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Abstract. An Eulerian beam finite element for composite thin-walled beams considering arbitrary 

displacements and rotations is presented. As a distinct feature, the virtual work equations are written as 

a function of generalized strain components, which are parametrized in terms of the director field and 
its derivatives. The generalized strains and forces are obtained via a transformation that maps 

generalized components into physical components. Finite rotations are parametrized with the 

incremental rotation tensor and an iterative multiplicative update of the director field is proposed. The 
formulation of the constitutive equation of the composite material is aided by a curvilinear 

transformation of the strain tensor. The proposed formulation is also valid for both isotropic and 

anisotropic beams. Different tests are performed to validate de formulation. 
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1 INTRODUCTION 

The use of composite thin walled beams in different areas of engineering has been 

increasing since mathematical methods for describing complex structural behaviors started to 

be developed. With the use of the finite element method different formulations for beams have 

been reported, but some subjects, such as the inclusion of anisotropic materials in 

displacement based geometrically exact beam theories, have not been treated yet. As a matter 

of fact, the development of a displacement based finite element formulation for geometrically 

exact thin-walled beams made of composite materials is still not reported in the literature.  

A geometrically exact beam theory must provide exact relations between the configuration 

and strains, in a fully consistent manner with the virtual work principle and regardless of the 

magnitude of the kinematic variables chosen to parametrize the configuration. It is well 

known that the treatment of finite rotations constitutes the main difficulty of a geometrically 

exact nonlinear formulation. In this work, we choose a set of variables to represent exactly the 

kinematic behavior of the thin-walled beam and develop a method to derive the relationships 

between the strains and the configuration. 

Several authors have studied geometrically exact beam finite element formulations after 

the works of Reissner (1972) and Antman (1976) appeared in the early 70’s. Also, an 

extensive and detailed study of finite rotations was made by Argyris (1982). Besides 

describing key aspects of spatial and material rotations he also clarifies the so called 

semitangential rotations, for which commutativity holds. 

Updated and Total Lagrangian formulations valid for large displacements and based on a 

degenerate continuum concept were presented by Bathe and Bolourchi (1979). Simo (1985) 

and Simo and Vu-Quoc (1986) developed a 3D geometrically exact formulation for isotropic 

hyperelastic beams. They used the Reissner relationships between the variation of the rotation 

tensor and the infinitesimal rotations to derive the strain-configuration relations, maintaining 

the geometric exactness of the theory. Simo (1985) parametrized the finite rotations with the 

rotation tensor, aided by the quaternion algebra to enhance the computational efficiency of the 

algorithm. He proposed a multiplicative update procedure for the rotational changes, obtaining 

a non-symmetric tangent stiffness.  

In contrast, Cardona and Geradin (1988) presented a different alternative of 

parametrization, using the total rotational pseudo-vector to update the 3D rotations on the 

basis of the initial configuration. They also proposed an alternative approach, updating the 

configuration on the basis of the last converged configuration (in what could be understood as 

an updated Lagrangian approach). This additive treatment of the rotational degrees of freedom 

gives rise to a symmetrical tangent stiffness. An isotropic hyperelastic constitutive law was 

assumed. 

An extension of Simo’s formulation to curved beams was presented by Ibrahimbegovic 

(1995). He extended the formulation to arbitrary curved space beams maintaining some key 

aspects of Simo formulation but using hierarchical interpolation. He also proposed an 

incremental rotation vector formulation (Ibrahimbegovic, 1997) to solve the nonlinear 

dynamics of space beams.  

The use of the Green-Lagrange strain measures in a geometrically exact finite element 

formulation for 3D beams seems to have been first introduced first by Gruttmann (1998).  

An extensive and detailed review of several aspects of existent geometrical nonlinear finite 

element formulations of beams was presented by Crisfield (1997), describing essential aspects 

of geometrical nonlinear beam theories and focusing the attention in the treatment of finite 

rotations.  
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Betsch and Steinmann (2002), Armero and Romero (2001) and Romero and Armero 

(2002) further contributed to the subject presenting frame-invariant formulations for 

geometrically exact beams using the director field to parametrize the equations of motion.  

All the aforementioned formulations deal with solid cross section beams. As a 

consequence, the extension of these formulations to thin-walled beams is not natural. The 

advantage of thin-walled beam formulations is that the inclusion of anisotropic materials is 

natural. 

The inclusion of anisotropic materials to thin-walled and also solid beam finite element 

formulations was studied by Hodges. He developed a geometrically-exact, fully intrinsic 

theory for dynamics of curved and twisted composite beams, having neither displacement nor 

rotation variables appearing in the formulation (Hodges et al., 2009).  

Extensive work on analytical methods for solving geometrically nonlinear problems of 

composite thin-walled beams was done by Librescu (2006). He used different analytical 

approaches to treat composite beams undergoing moderate rotations, treating rotation 

variables in a vectorial fashion. Piovan and Cortínez (2007) and Machado (2005) presented a 

formulation for composite beams undergoing moderate rotations. Both formulations rely on 

an assumed displacement field, considering “vectorial” rotation variables up to a certain order. 

This work presents an implementation of the classical thin-walled beam theory in a 

geometrically exact (configuration based) Eulerian finite element formulation. The rotation 

variables are treated exactly, and thus the varied configuration is obtained considering that the 

rotation variables belong to a SO(3) manifold. 

This formulation is based on an assumed displacement field that, as said before, describes 

the kinematic behavior of the beam regardless of the magnitude of displacements and 

rotations. Following the classical procedure of the theory of thin walled beams, we develop 

the expressions for the Green-Lagrange (GL) strains and then transform these strains to a 

curvilinear coordinate system. To ease that process, we first express the GL strains in terms of 

generalized strains by the introduction of a linear transformation. These generalized strains are 

written in terms of the director vectors, its derivatives and the derivatives of the position 

vector of the center of reduction (the pole). This leads to a remarkable simple expression for 

the curvilinear strains. 

Extracting from the GL strains the functions that describe the cross section shape we can 

write the virtual work only in terms of generalized strains and generalized beam forces. The 

equations of motion are thus parametrized in terms of the director field and their variations. 

The parametrization of finite rotations is done using spatial spin variables, obtaining a 

natural relationship between the director field and the configuration. This spins variables are 

then interpolated using linear interpolation and the rotation tensor is calculated and updated 

for each iteration only at the integration points. The update of the derivatives of the director 

field is performed iteratively on the basis of the last iterative configuration, eliminating the 

necessity of calculating the incremental rotation tensor.  

2 KINEMATICS 

2.1 Generalities 

Consider two states of the beam, an undeformed reference state, denoted by   , and a 

deformed state, denoted by  , as shown in Fig. 1. Being    a spatial frame of reference, we 

define a reference frame    and a current frame    (both frames being orthonormal).  
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Figure 1. Kinematic description 

The displacement of any point in the deformed beam measured with respect to the 

undeformed reference state can be expressed in the global coordinate system    in terms of a 

vector             .  

The current frame    is a function of a running length coordinate along the reference line of 

the beam, denoted as x, and is fixed to the beam cross-section.  For convenience, we choose 

the reference curve   to be the locus of cross-sectional inertia centroids. The origin of    is 

located on the reference line of the beam and is called: pole. The cross-section of the beam is 

arbitrary and initially normal to the reference line of the beam. 

The relations between the orthonormal frames are given by the linear transformations: 

                                      (1) 

where       and      are two-point tensor fields       ; the special orthogonal (Lie) 

group. Thus, it’s satisfied that: 

   
                       (2) 

Throughout this work we will consider that the beam element is straight, so we set     .  

Considering the relations (1), we express the position vectors of a point in the beam in the 

undeformed and deformed configuration respectively as: 

                     

 

 

                                    

 

 

     (3) 

where in both equations the first term stands for the position of the pole and the second term 

stands for the position a point in the cross section relative to the pole. Note that,   is the 

running length coordinate and    and    are cross section coordinates.  

Also, it is possible to express the displacement field as: 

                                  

 

 

    (4) 
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where    represents the displacement of the kinematic center of reduction, i.e. the pole. Note 

that t is the pseudo-time variable. The set of kinematic variables is defined by three 

displacements and three spins as: 

 
                       

                          
   

(5) 

2.2 Parametrization of Finite Rotations 

According to the kinematic description presented previously, the beam configuration space 

consists on a linear space of three-dimensional vectors    and a nonlinear manifold of 

transformations   (a special orthogonal Lie Group SO(3)). This transformation is described 

mathematically via the exponential map as: 

            
    

 
  

      

  
     (6) 

where   is the so-called rotation vector,    its modulus and   is its skew symmetric matrix. 

In this work we parametrize finite rotations with the rotation tensor, using spins as rotation 

variables. The update of the directors is performed in a multiplicative way at each iteration. 

With this implementation the total rotation tensor from the last converged configuration to the 

current configuration is not needed, leading to a very simple and effective algorithm.  

It is well known the fact that this parametrization of finite rotations leads to a 

nonsymmetrical tangent stiffness matrix for non-equilibrium configuration. This is caused by 

the use of non-additive (even in the limit) spin variables, see e.g. (Crisfield, 1997)  

3 STRAIN AND STRESS FIELDS 

3.1 The Strain Tensor 

In contrast with most existing formulations for thin-walled beams (see e.g. (Librescu, 2006, 

Machado and Cortínez, 2005)) we express the GL strain tensor in terms of reference and 

current position derivatives. We operate in a conventional way by injecting the tangent 

vectors        and        into the GL strain tensor: 

         
    .  (7) 

The components with respect to the dual basis system    defined by     
    

 
 (see e.g. 

(Bonet, 1997)) are: 

     
 

 
                   (8) 

According to the kinematic hypotheses, the non-vanishing components of the GL strain 

tensor are only three, in vector notation: 

                       
   (9) 

where: 

 
    

 

 
   

  
   

  
       

    
    

    
        

    
    

    
   

            
 

 
  
    

  
   

  
  

 

 
  
    

  
   

  
         

    
    

    
    

(10) 
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In order to ease the derivation of the thin-walled beam strains we introduce a new entity; 

the generalized strain vector  . The generalized strain vector is a vector that properly 

transformed gives the GL strain vector. This transformation actually “separates” from the GL 

strain vector the variables related to the location of a point in the cross section (i.e.   ).  
Therefore, the mentioned transformation gives: 

          (11) 

where the transformation matrix is: 

    
         

 
  

  

 
  

     
           
          

    (12) 

And the generalized strain vector is: 

   

 
 
 
 
 
 
 
 
 
 
  

  

 
 
 
 

  

 
 
 
 

 
   

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
   

    
    

    
  

  
    

    
    

 

  
    

    
    

 

  
       

    

  
       

    

  
       

    

  
    

    
    

 

  
    

    
    

 

  
    

    
    

  
 
 
 
 
 
 
 
 
 
 

  (13) 

The derivation of strains and stresses measures for thin-walled beams is aimed by the 

introduction of an orthogonal curvilinear coordinate system        , see Fig. 2. The cross-

section shape will be defined in this coordinate system by functions        . The coordinate   

is measured along the tangent to the middle line of the cross section, in clockwise direction 

and with origin conveniently chosen. Also, the thickness coordinate             is 

perpendicular to s and with origin in the middle line contour. 
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Figure 2 – Curvilinear Transformation Schematic 

In order to represent the GL strains in this curvilinear coordinate system we make use of 

the curvilinear transformation tensor: 

   

 
 
 
 
 
   

 
    
  

    
  

  
    
  

    
   

 
 
 
 

  (14) 

where the functions     describe the mid-contour of the cross section. 

Hence, the GL strain vector in the curvilinear coordinate system,     , is obtained by 

transforming the rectangular GL strains as: 

                        
         (15) 

                  (16) 

Recalling (12) and (13), it’s found that the GL strain vector in curvilinear coordinates has a 

remarkably simple closed expression: 

       

            
 

 
   

 
 
 
 

 

 
   

 
 
 
        

   
  

 
    

  
 
       

       
    

    
  

 
    

  
 
       

       
    

   (17) 

where the prime symbol has been used to denote derivation with respect to the s coordinate. 

Proceeding in a similar way as done in (11), we separate from      the quantities related to 

the middle-line coordinate s and the quantities related to the thickness coordinate n. Before, 

we can refer to Fig. 2 (see also (Machado and Cortínez, 2005)) to easily verify that the 

location of a point anywhere in the cross-section can be expressed as: 

                 
    
  

                 
    
  

  (18) 

where    locates a point anywhere in the cross section and     locates the points lying in the 

middle-line contour. Introducing (18) into the matrix   , defined in (16), we can obtain a cross 

sectional matrix    that is a function only of the midsurface coordinates    . This form of    

will be used hereafter. The expression of this matrix is given in Appendix A. 

As it will be clarified in the next section, we will use five independent curvilinear strain 

measures (collected in the vector   ) to describe the strain state of the thin-walled beam, or 

more exactly; a laminate (see e.g. (Barbero, 2008, Jones, 1999)). Thus, the strain state of the 

beam will be described by: 

                          (19) 

Pursuing the mentioned objective of describing the strain state of the beam in terms of the 

generalized strain vector, we propose a matrix   to establish the relationship between the GL 

curvilinear strains and the generalized strains as: 

         (20) 

Substituting (18) into (17), we obtain:  
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  (21) 

Where we have neglected the terms in   .  

3.2 Composite Mechanics - Constitutive Relations 

According to the theory of thin-walled composite laminates (Barbero, 2008), we can 

express: 

 

 
 
 
 
 
   

   

   

   

    
 
 
 
 

 

 
 
 
 
 
 
  

    
           

  
    

           

    
  
   

                 

                  
 
 
 
 
 

 
 
 
 
 
   
   
   
   

    
 
 
 
 

  (22) 

where   
   are components of the laminate reduced in-plane stiffness matrix,      are 

components of the reduced bending-extension coupling matrix,      are components of the 

reduced bending stiffness matrix and   
  
  is the component of the reduced transverse shear 

stiffness matrix. 

We can express the above relation in matrix form as: 

          (23) 

where   is the composite shell constitutive matrix and    is the curvilinear shell strain vector 

defined in (20).  

Now, it is possible to express the shell forces as a function of the generalized strains. 

Replacing (20) into (23) we obtain; 

           (24) 

Now, we transform the shell forces in (24) back to the “generalized space” by using the 

double transformation matrix  . Thus, we obtain a new entity, a sort of transformed back 

shell strain: 

   
                (25) 

Although at first glance this stress could seem contrived, it can be observed that it is a 

vector of generalized shell stresses defined in the global coordinate system. Since   
  is a 

function of the cross section contour, integration over the contour gives the vector of 

generalized beam forces, work conjugate with the generalized strains, as: 

         
    

 

            
 

       (26) 

              (27) 
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Note that since the generalized strain vector   is not a function of the curvilinear coordinate 

 , see (13), it was taken out of the integral over the contour. Also, the matrix   was defined 

as: 

            
 

  (28) 

The matrix   contains functions     that define the cross section mid-contour and also all 

the necessary material constants. It’s of crucial importance the correct evaluation and 

formulation of   since it contains not only all geometrical couplings but also all material 

couplings. 

The last derivations complete the formulation of the constitutive relations of the thin-

walled beam theory. In contrast with most existing thin-walled beam formulations, the beam 

forces were not defined but deduced from the shell stresses (or forces) expression.  

4 VARIATIONAL FORMULATION 

The expression for the director variations depends on the perturbed rotation tensor, which 

must be found as a function of the rotation variables chosen to parametrize the finite rotations.  

Once the set of kinematically admissible variations is obtained, the generalized virtual strains 

can be obtained, so the virtual work of the internal and external forces can be derived. 

Therefore, the objective of this section is to express the virtual work principle as a function of 

the generalized virtual strain vector and its work conjugate beam forces vector.  

The weak form of equilibrium of a three dimensional body   is given by: 

                 
 

           
 

                
  

  (29) 

where  ,   and   are: body forces, prescribed external forces and prescribed external 

moments per unit length respectively (Washizu, 1968, Zienkiewicz, 2000).   is the GL strain 

tensor, work conjugate to the Second Piola-Kirchhoff stress tensor  . Where   could be 

defined in either a rectangular or a curvilinear coordinate system, such a distinction is, at least 

here, unnecessary. 

4.1 Admissible variations and perturbed rotation field 

Now it is necessary to define the space of kinematically admissible variations in terms of 

the independent kinematic variables. To obtain the generalized strains variations we need to 

find first the admissible variation of the basis vectors. Remembering that we set      and 

recalling (1), we can write: 

                        (30) 

The admissible variation of the rotation tensor (Lie variation) can be obtained introducing 

an infinitesimal virtual rotation superposed onto the existing finite rotation. This virtual 

rotation lies in the tangent space at   (spatial virtual rotation), or in the tangent space at   
(material virtual rotation), and is represented by a skew symmetric matrix   , or   . 

These variables will be called: “spins” (Crisfield, 1997). The perturbed rotation tensor is 

constructed by exponentiating the spatial spin as: 

                (31) 
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Now, being    a two point tensor that takes vectors from the tangent space in the initial 

configuration to the tangent space in the current configuration, we can use it to relate spatial 

and material spins respectively as: 

                                  (32) 

From which we can write the material version of the kinematically admissible perturbed finite 

rotation tensor as: 

                 (33) 

Recalling (31) we can express the variation of the rotation tensor in terms of the spatial 

spin as: 

    
 

  
                      (34) 

Again,    is a skew symmetric matrix such as: 

            (35) 

Therefore, we can  rewrite (30) as: 

            (36) 

Considering the last relationship, the set of kinematically admissible variations is defined 

as: 

                                        (37) 

where   describes de boundaries with prescribed displacements and rotations. 

Additionally, we can find the variation of the director’s derivative as: 

    
              

   (38) 

The variations of the directors and its derivatives are now used to obtain the generalized 

virtual strains variation. Considering that       and    
   , and performing the variation 

to (13) we obtain: 

    

 
 
 
 
 
 
 
 
 
 
  
   

   

  
 

  
 

   

  
 

  
 

  
   

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

  
     

  
        

     
 

  
        

     
 

         
     

         
     

   
       

     

     
    

  

     
    

  

   
    

    
     

  
 
 
 
 
 
 
 
 
 
 

  (39) 

Making use of (36) and (38) it is possible to rewrite (39) in the following form: 

            (40) 

where   is a matrix differential operator and   a matrix of director vectors such as: 
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  (41) 

It can be seen that the description of the exact kinematic behavior of the beam can be fully 

described using nine generalized quantities. This is in contrast with several approximated thin-

walled beam formulations where more beam higher order forces appear and the exact 

kinematic behavior is still not represented (see e.g. (Librescu, 2006, Machado and Cortínez, 

2005)).  

The presented derivation of the virtual generalized strains in terms of the variations of the 

directors and its derivatives is independent of the parametrization of finite rotations. This is a 

very important fact since any known finite rotations algorithm could be used with the 

proposed formulation. Nonetheless, standard time stepping algorithms could be implemented 

without any additional modifications. 

4.2 Internal Virtual Work 

Having derived the expressions for the admissible variations of the basis vectors and 

strains we develop in this section the expressions for the internal virtual work of the beam. 

Recalling (29), the internal virtual work of a three dimensional body can be written in vector 

form as: 

                    
  

  (42) 

which in the curvilinear coordinate system is: 

                      
  

 
 

          (43) 

We can now use the definition of the shell resultant forces to reduce the 3D formulation to 

a 2D formulation. Therefore, performing integration of (43) in the   direction we can write 

the internal virtual work in terms of shell quantities as: 

                 
        

 

  
 

  (44) 

 The reduction to a 1D formulation is aided by the deduction of 1D beam forces presented 

in (26). Transforming the virtual curvilinear shell strains into virtual generalized strains we 

can rewrite the last expression as: 

                           
 

   
 

 (45) 
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In which the term in parentheses is the generalized beam forces vector (see (26)). Using (25) 

the beam forces vector can be expressed a slightly different form as:  

               
 

  (46) 

The explicit expression of the beam forces can be found in Appendix A.  

Finally, it’s possible write the 1D virtual work in terms of the generalized strains and the 

generalized beam forces as:  

                    
 

  (47) 

4.3 External Virtual Work 

In this section we derive the expression of the external virtual work. In order to simplify 

this derivation we neglect the body forces. For this particular case, the external virtual work 

can be written as: 

                            
 

  (48) 

where   is the external forces vector and   the external moments vector. As first noted by 

Ziegler (1968) moments about fixed axes are non-conservative. Consequently, the work is 

path-dependent if concentrated moments are applied (see (Ritto-Corrêa and Camotim, 2003) 

for a clarification of concepts).  

4.4 Weak Form of Equilibrium 

The variational equilibrium statement can now be presented in terms of generalized 

components of 1D forces and strains. Recalling (47) and (48) the virtual work of a composite 

beam is written in its one dimensional form as: 

                 
 

                 
 

  (49) 

Recalling (40) it’s possible to re-write the last expression as: 

                        
 

                 
 

  (50) 

Thus, the equilibrium of the geometrically nonlinear beam is available in its variational 

form.  

5 LINEARIZATION OF THE WEAK FORM 

 The linearization of the variational equilibrium equations is obtained through the 

directional derivative and, assuming conservative loading, its application gives two tangent 

terms; the material and the geometric stiffness matrices.  

Being            the linear part of the functional        , we have: 

                                     (51) 

where the first term          is the unbalanced force at the configuration   .  
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Using the definition of the Frechet differential and recalling (47) and (39), we obtain the 

tangent stiffness as: 

                                    
 

  (52) 

where   is the length of the undeformed beam. The integral of the first term gives raise to the 

material stiffness matrix and from the integral of the second term evolves the geometric 

stiffness matrix. 

Recalling (40) the first term takes the form: 

                                        
 

  (53) 

To proceed with the formulation of the geometric stiffness terms we need first to linearize 

the virtual generalized strain measures in (39). This linearization gives:  

     

 
 
 
 
 
 
 
 
 
 
 

       

       
     

        
      

 

       
     

        
      

 

                  
      

                  
      

   
             

           
    

      

    
      

     
     

  

    
      

     
     

  

   
     

     
     

    
      

    
      

  
 
 
 
 
 
 
 
 
 
 

  (54) 

Then, the general expression of the geometrical tangent stiffness operator gives: 

                           
 

  (55) 

Replacing (54) into (55), recalling the expressions of the incremental virtual directors      

(see A.2) and re arranging some terms, we can write the geometric stiffness operator as: 

                                     
 

  (56) 

where the matrix   is given in A.3.  

Since the external loads are assumed to be conservative, the linearization of the external 

virtual work is zero. As has been mentioned several times in geometrically exact formulations, 

a parametrization using spin variables necessarily implies a non conservative concentrated 

moment as its work conjugate variable. Indeed, it is well known the fact that the use of spin 

variables leads to a non-symmetric tangent stiffness matrix. 

Finally, recalling (53) and (56) the linearized virtual work can be written as: 

                                         
 

  (57) 
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6 FINITE ELEMENT FORMULATION 

The implementation of the proposed finite element is based on linear interpolation and one 

point reduced integration. This approach relies on the interpolation of iterative spin variables.  

6.1 Interpolation  

Being    linear Lagrangean shape functions, we interpolate the position vectors in the 

undeformed and deformed configuration as (Zienkiewicz, 2000): 

       

    

   

                  

    

   

         (58) 

where      represent the number of nodes in the element. The same finite element 

interpolation is also applied to the configuration and the variations of the configuration. 

6.2 Tangent Stiffness Matrix 

In order to formulate the tangent stiffness matrix, we first recall the definition of the 

differential operator   (see (41)). Using the interpolation function presented above, the 

differential operator   can be replaced by its numeric counterpart in such a way that: 

                          

    

   

      (59) 

where the matrix operator    contains shape functions and its derivatives and plays a crucial 

role in the finite element formulation. In the expressions presented hereafter, summation over 

index   will be implicitly defined. So: 

    
    
   
    

   (60) 

Introducing (59) into (53) and (56) we can obtain the expressions for the material and 

geometric stiffness matrices respectively. Following this process we obtain first: 

                            
 
                 

 

  (61) 

Proceeding in a similar way, the geometric stiffness term can be written as: 

                           
 
            

 

  (62) 

Thus, the element materials and geometric stiffness matrices become: 

                  
 

                     
 

  (63) 

Following the common steps of the finite element assembly process, the global tangent 

stiffness matrix is: 
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  (64) 

With an abuse in notation, the summation operator was used to represent the conventional 

finite element assembly operation. 

6.3 Directors Update Algorithm 

As already mentioned, the procedure used for updating the directors and its derivatives is 

iterative. This is, the current configuration is updated in each iteration. Being n the iteration 

counter we can recall (1) to find the new director as: 

   
        

    (65) 

where   is now the incremental iterative rotation tensor. Note that, although the formulation 

is based on the iterative spins, the director triads are “total rotation quantities”. Note that the 

reference configuration is never updated, consequently only at the first iteration of the first 

increment we have   
    : 

According to (65), we can find the derivative of the directors as: 

   
           

      
            

        
     (66) 

where the expression for the derivative of the rotation tensor (actually     ) can be found in 

A.4. Note that, in contrast to most multiplicative update algorithms, the evaluation of a total 

rotation tensor is never needed. 

7 NUMERICAL INVESTIGATIONS 

To close the development of the presented beam formulation we compare the performance 

of the proposed finite element with existing finite elements. We investigate both isotropic and 

tanisotropic beams, using some benchmark tests proposed in the literature.  

 It must be noted that since most of the reported benchmark tests were performed using 

solid cross sections, often it is not possible to find an equivalent thin-walled section with the 

same mass and inertia properties to those of the solid sections. Because of that, we have used 

the research finite element software FEAP (Taylor, 2009) to obtain results using the Simo and 

Vu-Quoc (1986) and Ibrahimbegovic (1997) finite elements (which are included in the 

package). In these calculations we have used cross sections with the same inertia moments of 

the thin-walled cross section. 

In the analysis of anisotropic beams we have chosen to compare the present formulation 

exclusively against Abaqus 3D shell models, thus having the possibility of handling any type 

of laminate.  

7.1 Pure bending of a cantilever isotropic beam 

To validate the formulation and especially the finite rotation algorithm we compare our 

beam model using an isotropic constitutive law against the classical Simo and Vu-Quoc 

(1986) beam model. We choose the roll-up test to perform this comparison. We choose a thin-

walled beam with a square cross section (b = 0.5, h = 0.5 and t = 0.05) and a length of 50. 

The material constants are: E=144×10
9
 and ν=0.3. Being the Euler formula: 

   
   

   
 (67) 

Mecánica Computacional Vol XXIX, págs. 1649-1672 (2010) 1663

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



We can obtain the magnitude of the moment that produces a deformed shape of half a circle or 

full circle. To obtain these deformed shapes we must apply moments M1=3.80761×10
7
 and 

M2=7.615221×10
7
. Figure 3 shows the deformed shapes obtained after application of these 

moments. 

 

Figure 3 – Roll up test. 

Tables 1 and 2 present the numerical results obtained for the maximum tip displacements 

for both load cases (M1 and M2) 

 
Tip Vertical 

Displacement 

Tip 

Horizontal 

Displacement 

Max Vertical 

Displacement 
Elements 

Simo & Vu-Quoc 

(FEAP) 
31.673 -50.448 31.673 10 

Ibrahimbegovic 

(FEAP) 
31.673 -50.448 31.673 10 

Analytic 31.831 -50.000 31.831 - 

Present 31.694 -50.405 31.694 10 

Table 1 – Displacements Components for M1. 

As it can be seen from the tables, the performance of the presented finite element is very 

good. Both the vertical and horizontal displacements agree very well with the results obtained 

using the well validated Simo and Vu-Quoc model (1986).  

 
Tip Vertical 

Displacement 

Tip 

Horizontal 

Displacement 

Max Vertical 

Displacement 
Elements 

Simo & Vu-Quoc 

(FEAP) 
0.013 -49.545 16.038 10 

Analytic 0.000 -50.000 15.915 - 
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Present 0.016 -49.494 16.004 10 

Table 2 – Displacements Components for M2. 

The differences between the Simo and Vu-Quoc model and the proposed model are 

originated due to the different hypotheses introduced in both models. The proposed model 

allows thickness shear deformation while the model in (Simo and Vu-Quoc, 1986) (and also 

(Ibrahimbegovic, 1997)) doesn’t. Also, the inertia moments resulting from the present 

formulation are slightly lower than those that feed a Timoshenko model; this difference makes 

the present model to be slightly more flexible than a traditional beam model. 

7.2 Pure bending of a cantilever beam 

To test the performance of the presented finite element in a full three dimensional problem 

we study the behavior of a curved cantilever beam (see. Fig. 5). The curved beam has a 

reference configuration given as a 45º circular segment with radius R=100 and laying in the x-

y plane, the beam is loaded with a vertical load (z direction). The properties of the isotropic 

material are: E=1.0×10
7 
and ν=0.3. The cross section is a box with b=1, h=1 and t=0.1. 

 

Figure 4 –  45º arc bending 

Table 3 shows the results of the bending test for P=400. We have used an Abaqus 3D shell 

model as the reference model. As it can be seen, the present finite element formulation 

behaves very well compared to the Simo & Vu-Quoc element available in FEAP and also to 

the Abaqus B31 and B32 beam elements.  

 
Tip y 

Displacement 
Tip x 

Displacement 

Max z 

Displacement 
Elements 

Abaqus Shell -12.201 -21.546 50.997 - 

Abaqus B31 -12.401 -21.311 -51.110 50 

Abaqus  B32 -12.416 -21.310 -51.111 50 

Simo & Vu-Quoc 

(FEAP) 
-12.008 -20.692 50.067 50 

Present -12.205 -21.015 50.880 50 

Table 3 – Maximum displacements in a 45º arc bending test (P=400) 

Taking as a reference the Abaqus shell model, the percentile error of the present model is 

about 0.25% this is well below the 1.8 % error obtained with the Simo and Vu-Quoc element. 

In order to study the behavior of the proposed finite element when using anisotropic 

laminates, we analyze the 45º arc of Fig. 5 laminated with a {45,-45,-45,45} configuration. 

The laminas are made of E-Glass fibers and an Epoxy matrix, the material properties are:  

E11 E22 G12 G23 ν12 

45.0×10
9
 12.0×10

9
 5.5×10

9
 5.5×10

9
 0.3 

Table 4 – Material properties of E-Glass Fiber-Epoxy lamina. 
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To increase the complexity of the stress state in the beam we modify the applied load to 

have components Px=4.0×10
5
, Py=-4.0×10

5
, Pz=8.0×10

5
. Figure 6 presents the curves that 

describe the evolution of the displacements along the load path. 

 

Figure 5. Displacement components vs. Load Proportional Factor – 45º anisotropic arc. 

It can be seen from Fig. 5 that the correlation of the present formulation against the Abaqus 

shell model is excellent, note that this good correlation does not deteriorate when the 

displacements grow. 

7.4 Post buckling of curved arc – Limit Point traversal. 

The problem of traversal of limit points has been used several times as a benchmark test for 

geometrical nonlinear theories of isotropic beams, see e.g. (Ibrahimbegovic, 1995). We 

analyze the behavior a curved thin-walled arc (see Figure 6), as shown in Fig. 6, for both 

isotropic and anisotropic materials. The arc cross section is box with b=1, h=1 and t=0.1.  

Although the arc buckles, the buckling phenomenon studied in this example is not 

characterized by a bifurcation in the nonlinear phase-plane but by a limit point traversal. A 

vertical load creates a compressive stress state that causes the buckling of the arc. The load 

displacement path was followed using the arc-length method.  
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Figure 6. 215º Thin-walled arc 

In Figure 7 the load-displacement curve of the isotropic arc using the present formulation is 

compared vs. the Simo and Vu-Quoc element implemented in FEAP and an Abaqus shell 

model. The isotropic material properties are: E=144×10
9 

and ν=0.3. It can be observed that 

the present formulation gives very good results even for extremely large displacements. It can 

also be observed that the present formulation is slightly more flexible than the Simo and Vu-

Quoc finite element. Also, and as expected, the 3D shell model is more flexible that both 

beam formulations. This fact is ascribed mainly to the deformability of the cross section.  

 
Figure 7 – Load-Displacement curve for isotropic (E=144E9) 

 

Figure 8 shows the deformed shape of the structure after the critical point has been 

traversed.  
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Figure 8 – Deformed shape (isotropic arc) 

Figure 9 shows the load-displacement relation during the collapse of the composite arc. We 

compare the present model with an Abaqus 3D shell model. In this example we have used a 

cross section laminated with 4 layers of E-Glass fibers and an Epoxy matrix, oriented in 

directions {0,90,90,0}.  

 

Figure 9 – Load-Displacement curve for {0,90,90,0} E-FiberGlass-Epoxi 

8 CONCLUSIONS 

An Eulerian geometrically exact beam finite element for composite thin-walled beams has 

been presented. The proposed formulation relies on the parametrization of the weak form of 

equilibrium in terms of the director field and its derivatives. Spatial spins were used to 

establish the relationship between the director field and the configuration, and a new iterative 
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update procedure for the director triad was proposed. Also, a method to embed the thin-walled 

beam theory into any existing finite rotation algorithm was presented. 

The evaluation of the weak form of equilibrium was aided by the introduction of 

generalized strains, resulting from a dual transformation of the rectangular GL strains. The 

generalized strains work conjugate variables, i.e. the generalized beam forces, were deduced 

from the curvilinear shell stresses before the obtention of the weak form. 

Representative numerical experiments show that the presented thin-walled beam 

formulation has an excellent correlation against existing finite elements for isotropic 

materials. For the case of composite materials, the correlation against superior theories such as 

3D shell models was also excellent.  

The possibility of using any type of composite material represents an important advantage 

of the present formulation over existing displacement based geometrically exact finite element 

beam formulations. The accounting of all existing geometrical and material couplings 

regardless of the magnitude of displacements and rotations is an important achievement of the 

present formulation.  
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APPENDIX A 

A.1 Matrix    

Introducing (18) into the matrix    we can obtain a cross sectional matrix as a function of 

the midsurface coordinates, this is: 

      

      
           

                

      
    

         
    

        
      

    
        

    

       
    

       
        

      
         

      
         

    

   (A1)  

where the coefficients    and    are: 

 

   
 

 
     

       
     

   
 

 
  

   
 

 
     

       
     

   
 

 
  

         
    

              
        

   

         
      

           
        

    

(A2)  

Explicitly the beam forces vector gives: 
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  (A3)  

A.2 Second Variation of directors 

The second variation of the director field is obtained in a standard manner. For the sake of 

brevity we show only how to obtain the second variation of the derivative of the director field.  

Being b any vector, we can obtain the second variation of the director’s derivative as: 

 

      
                       

   

                                                     
    

                                                        

       
   

                                                 
            

       

(A4)  

Where      denotes the skew symmetric matrix of vector as defined in (35). Proceeding in a 

similar way we can obtain all the second variations.  

A.3 Matrix    

The full expression of the geometric matrix   gives: 

   

       
      

                          

    
      

               
   

      
   

      
        

       
        

   

             
        

          

  (A5)  

Where the     coefficients are: 

                
   

            
                  

   
            

             

        
   

         
   

              
               

            

                                                                             

(A6)  

A.4  Derivative of the Exponential Map  

An alternative expression for (6) can be written as: 

     
 

      
 
          (A7)  

Where    is a scaled pseudo-vector such that: 
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 (A8)  

and    is the skew symmetric matrix of   . Derivating with respect to x we have: 

    
 

      
                    

               

      
    (A9)  

After some manipulations and identities it can be found that: 

      
 

      
 
                    (A10)  

Recalling (66) we see that obtaining a close expression for      we can update the derivatives 

of the directors without the necessity of obtaining a close expression for   . Therefore, the 

above expression is used in (66).  
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