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Abstract. A geometrically exact, frame invariant and path independent beam finite element for 

composite thin-walled beams is presented. In the proposed formulation the virtual work equations are 

written as a function of generalized strain components, which are parametrized in terms of the director 

field and its derivatives. The generalized strains and forces are obtained by introducing a 

transformation that maps generalized components into physical components. Finite rotations are 

parametrized with the total rotation vector and a multiplicative update of the directors is performed via 

the total rotation tensor. A curvilinear transformation is applied to the strain vector and the 

transformed deformations are used to write the constitutive relations. As a result, the proposed 

formulation is valid for both isotropic and anisotropic beams. The frame invariance and path 

independence of the presented formulation is ensured by the use of interpolation to obtain the 

derivatives of the director field. 
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1 INTRODUCTION 

A deep study of the mechanics of thin-walled composite beams demands a good 

knowledge of mathematical methods for treating geometrical nonlinearities. The study of the 

geometrically exact nonlinear behavior of beams requires the development of effective 

methods and procedures to deal with finite rotations. 

Several authors have developed geometrically exact beam finite formulations. As a starting 

point, Reissner provided a 2D exact beam theory capable of describing arbitrary large 

displacements and rotations and a 3D theory for second order rotations (Reissner, 1981).  

 Simo (1985) and Simo and Vu-Quoc (1986, 1988) developed the first 3D geometrically 

exact formulation for isotropic hyperelastic beams. They used the Reissner relationships 

between the variation of the rotation tensor and the infinitesimal rotations to derive the strain-

configuration relations, maintaining the geometric exactness of the theory. Another important 

contribution to the subject was done by Cardona and Geradin (1988), who presented a 

different alternative of parametrization, using the total rotational pseudo-vector to update the 

3D rotations on the basis of the initial configuration.  

An extension of the formulation of Simo to curved beams was presented by 

Ibrahimbegovic (1995). He also proposed an incremental rotation vector formulation 

(Ibrahimbegovic, 1997) to solve the nonlinear dynamics of space beams.  

The use of the Green-Lagrange strain measures in a geometrically exact finite element 

formulation for 3D beams was introduced by Gruttmann (1998, 2000).  

During the last years, great efforts were made to shed light to the problem of loss of 

objectivity introduced by the interpolation of rotations variables, a problem first noted by 

Crisfield and Jelenic (1999). Jelenic and Crisfield (1999) implemented the ideas proposed in 

(Crisfield et al., 1999) to complete de development of a strain-invariant and path independent 

geometrically exact 3D beam element.  

Also, Ibrahimbegovic and Taylor (2002) re-examine the geometrically exact models to 

clarify the frame invariance issues concerning multiplicative and additive updates of rotations. 

Betsch and Steinmann (2002), Armero and Romero (2001) and Romero and Armero (2002) 

further contributed to the subject presenting frame-invariant formulations for geometrically 

exact beams using the director field to parametrize the equations of motion. Additional 

treatment of frame invariance can be found in references (Ghosh and Roy, 2009, Sansour and 

Wagner, 2003). 

All the aforementioned formulations deal with isotropic beams with solid cross section 

beams. As a consequence, the extension of these formulations to thin-walled beams is not 

natural. The advantage of thin-walled beam formulations is that the inclusion of generally 

anisotropic material is greatly facilitated. 

This work presents a new implementation of the thin-walled beam theory presented in 

(Saravia et al., 2010). In this case, the parametrization of finite rotations is done with the total 

rotation vector, thus, using the terminology of Cardona (1988), this formulation belongs the 

class of Total Lagrangian formulations. In this new implementation we also turn to some 

ideas proposed in previous works (Armero and Romero, 2001, Betsch and Steinmann, 2002, 

Gruttmann et al., 2000, Romero and Armero, 2002), which are based on the interpolation of 

the director field and its variation to obtain their derivatives, to avoid the need of curvatures 

and greatly simplifying the linearization of the virtual strains.  

Regarding the frame invariance and path independence of geometrically exact 

formulations, it has been shown that in the presence of finite three dimensional rotations the 

concept of objectivity of strain measures does not extend naturally from the theory to the 

finite element formulation (Crisfield et al., 1999). Hence, despite being some formulations 
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frame indifferent, they suffer from interpolation induced non-objectivity. In the present 

formulation these difficulties are overcome avoiding the use of interpolated rotations in the 

stiffness matrix, this is achieved by the use of interpolation of the nodal triads to obtain the 

derivatives of the director field instead of the classical approach based on curvatures. As a 

result, the formulation is path-independent and frame-invariant.  

2 KINEMATICS 

The kinematic description of the beam is extracted from the relations between two states of 

a beam, an undeformed reference state, denoted by   , and a deformed state, denoted by  , 

as shown in Fig. 1. Being    a spatial frame of reference, we define a reference frame    and 

a current frame    (both frames being orthonormal).  

 

 
 

Figure 1. 3D beam kinematics. 
 

The displacement of any point in the deformed beam measured with respect to the 

undeformed reference state can be expressed in the global coordinate system    in terms of a 

vector             .  
The current frame    is a function of a running length coordinate along the reference line 

of the beam, denoted as x, and is fixed to the beam cross-section. For convenience, we choose 

the reference curve   to be the locus of cross-sectional inertia centroids. The origin of    is 

located on the reference line of the beam and is called: pole. The cross-section of the beam is 

arbitrary and initially normal to the reference line of the beam. 

The relations between the orthonormal frames are given by the linear transformations: 

                                      (1) 

where       and      are two-point tensor fields       ; the special orthogonal (Lie) 

group. Thus, it’s satisfied that   
             We will consider that the beam element 

is straight, so we set     .  

Recalling the relations (1), we express the position vectors of a point in the beam in the 

undeformed and deformed configuration respectively as: 

                     

 

   

                                    

 

   

     (2) 
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Where in both equations the first term stands for the position of the pole and the second term 

stands for the position a point in the cross section relative to the pole. Note that,   is the 

running length coordinate and    and    are cross section coordinates.  

Also, it is possible to express the displacement field as: 

                                  

 

 

    (3) 

where    represents the displacement of the kinematic center of reduction, i.e. the pole. The 

nonlinear manifold of 3D rotation transformations      (a special orthogonal Lie Group 

SO(3)) is described mathematically via the exponential map as: 

            
    

 
  

      

  
     (4) 

where              
  is the rotation vector,   its modulus and   is its skew symmetric 

matrix. 

The set of kinematic variables is defined by three displacements and three rotations as: 

                                                 
   (5) 

3 BEAM MECHANICS 

3.1 The Strain Tensor 

Following the procedures described in Saravia et.al. (2010), we use five independent 

curvilinear strain measures to describe the strain state of the thin-walled beam, o more 

exactly: a laminate (see (Barbero, 2008)). Thus, the strain state of the beam will be described 

by the curvilinear strain vector: 

                          (6) 

We now propose de following generalized strain vector to represent the strain state of the 

beam: 

   

 
 
 
 
 
 
 
 
 
 
  

  

  

  

  

  

  

    
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
   

    
    

    
  

  
    

    
    

 

  
    

    
    

 

  
       

    

  
       

    

  
       

    

  
    

    
    

 

  
    

    
    

 

  
    

    
    

  
 
 
 
 
 
 
 
 
 
 

  (7) 

And finally we find the matrix   that satisfies the following relationship between the GL 

curvilinear strains and the generalized strains: 

         (8) 

We obtain:  
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  (9) 

Where we have neglected the terms in   . The matrix   can be understood as a double 

transformation matrix, transforming the generalized strains into the curvilinear GL strains. 

3.2  Constitutive Relations 

According to the theory of thin-walled composite laminates (Barbero, 2008), we can 

express: 

 

 
 
 
 
 
   

   

   

   

    
 
 
 
 

 

 
 
 
 
 
 
  

    
           

  
    

           
    

  
   

                 

                  
 
 
 
 
 

 
 
 
 
 
   
   
   
   

    
 
 
 
 

  (10) 

where   
   are components of the laminate reduced in-plane stiffness matrix,      are 

components of the reduced bending-extension coupling matrix,      are components of the 

reduced bending stiffness matrix and   
  
  is the component of the reduced transverse shear 

stiffness matrix. 

We can express the above relation in matrix form as: 

          (11) 

where   is the composite shell constitutive matrix and    is the curvilinear shell strain vector 

defined in (8).  

Now, it is possible to express the shell forces as a function of the generalized strains. 

Replacing (8) into (11) we obtain; 

           (12) 

Now, we transform the shell forces in (12) back to the “generalized space” by using the 

double transformation matrix  . Thus, we obtain a new entity, a sort of transformed back 

shell strain: 

   
                (13) 

Although at first glance this stress could seem contrived, it can be observed that it is a 

vector of generalized shell stresses defined in the global coordinate system. Since   
  is a 

function of the cross section contour, integration over the contour gives the vector of 

generalized beam forces, work conjugate with the generalized strains, as: 

         
    

 

            
 

       (14) 

              (15) 
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Note that since the generalized strain vector   is not a function of the curvilinear coordinate 

 , see (7), it was taken out of the integral over the contour. Also, the matrix   was defined as: 

            
 

  (16) 

The matrix   contains functions     that define the cross section mid-contour and also all 

the necessary material constants. It’s of crucial importance the correct evaluation and 

formulation of   since it contains not only all geometrical couplings but also all material 

couplings. 

The last derivations complete the formulation of the constitutive relations of the thin-

walled beam theory. In contrast with most existing thin-walled beam formulations, the beam 

forces were not defined but deduced from the shell stresses (or forces) expression.  

4 VARIATIONAL FORMULATION 

The weak form of equilibrium of a three dimensional body   is given by (Washizu, 1968, 

Zienkiewicz, 2000): 

                 
 

           
 

                
  

  (17) 

where  ,   and   are: body forces, prescribed external forces and prescribed external 

moments per unit length respectively.   is the GL strain tensor, work conjugate to the Second 

Piola-Kirchhoff stress tensor  . Where   could be defined in either a rectangular or a 

curvilinear coordinate system, such a distinction is, at least at this point, unnecessary. 

To maintain the variational formulation parametrized in terms of the director field, its 

admissible variation must be found. Once a set of kinematically admissible variations is 

obtained, the generalized virtual strains can be obtained, so the virtual work of the internal 

and external forces can be derived. Therefore, we aim to express the virtual work principle as 

a function of the generalized virtual strain vector and its work conjugate beam forces vector.  

4.1 Finite Rotations and Director Variations 

To obtain the generalized strains variations, the admissible variation of the director field is 

required. In order to find the variations (first and second) of the director field we must find 

first the perturbed rotation tensor and its variation.  

Remembering that we set      and recalling (1), we can write: 

                        (18) 

The admissible variation of the rotation tensor (Lie variation) can be obtained introducing 

an infinitesimal virtual rotation superposed onto the existing finite rotation, see e.g. (Betsch, 

1998, Corrêa and Camotim, 2002). This virtual rotation lies in the tangent space at   (spatial 

virtual rotation), or in the tangent space at   (material virtual rotation), and is represented by a 

skew symmetric matrix   , or    (see Fig. 2). These variables will be called: “spins” 

(Crisfield, 1997). The perturbed rotation tensor is constructed by exponentiating the spatial 

spin as: 

                (19) 

Another way to construct the perturbed finite rotation tensor can be devised by making use 

of the rotation vector as: 
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                 (20) 

Recalling (19) and remembering that          we have: 

                              (21) 

Where we are trying to find an incremental rotation tensor, i.e. the virtual rotation tensor 

  , that belongs to the tangent space as the infinitesimal rotation tensor  , this is         . 
The vector   whose skew matrix is   is called total rotation vector. 

Taking derivatives with respect to the parameter   we obtain (see e.g. (Ibrahimbegović et 

al., 1995, Mäkinen, 2007)): 

             (22) 

Where   is a spatial tangential transformation, it reads: 

      
    

 
  

      

  
  

      

  
     (23) 

These different choices in the construction of a kinematically admissible representation of 

the perturbed rotation tensor together with the type of algorithm chosen to perform the 

configuration update lead to different finite element formulations, i.e. Total Lagrangian, 

Updated Lagrangian and Eulerian formulations.  

 

 

Figure 2 – Geometric interpretation of the exponential map. 

Since the weak form of the equations of motion was parametrized in terms of the current 

directors and its derivatives, to ease the derivation of the virtual work it is necessary to use 

rotation variables that belong to the same tangent space as the directors, i.e. the tangent space 

at  . Considering the latter, we will use the spatial version of virtual rotations (i.e.   ) to 

obtain the kinematically admissible variation of the rotation tensor. Recalling (19) we can 

express the variation of the rotation tensor in terms of the spatial spin as: 

    
 

  
                      (24) 

Again,    is a skew symmetric matrix such that         . Therefore, we can 

rewrite  (18) as: 

            (25) 
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Recalling (22) we can write the last equation as a function of the total rotation vector: 

                (26) 

The set of kinematically admissible variations can now be defined as: 

                                        (27) 

where   describes de boundaries with prescribed displacements and rotations. 

Noting that         we can find the variation of the director’s derivative as: 

    
                                       (28) 

The second variation of directors can be obtained using (26) as: 

                                     (29) 

The second variation of the director derivatives is in this case equal to the linearization of 

the virtual strains, it has a complicated expression that has not been presented yet, it reads: 

 
    

                                                         

                     
(30) 

4.1 Virtual Generalized Strains 

The variations of the directors and its derivatives are now used to obtain the virtual 

generalized strains. Considering that       and that    
   , and performing the variation 

to (7) we obtain: 

    

 
 
 
 
 
 
 
 
 
 

  
     

  
        

     
 

  
        

     
 

         
     

         
     

   
       

     

     
    

  

     
    

  

   
    

    
     

  
 
 
 
 
 
 
 
 
 

  (31) 

We can write the virtual strains as a function of a new set of kinematic variables    as: 

 

         

  

 
 
 
 
 
 
 
 
 
 
  

      

  
       

 

  
      

  

     
    

      
   

     
    

      
  

       
 

      
   

  
 
 
 
 
 
 
 
 
 

            

 
 
 
 
 
 
   

  
   

   

   
 

   
  
 
 
 
 
 

  
(32) 
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The second variation of the generalized strains gives: 

     

 
 
 
 
 
 
 
 
 
 

       

       
     

        
      

 

       
     

        
      

 

                  
      

                  
      

   
             

          
    

      

    
      

     
     

  

    
      

     
     

  

   
     

     
     

    
      

    
      

  
 
 
 
 
 
 
 
 
 

  (33) 

The presented derivation of the virtual generalized strains in terms of the variations of the 

directors and its derivatives is independent of the parametrization of finite rotations.  

4.2 Internal Virtual Work 

Having derived the expressions for the admissible variations of the basis vectors and 

strains we develop in this section the expressions for the internal virtual work of the beam. 

Recalling (17), the internal virtual work of a three dimensional body can be written in vector 

form as: 

                    
  

  (34) 

which in the curvilinear coordinate system is: 

                      
  

 
 

          (35) 

We can now use the definition of the shell resultant forces to reduce the 3D formulation to 

a 2D formulation. Therefore, performing integration of (35) in the   direction we can write 

the internal virtual work in terms of shell quantities as: 

                 
        

 

  
 

  (36) 

 The reduction to a 1D formulation is aided by the deduction of 1D beam forces presented 

in (14). Transforming the virtual curvilinear shell strains into virtual generalized strains we 

can rewrite the last expression as: 

                           
 

   
 

 (37) 

In which the term in parentheses is the generalized beam forces vector (see (14)). Using (13) 

the beam forces vector can be expressed a slightly different form as:  

               
 

  (38) 

The explicit expression of the beam forces can be found in Saravia et.al. (2010).  

Finally, it’s possible write the 1D virtual work in terms of the generalized strains and the 

generalized beam forces as:  
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  (39) 

4.3 External Virtual Work 

In this section we derive the expression of the external virtual work. In order to simplify 

this derivation we neglect the body forces. For this particular case, the external virtual work 

can be written as: 

                            
 

  (40) 

where   is the external forces vector and   the external moments vector.  

4.4 Weak Form of Equilibrium 

The variational equilibrium statement can now be presented in terms of generalized 

components of 1D forces and strains. Recalling (39) and (40) the virtual work of a composite 

beam is written in its one dimensional form as: 

                 
 

                 
 

  (41) 

Recalling (32) it’s possible to re-write the last expression as: 

                      
 

                 
 

  (42) 

Thus, the equilibrium of the geometrically nonlinear beam is available in its variational 

form.  

5 LINEARIZATION OF THE WEAK FORM 

 Being            the linear part of the functional        , we have: 

                                     (43) 

where the first term          is the unbalanced force at the configuration   . The Frechet 

differential in the second term is obtained in a standard way as: 

             
 

  
                (44) 

where    fulfills the boundary conditions. Applying the definition (44) and recalling (39) and 

(31), we obtain the tangent stiffness as: 

                                    
 

  (45) 

where   is the length of the undeformed beam. The integral of the first term gives raise to the 

material stiffness matrix and from the integral of the second term evolves the geometric 

stiffness matrix. 

Recalling (32) the first term takes the form: 
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  (46) 

Then, the general expression of the geometric stiffness operator gives: 

                           
 

  (47) 

6 FINITE ELEMENT FORMULATION 

The implementation of the proposed finite element is based on linear interpolation and one 

point reduced integration. The most important procedure of this finite element is the use of 

interpolation to obtain the derivatives of the director field.  

6.1 Interpolations and Directors Update 

We interpolate the position vectors in the undeformed and deformed configuration as: 

      

  

   

                  

  

   

           (48) 

The same finite element interpolation is also applied to the configuration and the variations of 

the configuration variables. 

 Recalling (1) the director at the iteration     is found as: 

   
              (49) 

where   is the total rotation tensor.  

According to (49), we could find the derivative of the directors as: 

   
                    (50) 

as done in most Total Lagrangian formulations, but this requires the derivative of the total 

rotation tensor and in pursue of a simpler way to obtain the triad derivative we use (51) to 

obtain this derivatives.  

Being    linear Lagrangian shape functions, it will be assumed that: 

   
     

 

  

   

   
 
 (51) 

Where   is the curvature tensor,    
 
 is the node   director in the direction   and    is the 

number of nodes per element. This approximation is expected to be accurate enough to be 

used in almost every practical situation. However, we will analyze in the numerical 

investigations sections the impact of this approximation in the accuracy of the solution. 

As a distinct consequence of the use of interpolation to obtain the derivative of the director 

field is that the finite element results to be path independent. 

 

6.2 Discrete Virtual Strains  

Although the expression (28) can be obtained relatively simply, the second variation of the 

directors derivative is more difficult to obtain. A simpler way to obtain it would help to 

simplify the expression of the tangent stiffness very much. In this direction, some works have 
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proposed to use interpolation of the directors to obtain their derivatives (Armero and Romero, 

2001, Betsch and Steinmann, 2002, Gruttmann et al., 2000, Romero and Armero, 2002).  

Assuming holonomic constraints we may interchange the variations and derivatives, i.e. 

           . Using this property, we can use (51) to obtain the variation of the directors and 

its derivatives as: 

        

  

   

    
 
    

     
 

  

   

    
 
  (52) 

The obtention of the second variation of the directors and its derivatives is more involved 

and requires the linearization of the tangential transformation (23). Observing that the second 

variation (or linearization of the variation) of the directors is always pre multiplied by some 

vector  , for simplicity in the arranging of terms, it’s preferable to obtain the expression for 

the product and not only for the second variation. Thus it can be shown that: 

                         
 
 

  

   

     (53) 

The expression for         results from the linearization of the tangential transformation 

and is given in Appendix A. As it was mentioned before, we use interpolation to obtain the 

derivatives of the director field, this helps to obtain an expression for the second variation of 

the director’s derivatives as:  

       
           

         
 
 

  

   

      (54) 

Additionally, it’s possible to relate the two kinematic vectors    and    via the matrix   

as: 

            

  

   

  (55) 

where: 

    

 
 
 
 
 
 
 
 
 
   

  

     
 

     
 
      

 

     
 
      

 

     
 
    

    

     
 
    

    
 
 
 
 
 
 
 
 
 

                 
 

    
      (56)  

Where   indicates the skew symmetric matrix of a vector and   indicates the diagonal 

matrix of a vector. Thus    
  is a skew director in the direction   of the node  ,     is a diagonal 

shape function matrix, and    is a tangential transformation at the node  . Henceforth 

summation over index   will be implicitly defined, so we will omit the summation symbol and 

the node index  . 
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 Finally, we can write the virtual generalized strains as: 

             (57) 

The second variation of the generalized strains, i.e.    , is more difficult to obtain. Having in 

mind the structure of the geometric stiffness operator (47) we aim to obtain a matrix   as to 

satisfy the equality              , a lengthy manipulation gives: 

   

 
 
 
 
 
 
 
                

     
    

     

           
     

 
 
 
 
 
 

     (58)  

The matrix   results from the linearization of the virtual directors, see (53) and (54). Its 

expression gives: 

         
    

        
    

        
           

         (59) 

Where     is given in Appendix A. 

6.3 Tangent Stiffness Matrix 

Introducing (55) into (46) we can obtain the discrete form of the virtual work as:  

                            
 
                 

 

  (60) 

Then, the element material stiffness matrix is: 

                 
 

  (61) 

Proceeding in a similar way, we use (58) and (47) to obtain the discrete geometric stiffness 

terms as: 

                           
 
            

 

  (62) 

Therefore, the element geometric stiffness matrix becomes: 

             
 

  (63) 

Following the common steps of the finite element method, the element and global tangent 

stiffness matrices are: 

 

                    
 

  

      

   

   

  

(64) 
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where the summation operator is used to represent the finite element assembly process. 

7 NUMERICAL INVESTIGATIONS 

We present in this section several examples that show the performance of the proposed 

finite element. We investigate both the isotropic and the anisotropic cases, choosing some 

benchmark tests proposed in the literature.  

We compare the present finite element against existing finite elements, including an 

Eulerian formulation that uses the same beam theory (Saravia et al., 2010), because of that 

this is the best theory that we could choose to actually show the benefits and drawbacks of the 

present formulation. In the analysis of anisotropic beams we only compare the present 

formulation against Abaqus 3D shell models and the finite element in (Saravia et al., 2010) 

since other similar finite elements for thin-walled composite beams have not been reported. 

7.1 Accuracy Assessment – Pure bending of a cantilever beam 

We test in this example the behavior of the accuracy of the present formulation in a full 

three dimensional problem, a curved cantilever beam with out of plane loading (see. Fig. 3). 

The curved beam’s reference configuration given is a 45º circular segment with radius R=100 

and laying in the x-y plane, the beam is loaded with a vertical load (z direction). The 

properties of the isotropic material are: E=1.0×10
7 

and ν=0.3. The cross section is a box with 

b=1, h=1 and t=0.1. 

 

 

Figure 3 – 45º arc bending 

Table 1 shows the results of the bending test for P=100. We have used an Abaqus 3D shell 

model as the reference model. As it can be seen, the present finite element formulation 

behaves better than to the Simo & Vu-Quoc element (Simo and Vu-Quoc, 1986) available in 

FEAP and the Abaqus B31 beam element. The results obtained with the present 

implementation and the path dependent implementation presented in (Saravia et al., 2010) are 

essentially the same. 
 

 Tip y Disp. Tip x Disp. Max z Disp. Elements 

Abaqus Shell -2.090 -3.641 22.611 - 

Abaqus B31 -2.574 -3.570 22.734 50 

Simo & Vu-Quoc 

(FEAP) 
-1.986 -3.325 22.001 50 

Saravia et. al. 

(Saravia et al., 2010) 
-2.068 -3.495 22.366 50 

Present -2.069 -3.449 22.367 50 

Table 1 – Maximum displacements in a 45º arc bending test (P=100). 
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The solution was reached in 5 load steps using an average of 8 iterations per step. 

Increasing the load to P=400 we obtain also excellent results (see Table 2). Note that we 

added to the comparison the Abaqus parabolic beam element B32. The present finite element 

represents the kinematic behavior of the beam better than all the presented finite elements.  
 

 Tip y Disp. Tip x Disp. Max z Disp. Elements 

Abaqus Shell -12.201 -21.546 50.997 - 

Abaqus B31 -12.401 -21.311 -51.110 50 

Abaqus B32 -12.416 -21.310 -51.111 50 

Simo & Vu-Quoc 

(FEAP) 
-12.008 -20.692 50.067 50 

Saravia et. al. 

(Saravia et al., 2010) 
-12.205 -21.015 50.880 50 

Present -12.206 -21.019 50.884 50 

Table 2 – Maximum displacements in a 45º arc bending test (P=400). 

We present next a comparison of the displacement path of the beam using an anisotropic 

laminate, we analyze the 45º arc of Fig. 2 laminated with a {45,-45,-45,45} configuration. 

The laminas are made of E-Glass fibers and an Epoxy matrix (Barbero, 2008), the material 

properties are given in Table 3.  
 

E11 E22 G12 G23 ν12 

45.0×10
9
 12.0×10

9
 5.5×10

9
 5.5×10

9
 0.3 

Table 3 – Material properties of E-Glass Fiber-Epoxy lamina. 

To increase the complexity of the stress state in the beam we modify the applied load to 

have components Px=4.0×10
5
, Py=-4.0×10

5
, Pz=8.0×10

5
. Figure 3 presents the curves that 

describe the evolution of the displacements along the load path (LPF: Load Proportional 

Factor).  

 

 
Figure 3. Displacements vs. Load Proportional Factor. 

 

It can be seen from Fig. 3 that the correlation of the present formulation against the Abaqus 

shell model and also the Saravia et.al. (2010) formulation is excellent. 
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7.2 Path Independence Test 

The path dependence drawback of various beam formulations was first identified by 

Crisfield and Jelenic (Crisfield et al., 1999). Jelenic and Crisfield (Jelenic and Crisfield, 1999) 

effectively corrected this problem proposing the interpolation of local rotations with respect to 

an element-based triad, a similar approach to that of the co-rotational technique.  

Considering that the proposed formulation relies on the parametrization of the equations of 

motion in terms of the director field and its derivatives, a natural approach to obtain a path 

independent formulation is to interpolate directly the director field and not the rotation 

variables. We show in this example the path independence property of the proposed 

formulation. 

Using the same anisotropic curved beam of the previous example we apply six load cases 

and analyze the resulting displacements at the ending of the load cycle. The loading scheme is 

shown in Table 4. 
 

Step          

1 0 0 200000 

2 0 100000 0 

3 20000 0 0 

4 0 0 -200000 

5 -20000 0 0 

6 0 -100000 0 

Table 4 – Loading scheme. 

Table 5 presents the remaining displacements and rotations obtained after the end of the 

loading sequence. Different increments and different mesh density were tested. 

Remaining Displacements  

Inc. Elements u v w          

5  
50 -1.05 10

-14
 -1.80 10

-14
 0 0 0 -6.28 10

-17
 

25 -9.11 10
-15

 9.65 10
-15

 0 0 0 8.29 10
-17

 

10  
50 -4.49 10

-14
 -1.25 10

-15
 0 0 0 1.01 10

-16
 

25 -1.18 10
-14

 -4.04 10
-15

 0 0 0 4.91 10
-17

 

20  
50 -5.27 10

-14
 -1.16 10

-15
 0 0 0 2.23 10

-16
 

25 -7.03 10
-15

 5.91 10
-17

 0 0 0 3.45 10
-19

 

Table 5 – Path dependency test results. 

As the table shows, the present finite element is path independent, this is; both the 

displacements and rotations come back to zero after retiring the load. As the table shows, this 

property is independent of the time stepping scheme and also of the mesh density. 

7.3 Frame Invariance Test  

This example is very similar to that proposed by Crisfield (Crisfield et al., 1999), it’s used 

to show the frame-invariance of the finite element formulation. It consist on an L-shaped 

frame lying in the x-y plane that is first loaded with a tip force F and then rotated around the 

x, y and z axes. The frame has a leg lying in the x axis with a length of 10 and a leg parallel to 
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the y axis with a length of 5. The cross section is boxed with dimensions h=1, b=1 and 

thickness=0.1 made from 4 layers of E-Glass Fiber-Epoxy laminated as {45,-45,-45,45}. The 

material properties are given in Table 3. 

The first load case consist on a tip force of 2 10
7
 fixed in the z direction, the second load is 

applied in three different ways: i) rotation around the z axis, ii) rotation around the y axis 

and iii) rotation around the x axis.  For both i, ii, and iii the rotation is imposed in 4000 

increments of π/20 radians each, which is equivalent to 100 revolutions.  

Figure 4 shows the evolution of displacements after completing a revolution; as expected 

from a frame-indifferent formulation, the displacements remain constant along the 

revolutions. Since the constant displacements are the result of the first load case and we have 

maintained this load case unaltered, the picture coincides exactly for both; i, ii, and iii. 

 
Figure 4. Displacements vs. Revolutions 

 

The following figures show the deformed shapes of the frame in the full revolution path. It 

can be observed that for the three loading schemes the deformed shapes are identical for every 

revolution. It may be noted that the displacements in the beam are really large; this was 

induced on purpose to emphasize the fact that there isn’t any nontrivial work generated by the 

fixed force.  
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Figure 5. Displacements vs. Revolutions 

 

 
 

Figure 6. Displacements vs. Revolutions 
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Figure 7. Displacements vs. Revolutions 

 

Considering the case where the tip load is a follower force (initially oriented in the z 

direction) that rotates with the frame around the y axis, we observe that the present 

formulation is also frame-invariant. Figure 8 shows the deformed shapes for the full rotation 

path of 100 revolutions, it can be observed that these deformed shapes coincide for each 

revolution. 

 

Figure 8. Deformed shapes for follower force. 

8 CONCLUSIONS 

A Total Lagrangian geometrical exact nonlinear beam finite element for composite thin-

walled beams has been presented. The proposed formulation relies on the parametrization of 

the weak form of equilibrium in terms of the director field and its derivatives. Finite rotations 

were parametrized with the rotation vector.  

The weak form of equilibrium was written in terms of generalized strains, which result 

from a dual transformation of the rectangular GL strains. The generalized strains work 

conjugate variables, i.e. the generalized beam forces, were deduced from the curvilinear shell 

stresses before the obtention of the weak form. 
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The presented numerical investigations show that the present finite element has an 

excellent accuracy when the deformation is not extreme. Still, the accuracy is very good when 

extreme deformation scenarios are accompanied by sufficient mesh refinement. Also, the 

presented finite element formulation guaranteed the path independence and frame invariance 

properties. 

The possibility of using any type of composite material represents an important advantage 

of the present formulation over existing displacement based geometrically exact finite element 

beam formulations.  
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