	34,0207	36,8313	41,7881
	5	R	12,7261	15,3460	19,7663	25,9735	33,7255	33,9359	36,7307	41,6062
	10	R	12,7223	15,3302	19,7351	25,9246	33,7065	33,8831	36,6617	41,4704
	$\rightarrow \infty$	R	12,7218	15,3293	19,7311	25,9178	33,7052	33,8544	36,6565	41,4605

Tabla 3: Coefficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica empotrada.

R: método de Ritz; MEF: método de elementos finitos. (Fig. 2).

A continuación, en las Tablas siguientes se presenta el caso de la placa súper elíptica ortótropa $\binom{a}{b}=1$; $\alpha=2$) con cuatro masas adosadas, para las tres condiciones de borde. Figura 4. En las Tablas 4 a 6, la relación entre las masas $m_j = m$ y la masa de la placa m_p es de 0,50. El acuerdo entre los valores calculados con la aproximación propuesta y el método de elementos finitos es muy bueno, tal como puede observase en las Tablas.

					$\frac{m}{m_p} = \frac{1}{2}$				
β	α=2	$\mathbf{\Omega}_1$	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
0	MEF	2,8865	3,8970	4,1528	8,8229	8,9217	13,0298	13.,7712	15,4082
	R	2,8956	3,8964	4,1654	8,8244	8,9207	13,0305	14,0620	15,4094
0,1	MEF	2,9857	3,8912	4,2500	8,0652	8,3666	9,0660	10,7978	14,7306
	R	2,9800	3,8888	4,2444	8,2951	8,4255	9,1236	11,1666	14,7535
0,2	R	3,1692	3,7722	4,4959	6,3171	7,3772	9,0417	9,7042	11,4073
0,3	MEF	3,3580	3,3619	4,9922	6,2200	7,5064	9,1755	9,2296	9,4250
	R	3,3571	3,3616	4,9959	6,2669	7,5907	9,1786	9,4749	9,4821
sin	MEF	3,5409	3,8963	6,6418	8,8229	8,9217	13,0298	15,4079	16,6273
masa	R	3,5408	3,8964	6,6418	8,8244	8,9207	13,0305	15,4094	16,6276

Tabla 4: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\rho h / D_1}$ de una placa ortótropa súper elíptica libre con cuatro masas adosadas. R: método de Ritz; MEF: método de elementos finitos. a/b = 1. (Fig. 4).

En la última fila de cada tabla siguiente se incluyen los coeficientes de frecuencia de la placa ortótropa sin masas adosadas.

En la Tabla 4 es posible ver el efecto que las masas producen en los coeficientes de frecuencia, dependiendo de la posición de las masas y del modo de vibración.

Las cuatro masas en el centro de la placa ($\beta = 0$) producen una disminución de la frecuencia fundamental de la placa sin masa, para los tres casos de vinculación analizados. Tanto más notable cuanto más restringido está el desplazamiento en el borde exterior.

					$\frac{m}{m_p} = \frac{1}{2}$				
β	<i>α</i> =2	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
0	MEF	1,4248	9,9908	11,7854	12,1453	18,8278	21,8613	29,0995	31,3119
	R	1,4238	9,9692	11,9524	12,1306	18,7989	21,9230	29,0714	31,2987
0,1	MEF	1,4799	6,9238	8,3707	13,2007	15,9668	17,2000	19,0791	22,1977
	R	1,4735	6,9892	8,4727	13,1743	16,4805	17,8624	19,7297	22,1754
0,2	R	1,5991	4,9265	5,9926	10,4155	16,0576	18,1433	22,0410	22,8076
sin	MEF	4,3049	9,9908	12,1453	18,8248	19,1759	24,9418	29,0995	31,3119
masa	R	4,2879	9,9692	12,1306	18,7989	19,1562	24,9303	29,0714	31,2987

Tabla 5: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica simplemente apoyada con cuatro masas adosadas. R: método de Ritz; MEF: método de elementos finitos. a/b = 1. (Fig. 4).

					$\frac{m}{m_p} = \frac{1}{2}$				
β	α=2	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
0	MEF	2,1503	15,0657	17,5232	18,2024	25,7794	29,1205	37,0861	39,2933
	R	2,1617	15,0665	17,8167	18,2043	25,7777	29,2501	37,0902	39,2919
0,1	MEF	2,3074	8,3098	10,0109	19,6033	19,6935	21,7831	25,995	29,0238
	R	2,3043	8,4414	10,2085	19,6975	22,3300	22,4354	26,7082	29,7572
0,2	R	2,6597	5,9642	7,2311	11,0601	23,6021	25,8863	31,1810	31,3745
sin	MEF	8,1598	15,0655	18,2021	25,6420	25,7736	33,3340	37,0847	39,2933
masa	R	8,1604	15,0665	18,2043	25,6432	25,7777	33,3384	37,0902	39,2919

Tabla 6: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica empotrada con cuatro masas adosadas. R: método de Ritz; MEF: método de elementos finitos. a/b = 1. (Fig. 4).

En las Tablas siguientes, 7 a 9, se muestran los coeficientes de frecuencia de placas súper elípticas ortótropas para la relación $\frac{a}{b} = 1,5$.

	$\frac{m}{m_p} = \frac{1}{2}$												
β	α=2	$\mathbf{\Omega}_1$	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8				
0	R	2,7348	3,8923	4,3746	8,7470	8,7757	12,7710	14,0420	15,2216				
0,1	R	2,8109	3,8846	4,4778	7,7977	8,3137	9,2151	11,5652	14,8133				
0,2	R	2,9839	3,7678	4,7629	6,0384	7,4069	9,0996	10,0451	11,3494				
0,3	R	3,1799	3,3717	5,2772	5,9821	7,6307	9,3035	9,5050	9,7869				
sin masa	R	3,4124	3,8923	6,8844	8,7470	8,7757	12,7710	15,2216	16,5097				

Tabla 7: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica libre con cuatro masas adosadas. R: método de Ritz; $a'_{b} = 1, 5.$ (Fig. 4).

					$\frac{m}{m_p} = \frac{1}{2}$				
β	<i>α</i> =2	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
0	R	1,4391	9,7254	11,7914	12,6328	19,0053	22,2752	28,8036	30,1580
0,1	R	1,4901	6,8096	8,8023	12,9432	15,9635	18,0482	20,2828	22,7155
0,2	R	1,6181	4,7973	6,2296	10,4820	15,5943	17,5110	22,6322	23,6983
0,3	R	1,8118	4,1420	5,3249	7,5964	18,1576	21,1442	25,6210	27,8275
sin masa	R	4,3406	9,7254	12,6328	18,4246	19,0053	26,1729	28,8036	30,1580

Tabla 8: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica simplemente apoyada con cuatro masas adosadas. R: método de Ritz; a/b = 1, 5.(Fig. 4).

					$\frac{m}{m_n} = \frac{1}{2}$				
β	<i>α</i> =2	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8
0	R	2,1903	14,7586	17,5730	18,9707	26,1229	29,8098	36,8273	37,8367
0,1	R	2,3375	8,2348	10,6053	19,3030	21,6734	22,6734	27,4790	30,6652
0,2	R	2,7017	5,8221	7,5212	11,1419	22,8123	24,9836	32,0581	32,6325
0,3	R	3,2577	5,3201	6,7104	8,4253	24,6141	29,6577	34,0542	36,1793
sin masa	R	8,2952	14,7586	18,9707	24,7193	26,1229	35,0055	36,8273	37,8367

Tabla 9: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica empotrada con cuatro masas adosadas. R: método de Ritz; $a'_b = 1, 5..$ (Fig. 4).

En las Tablas siguientes 10 a 12, se muestran los coeficientes de frecuencia de placas súper elípticas ortótropas para la relación $\frac{a}{b} = 2$.

	$\frac{m}{m_p} = \frac{1}{2}$												
β	α=2	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8				
0	R	2,0503	3,8604	5,4960	7,2985	8,3604	13,0663	14,1038	14,2529				
0,1	R	2,0973	3,8525	5,7248	5,9915	7,9199	9,7344	13,9489	14,3512				
0,2	R	2,2181	3,7341	4,7076	6,2372	7,3092	9,5428	10,9318	12,2906				
0,3	R	2,3886	3,3359	4,5766	6,9196	7,4918	9,2598	10,1676	11,8434				
sin masa	R	2,6891	3,8604	7,2985	8,3604	8,6263	13,0663	14,1038	14,4898				

Tabla 10: Coeficientes de frecuencias $\Omega_i = \omega_i \ a \ b \sqrt{\frac{\rho \ h}{D_1}}$ de una placa ortótropa súper elíptica libre con cuatro masas adosadas. R: método de Ritz; $a'_b = 2$. (Fig. 4).

	$\frac{m}{m_p} = \frac{1}{2}$												
β	<i>α=2</i>	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8				
0	R	1,5750	9,0009	10,8866	15,7422	20,9118	24,0651	24,7209	28,7551				
0,1	R	1,6385	6,1975	10,7645	11,7246	13,7979	19,7396	23,0327	26,0833				
0,2	R	1,7906	4,3571	7,6449	11,0754	13,5811	14,9336	25,1680	25,6025				
0,3	R	2,0087	3,8026	6,4809	8,1275	15,4660	17,7272	27,0277	28,5666				
sin masa	R	4,8263	9,0009	15,6953	15,7422	20,9118	24,7209	28,7551	33,5788				

Tabla 11 Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\frac{\rho h}{D_1}}$ de una placa ortótropa súper elíptica simplemente apoyada con cuatro masas adosadas. R: método de Ritz; $a_{h} = 2$. (Fig. 4).

				/ 0						
	$\frac{m}{m_p} = \frac{1}{2}$									
β	α=2	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	Ω_7	Ω_8	
0	R	2,4349	14,1628	16,4949	23,7992	29,2892	31,4016	32,2061	37,4987	
0,1	R	2,6274	7,5691	12,9691	17,6463	19,2152	24,7076	31,5221	35,6114	
0,2	R	3,0755	5,4080	9,2611	11,8719	20,0182	21,5768	34,9298	35,2236	
0,3	R	3,7018	5,0568	8,1110	9,1543	21,4480	25,2507	31,2608	37,1930	
sin masa	R	9,5182	14,1628	21,5188	23,7992	29,2892	31,4016	37,4987	43,6027	

Tabla 12: Coeficientes de frecuencias $\Omega_i = \omega_i a b \sqrt{\rho h / D_1}$ de una placa ortótropa súper elíptica empotrada con cuatro masas adosadas. R: método de Ritz; a/b = 2. (Fig. 4).

5 CONCLUSIONES

El método de Ritz con las funciones base propuestas, demuestra ser una herramienta eficiente en la determinación de un gran número de frecuencias naturales de placas ortótropas súper elípticas, cuyo forma presenta una variada gama de geometrías, distintas condiciones de borde, y la presencia de masas puntuales adosadas. Esta técnica numérica converge de manera rápida y la precisión puede ser fácilmente mejorada incrementando el número de términos adoptados en la función aproximada de la deformación de la placa, simplemente tomando un número adecuado de términos N en la sumatoria de aproximación (6). La economía de la tilización de códigos de elementos finitos que requieren modelar el dominio de la placa, cada vez que consideramos una geometría diferente para su contorno. Esto es importante en la etapa de diseño de las estructuras.

6 AGRADECIMIENTOS

El presente trabajo fue auspiciado por la Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur y por el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

REFERENCIAS

- ALGOR Professional Software, V23, *Linear Mode Shapes and Natural Frequencies Module*, 2008.
- Altekin, M., Free vibration of orthotropic super-elliptical plates on intermediate supports. *Nuclear Engineering and Design*, 239: 981–999, 2009.
- DeCapua, N.J. and Sun, B.C., Transverse vibration of a class of orthotropic plates. *Journal of Applied Mechanics*—ASME 39: 613–615: 1972
- Gardner, M. The "superellipse": a curve that lies between the ellipse and the rectangle. *Scientific American*, 21:222–236, 1965.
- Lekhnitskii S. G., Anisotropic Plates, *Gordon and Breack Science Publishers*, New York, N.Y., 1968.
- Sato K., Free flexural vibrations of an elliptical plate with edge restrained elastically, *The Japan Society of Mechanical Engineers*, 260-264, 1976.
- Sato K., Free flexural vibrations of an elliptical plate with free edge, *The Journal of the Acoustical Society of America* 54, 547-550, 1973.
- Sato K., Free flexural vibrations of an elliptical plate with simply supported edge, *The Journal of the Acoustical Society of America* 52, 919-922, 1972
- Sato K., Vibration and Buckling of a Clamped Elliptical Plate on Elastic Foundation and under Uniform In-Plane Force, *Theor Appl Mech Jpn* 51:49-62, 2002.
- Veubeke B. Fraejis de, A conforming finite element for plate bending. *International Journal of Solids and Structures*, 4: 95-108, 1968
- Wang, C.M., Wang, L. and Liew, K.M., Vibration and buckling of super elliptical plates. *Journal of Sound and Vibration* 171: 301–314, 1994.
- Zhou, D., Lo, S.H., Cheung, Y.K. and Au, F.T.K., 3-D vibration analysis of generalized super elliptical plates using Chebyshev-Ritz method, *International Journal of Solids and Structures*, 41: 4697-4712, 2004.