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Abstract. The objective of this work is to present a structural design methodology considering the 
control effects, the change of the topology by a control force action, and design modal control for 
suitable fixed actuator locations. The structural optimization design in a cantilever structure is 
completed through a homogenization design method, while the control force is obtained by the 
optimal control design for transient response and performed in the modal space. In this work the 
actuators locations are chosen arbitrarily prior to the structural design. In fact, it is a known fact that a 
good location for an actuator in a cantilever structure is close the fixed size of the structure, since it 
acts upon the first and most significant mode. The lower fundamental modes are responsible for the 
most of the tip displacement of the beam; therefore the first two eigenfunctions are computed and 
considered in the work. The additional dynamics and control design were included in a topology 
optimization code. Simulations were conducted to assess the optimality and control model efficiency.
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1  INTRODUCTION 
 
     Structural topology optimization and structural vibration control have called attention both 
in theoretical research and practical applications in engineering. Structural vibration control is 
a particularly important consideration in the design of dynamic systems. The main idea of the 
structural optimization is to obtain an optimal material layout of a load-bearing structure. 
Usually, continuum topology optimization problems are formulated to minimize the structural 
material volume or to optimize the structural performance. A typical example is to raise the 
first fundamental frequency of a structure while obeying a volume constraint (Zhan, Xiaoming 
and Rui, 2009). Meanwhile, structural dynamics control is used to minimize or suppress 
vibration effects.  
     There are always fundamental interest in designs with efficient structural control system 
from both structural and control engineers. However, these groups have been working 
independently. Traditionally, the structural designer develops his design based on strength and 
stiffness requirements, and the control designer creates the control algorithm to reduce the 
dynamic response of a structure (Ou and Kikuchi, 1996). In this work we are designing the 
structure and controls simultaneously, meaning that the cost function includes not only the 
strain energy, but also the control energy.  
     The reason why topology optimization is becoming a very important research field is the 
necessity of efficient methodologies to design structures, thus saving material and time. The 
main objective of the topology optimization problem is to find a material distribution that 
minimizes a given objective functional, subjected to a set of constraints, achieved by a 
consistent parameterization of the material properties in each part of the design domain. A 
natural question is whether there exists or not material in a given point, which leads to a 
discrete problem. It is well-known that this integer parameterization leads to numerical 
difficulties, associated with the integer problem convergence (Cardoso and Fonseca, 2003; 
Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund, 1999). Minimizing the vibration effects 
of the dynamic response is an important goal for the structural vibration control, and the 
effectivity of the control depends on the weighting matrices. 
     The objective of this paper is to present a structural design methodology considering the 
control effects, the change of the topology by a control force action, and design modal control 
for suitable fixed actuator locations. The structural optimization design is completed through a 
density design method, while the control force is obtained by the optimal control design for 
transient response and performed in the modal space.  
     The efficient structural control design needs a careful selection of actuator positions (Ou 
and Kikuchi, 1996). However, in this work the actuators locations are chosen arbitrarily prior 
to the structural design. In fact, it is well known that a good location for an actuator in a 
cantilever structure is close the fixed size of the structure, since it acts upon the first and most 
significant mode. The lower fundamental modes are responsible for the most of the tip 
displacement of the beam; therefore, the first two eigenfunctions are computed and considered 
in this work. 
     The additional dynamics and control design were included in a topology optimization code 
(Sigmund, 2001). Simulations were conducted to assess the effectiveness and control model 
efficiency. 
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2 FORMULATION OF STRUCTURAL TOPOLOGY OPTIMIZATION CONSIDE-
RING CONTROL ACTION 

    In this work the homogenization design method (Bendsøe and Sigmund, 2003) is the tool 
for the topology optimization considering a control action. This method is based on the 
concept of optimizing the material distribution, through a density distribution. A finite 
element mesh is defined to perform the structural modal analysis (Bathe, 1996). As a 
simplification, we assume that the density is constant in each finite element. An optimality 
criteria (OC) is derived from the necessary minimization conditions, and it is solved to update 
the density distribution. A number of simplifications are introduced to the implementation, as 
a regular mesh.     
     We now consider that the objective function is the sum of the strain energy and the control 
energy. Then, the topologic optimization problem in steady state has the form   
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where U is an nx1 displacement vector, H is an nxm location matrix for the control force, m is 
the number of action control forces and F is an nx1 applied external force vector, f is an mx1 
control force vector. The magnitudes of the matrices Q and R are assigned according to the 
relative importance of the state variables and the control force in the minimization procedure. 
The matrix Q can be adjusted by Q=K, where K is the finite element global stiffness matrix. x 
is the vector of design variables, xmin is a vector of minimum relative densities. V(x) and V0 is 
the material volume and design domain volume, respectively and Vmin is the prescribed 
volume function. Considering the discretization, 
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where N is the number of elements,  p is the penalization exponent, ue and ke are the element 
displacement vector and stiffness matrix, respectively. 
     The optimization problem is solved using the Optimality criterion (OC), and this criterion 
is derived from the Karush-Kuhn-Tucker conditions (Bendsøe and Kikuchi, 1988). The 
Lagrangian function of the minimization problem is 
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     To locate a stationary point, it is necessary that / 0eL x∂ ∂ = , then 
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     Assume that constrains of the design variables are not active, 2 3 0e eλ λ= = , and that the load 

and forces are design independent, ( )
0

∂ + =
∂

Hf F
x

. With some expanding of the terms, also 

simplification of the equations and heuristics scheme for the design variables (Sigmund, 2001) 
we can obtain the new xe for each iteration. More details about the expanding of the terms can 
be seen in the follow subsection, Sensitivity Analysis. The mesh-independent filter is the same 
as in Sigmund (2001). 
     The feedback requires a full knowledge of states. By using the displacement closed-loop 
feedback control we can assume      

 −= − 1 Tf R H U ,  (5) 
 
then the equilibrium constraint from Eq. (1) becomes 
 
 =cK U F , (6) 
 
where 
 −= + 1 T

cK K HR H . (7) 
 
     We can note that this cK  is the modified matrix under control effect and the modification 
appears where the force control is applied, which affects also the eigenvalues and 
displacement of the structure. The problem can be solved as the conventional static finite 
element method in standard form =cK U F . 
     The influence of the weighting matrix R is an important aspect to consider. To have 
significant effect on the topology of the structure, the matrix R-1 need an equivalent 
magnitude compatible with the stiffness matrix. Since the stiffness is modified on each 
iteration, then R is chosen as ( )w/λR diag= , where λ are the eigenvalues (the smallest to the 
largest) and w are weighting constants with the same order of magnitude of the stiffness 
terms. 

2.1 Sensitivity Analysis 

     Sensitivities are defined as the derivatives of the objective function and the constraints 
with respect to the design variables, and is often the major computational cost of the 
optimization. In this work the objective function sensitivity requires differentiating 
displacements (which implies stiffness differentiation) and eigenvalues. The objective 
function can be simplified using Eq. (2) into Eq. (1), then ( )  J = + +T Tf Rf U Hf F .Using Eq. 

(5), this yields J = FTU. Taking the derivative of the objective function, on each element, one 
can obtain  
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 into (8), we have 
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The sensitivity of the each eigenvalue can be seeing in Haftka et al. (1990), and is computed 
by 
 

 λ φ λ φ φ λ φ
   ∂ ∂∂ ∂ ∂= − = −   ∂ ∂ ∂ ∂ ∂   

T T e e
e e

e e e e e

k mK M
x x x x x

, (12) 

 
where φ  is the mass-normalized eigenvector and M is the mass matrix, on each element eφ  
and me.  

3 CONTROL EFFECTS ON STRUCURAL TOPOLOGY 

     It is clear that control forces acting in different locations on the structure should influence 
the optimized design. To exemplify this fact, we assume a design domain as a cantilever beam 
shows in Figure 1.   
 
 
 
 
 

             Figure 1.  Design domain. 
 

     For a structural only design of this domain, we use the compliance as the objective 
function, and obtain the topology shown in Figure 2a. Then we try to introduce a control force 
on this design layout. It is possible that on the desired location for the actuator there is no 
material. If the optimization is performed without considering the control force, then we need 
either to change the actuator location or to redesign the structure. In Figure 2a we indicated 
with a point (small circle) the actuator location and designed the structure again, this time 
considering the control force. The new topology for this problem is shown in Figure 2b. The 
mesh domain in the simulation is 16x40 finite elements. 
      

 
   (a)      (b) 

Figure 2. a-Topology optimization without control force action. b-Topology optimization with control force 
action. 
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     In this simulation it can be noted that the structure design change completely with the 
control action effects. Additionally some attention for the actuator location is required to 
assure the controllability of the system. 

4 OPTIMAL CONTROL DESIGN IN MODAL SPACE  

After computing the optimal structure we search for the vibration suppression for a transient 
response of the system. It is possible to design the control for the displacement of a particular 
point of the structure, but in this work we derive the control in independent modal space. 
     The formulation of independent modal space control, derived by the classical optimal 
theory (Bertsekas, 1995), associated with the distributed-parameter system can be written 
briefly as follows. The modal formulation for the system is 
 
 Hfηωη T2 φ=+ɺɺ , (13) 
 
where ω  are the angular frequencies. 
     The dynamic system defined by Eq. (13) can be parameterized in first order equations and 
written in the state- coefficient form  
 
 BfAyy +=ɺ , (14) 
 
where y is a state, time dependent variable, n2ℜ∈yɺ  is the vector of the first order time 

derivates of the states in modal space, mS ℜ∈∈f  is the control vector, S is the control 
constraint set. This system represents the constrains from the nonlinear regulator problem, 
together with ( ) ( ) 0yyty 00 =∞= , , respectively the initial and final conditions. 
     The coefficient matrices, in modal space, without considering damping, are given by 
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where nnx22ℜ∈A  and nxm2ℜ∈B . It is assumed that f(0)=0, which imply that the origin is an 
equilibrium point. 
      A state feedback rather than output feedback is adopted to enhance the control 
performance. The quadratic cost function for the regulator problem is given by 
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where Qc nnx22ℜ∈  is semi-positive-definite matrix and Rc mxmℜ∈  positive definite. There are 
weighting matrices on the state and control inputs, respectively.   
     Assuming full state feedback, the control law is given by 
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     The algebraic Riccati equation to obtain P, is given by 
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 −+ − + =T 1 T
c cA P PA PBR B P Q 0 . (18) 

 
     The computational cost is high if all modes are considered. But it can be dramatically 
reduced if only a few modes are dominant and their control is sufficient for the whole 
structure. 

5 RESULTS 

     The physical system considered in this work is composed by cantilevered steel beam 
shown in Fig. 1. The resulting topology for this problem is show in Figure 3, where the 
locations of the horizontal control forces are indicate by points (small circles). This location 
for the actuator was chosen because it is a known fact that the best place for one actuator is as 
close as possible to the fixed size of the structure, which bears the maximum stress induced by 
the first and most significant mode.   
 

 
   (c)            (d) 

Figure 3. c-Topology optimization without control force action. d-Topology optimization with control force 
action. 

    
     Some simplifications are introduced to the problem and its response analysis. We assume 
that the two control points can have different forces. This fact means that there are two 
external actuators. Embedded actuators (piezoelectric materials or hydraulic mechanisms), 
would generate equal magnitude opposing forces and need to be explicitly included in the 
model. 
     The convergence of the objective function is plotted in Figure 4. 
 

  
     (a)                  (b)             (c) 

Figure 4. Objective function convergence a- without control; b- with one control force; c- with two control forces 
 
     We can observe in Figure 4 that the convergence is faster in the initial 30 iterations, after 
there is a smaller change of the objective function value at each iteration.  
     The structure shown in Figure 1 subject to transient forces produces initial deformation and 
so active the natural vibrations. The two free vibration modes of the model in Figure 1, which 
finite element discretization are shown in the figures 5a and 5b, 
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    (e)     (f) 

Figure 5. Deflections of first and second modes of the beam. 
 
     The results of the optimal control simulation in Matlab are shown in Figure 6. The 
weighting matrices are { } { }5.0,1 diagdiag == cc RQ . Here are considered the two first modes of 
the optimized structure. The position 1 is on the left point (small circle) and position 2 on the 
right, shown in Figure 3. The fourth-order Runge-Kutta method was used to integrate the 
equations for a twenty seconds simulation. 
 

 
Figure 6. Deflections of first and second modes without independent modal control (blue and red) and with 

independent modal control (black). 
 

          It is possible observe that the modal displacement go quickly to zero, even without 
natural damping.   

6 CONCLUSIONS AND CONSIDERATIONS 

     In this work we introduced an integrated design procedure for a topology optimization and 
structural control system. This technique uses optimal design of a controlled structure and 
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steady state control forces was achieved through the homogenization method and 
displacement feedback law. Optimal controls were applied to reduce the structural vibration 
within a reasonable few cycles. Active control can remove the vibration suppression from the 
structure effectively if it is carried out appropriately. 
     The simulations for the control system confirmed the effectiveness of this control 
technique. The numerical results indicate that combined structural topology design and 
optimal control can become an efficient methodology.  
     The present methodologies can be easily extended to other applications.  
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