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ABSTRACT 

The main goal of this paper is to propose a simplified procedure to accomplish 
the dynamic analysis of pre-cast RC (reinforced concrete) telecommunication towers 
subjected to wind loads. A new procedure, based on graphs and curves obtained using 
optimization techniques, uses the results of the static analysis to compute the dynamic 
response of this kind of structures. According to NBR-6123 code (ABNT, 1988), if the 
first natural frequency of vibration of a given structure is smaller than 1 Hz, it is 
necessary to perform dynamic analysis of the structure; otherwise a static model can be 
used. One peculiar characteristic of these pre-cast RC structures is that they often 
present the first natural frequency of vibration smaller than 1 Hz and so the dynamic 
analysis is needed. The main feature researched is the dynamic magnification factor, 
defined here as the ratio between the bending moment given by the dynamic and static 
models (ABNT, 1988). Surfaces are created to give the dynamic magnification factor as 
a function of the structure height and the first natural frequency of vibration. To create 
these surfaces, optimization problems (inverse problems) were formulated where the 
objective function is the error between the dynamic magnification factor, computed 
according to (ABNT, 1988), and other given by equations, defined in function of the 
structure height and first natural frequency of vibration. The design variables are the 
coefficients of these equations and constraints are imposed to avoid negative and also 
very large frequencies. With the methodology proposed here only the static results and 
the first natural frequency of vibration are needed to accomplish the dynamic analysis of 
a given structure. The method is easier and faster than the tradition dynamic analysis 
approach. In this work, results of the dynamic and static analysis of 90 real structures 
are used in the optimization process. The difference between the results given by the 
simplified method proposed here and the complete dynamic analysis are less than 2%.  
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1. INTRODUCTION AND MOTIVATION 
The theme of the present work is related to the recent public auctions for 

operation of cellular telephony in Brazil, besides of the natural growth of the sector of 
telecommunication in the world. With this, new systems of transmission and reception 
of electromagnetic waves are being installed. In function of the restrictions of the local 
legislations, the installation of new towers has been an extremely difficult work. One 
possible solution is the sharing of existing structures, where several telecommunication 
companies use a same tower already previously existent. It is necessary to verify if the 
existing structure, when subjected to the loads of a given configuration of antennas and 
supports, presents appropriate safety. The installation of the systems must be 
accomplished in very few months. Such fact demands the analysis, with reliability and 
speed, of thousands of existing telecommunications towers in a short period of time. A 
typical structure analyzed here is show in Fig. 1. 

 

 
Fig. 1 – Typical pre-cast RC telecommunication tower 
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Unfortunately, some accidents occurred with some of these structures. In Fig. 2 
we show one structure collapsed during a wind storm. 
 

  
Fig. 2 – Pre-cast RC structure collapsed during a wind storm 

 
Among several hypothesis, based on investigations, studies and tests, the main causes of 
the collapses are: 

- design error in the junction of the sections; 
- over load; the number of antennas, platforms and supports are larger than the 

prescribed; the place of installation of the tower is different from the one 
considered in the design; 

- structures designed without considering the dynamic effects of the wind loads. 
 
The present work deals with the dynamic effects of the wind loads. We show 

here that the dynamic effects of wind are very significant and can drastically contribute 
to structural collapse. The main feature researched is the dynamic magnification factor, 
defined here as the ratio between the bending moment given by the dynamic and static 
models (ABNT, 1988). Surfaces are created to give this factor in function of the 
structure height and the first natural frequency of vibration. To create these surfaces, 
optimization problems were formulated where the objective function is the error 
between the dynamic magnification factor, computed according to ABNT (1988), and 
other given by equations, defined in function of the structure height and first natural 
frequency of vibration. The design variables are the coefficients of these equations and 
constraints are imposed to avoid negative magnification factor. The static analysis is 
quite straightforward and easy to implement. However, the same thing is not true for 
dynamic analysis because it requires computation of natural frequencies and mode 
shapes and coefficient of amplification, beside others variables. The main goal of this 
paper is to define a procedure to simplify the dynamic analysis of Reinforced Concrete 
(RC) Telecommunication Towers. So, using graphs created by the authors, engineers 
can easily obtain the dynamic response of a tower, only by multiplying the results of the 
static analysis by the coefficients given in graphs. In this kind of structures, the main 
internal loads are the bending moment, the shear load and the axial load. Only the 
flexure moment and the shear load are multiplied by the magnification factor to obtain 
the dynamic results. In cases analyzed here, the axial load is not influenced by the 
dynamic response. 
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To solve the problems discussed here, use of advanced tools and models is 
needed, such as the reinforced concrete modeling, dynamic analysis structures subjected 
to wind loading and Lagrangian optimization. First is presented the linear dynamic 
model used to accomplish the structural analysis. This model is based on the discrete 
dynamic model of the NBR-6123 code (ABNT, 1988). In this model, the structure’s 
effective stiffness is considered constant computed as the gross moment of inertia. Next, 
the optimization problem is described, containing a description of the structures, the 
formulation of the problem and the obtained results. Finally, conclusions based on the 
present study and suggestions for further works are presented.  

 
 

2. REVIEW OF LITERATURE 
 
The RC analysis is done based on the NBR-6118 code (ABNT, 2003). A review 

of the literature indicates that the effective stiffness of RC structures depends on the 
bending moment, as well as the distribution and the amount of reinforcement. An 
equation proposed by Branson (1963) for the calculation of the effective stiffness was 
incorporated in ACI-318 (ACI, 1971) and, more recently, in ABNT (2003). Several 
researchers have used Branson’s equation to compute the displacement of RC beams 
and slabs. Inspired by Branson’s equation, Brasil and Silva (2006) present a 
methodology for calculation of effective stiffness of RC beams subjected to bending 
moment and shear load. The methodology consists of using optimization techniques to 
minimize the error between the displacements measured in tests with those given by the 
integration of the elastic line, thus representing the effective stiffness of the member. In 
the present work, according to the dynamic linear model, we consider constant stiffness 
as the gross section moment of inertia.  

 

 
Fig. 3 – Original and discretized structure 
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In the work of Silva and Brasil (2006) a non-linear dynamic model is presented 
for analysis of slender RC structures under dynamic wind loading. The model is based 
on ABNT (1988) and on the effective stiffness equations given by Brasil and Silva 
(2006). Once equations for the calculation of the effective stiffness are adopted, a non-
linear static analysis of the structure under the mean wind speed loading is 
accomplished first (ABNT, 1988) where, in each iteration of the P-delta method, the 
effective stiffness of RC elements is computed as a function of the bending moment. 
Considering the effective stiffness obtained in the final iteration of the P-delta method, 
the authors calculate the natural frequencies and modes of vibration of the structure. In 
this kind of problem, once the moment given by the P-delta method is greater than the 
linear static one, the effective stiffness may be lower than estimated by the linear static 
analysis, and lower frequencies will be generated. These modes and frequencies are then 
used to perform the floating wind analysis of the structure (ABNT, 1988); that is the 
analysis of the vibration of the structure due to the variation of the wind velocity. These 
authors consider the structure to vibrate under the wind loading around the equilibrium 
configuration given by the P-delta method, and that the amplitude of displacement is 
given by the dynamic wind analysis. The sum of the non-linear static analysis and the 
floating wind analysis results constitutes the non-linear dynamic analysis of the 
structure. This process is depicted in Fig.s 3 and 4. Silva and Brasil (2006) conclude 
that the dynamic internal loads of the non-linear dynamic model are 15% larger than 
those with the linear dynamic model (ABNT, 1988). When the values obtained with the 
non-linear dynamic model are compared with those given by the linear static model of 
ABNT (1988), it is concluded that they are 50% larger than the linear static analysis 
results. In the present work, the authors propose a code based method, so only the linear 
dynamic analysis is considered. It is done just taking the effective stiffness constant as 
the gross section moment of inertia and neglecting the second order effects (P-delta 
effects). 

 

 
Fig. 4 – Graphical representation - non-linear dynamic model (Silva and Brasil, 2006) 
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For the optimization process, the augmented Lagrangian method for dynamic 

response optimization problems as described by Chahande and Arora (1994) and Arora 
(2004) is used. This method transforms a constrained optimization problem into an 
unconstrained optimization problem. The objective and constraints functions are 
combined using the Lagrange multipliers and penalty parameters to create an 
augmented Lagrangian functional. A sequence of functionals is created by properly 
altering the penalty parameters and Lagrange multipliers. The unconstrained minimum 
value of the functional in this sequence converges to the minimum of the constrained 
problem. Considering all the methods describe in this section we developed the work 
here presented. 
 
 
3. LINEAR DYNAMIC ANALYSIS 
 
3.1 Linear Static Analysis (LSA) 

According to ABNT (1988), V0 (m/s) is the mean wind speed computed based on 
a 3 s interval, at 10 m above ground, for a plain terrain with no roughness, and a return 
period of 50 years. The topographic factor is S1, while the terrain roughness factor is S2, 
given as 

 
p

r zbFS )10(2 =         (1) 
 
where b, p and Fr are factors that depend on the terrain characteristics and z is the height 
above ground in meters. Factors S1, S2 and S3 are given in tables in ABNT (1988). The 
characteristic wind speed (m/s) and the wind pressure (Pa), respectively, are 

 
3210 SSSVVk =     and    2613.0 kVq = .      (2) 

 
The wind load (N) on an area A (projected area on a vertical plane of the given object in 
m2) is computed as 

 
AqCF a= ,         (3) 

 
where Ca is the drag coefficient. ABNT (1988) presents tables for Ca values.  
 
3.2 Linear Dynamic Analysis (LDA) 
 If the first natural frequency of vibration of a given structure is smaller than 1 
Hz, it is necessary to perform dynamic analysis of the structure (ABNT, 1988). 
According ABNT (1988), the dynamic analysis is performed as follows. For the j-th 
degree of freedom, the total load Xj due to direct wind along the tower is the sum of the 
mean and the floating loads given as: 

 

jjj XXX ˆ+= .        (4) 
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The mean load jX  is given as 
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where 
 

2613.0 po Vq =    and   31069.0 SSVVp =    ( oq  in N/m2 and pV  in m/s), (6) 
 
and b and p are given in Table 20 in ABNT (1988); zr is the reference height, taken as 
10 m in this work; pV  is the design wind speed corresponding to the mean speed during 

10 minutes at 10 m above the ground for a terrain roughness (S2) for category II. 
 The floating component jX̂  in Eq. (4) is given as 
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and mi, m0, Ai, A0, ξ and Cai are the lumped mass at the i-th degree of freedom, a 
reference mass, the equivalent area at the i-th degree of freedom, a reference area, the 
dynamic coefficient of amplification in Figs. 14 to 18 of ABNT (1988), and the drag 
coefficient for area Ai, respectively. Note that ϕ = [ϕi] is a given mode of vibration. To 
compute ϕi and ξ, it is necessary to consider the structural mass and stiffness. The 
damping factor ζ is given by ABNT (1988). When the section varies in function of the 
diameter ζ = 1.5 and for cylindrical structures ζ = 1.0. The lumped mass can be easily 
calculated by summing the mass around the influence region of a node. The total 
homogenized moment of inertia of the cross-section is given as 
 

hom total sG III += , )1(
sec

hom −=
c

s
ss E

EII , ) ( 560085.0sec MPafE ckc ×= , (9) 

 
where Es, Ec sec, Is, Is hom, IG and fck are the elasticity modulus of steel, the secant 
elasticity modulus of concrete (ABNT, 2003), the moment of inertia about the structural 
axis of the total longitudinal steel area, the homogenized moment of inertia of the 
longitudinal steel area, the gross moment of inertia of the cross-section, and the 
characteristic compressive resistance in MPa for 28 days old concrete, respectively. In 
the linear dynamic analysis here accomplished, we consider the cross-sectional moment 
of inertia as, 
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IEF = IG,         (10) 

 

of each section to compute stiffness matrix of the structure. We consider that the 
structure under linear static behavior does not suffer any plastification or irreversible 
cracking. 
 Consider a given vector iQ̂  which represents a quantity such as internal loads, 

stress, or strain, due to the i-th natural mode of vibration. The contribution Q̂  of r 
modes in the dynamic analysis is computed as 
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is the transverse load, due to the variation of the wind direction. The first expression of 
Eq. (11) is called simply the RSS method, which means square root of the sum of the 
squares method. 
 
 
4. THE AUGMENTED LAGRANGIAN METHOD  

To solve the structural optimization problem formulated in this paper, it is 
necessary to adopt optimization algorithms that deal with static and dynamic 
constraints, as well as non-linear functions. A non-linear optimization problem with 
static and dynamic constraints is presented as follows: find the design variables b∈ nR  
that minimize the non-linear objective function f(b) subjected to the non-linear 
constraint functions: 
 

Static 
l,=i   ;)(ig 10=b

        (12) 
m,+l=i   ;)(g i 10≤b        (13) 

 
and dynamic, ∀ t ∈ [t0,tf],  

 l',+m=i   ;=t)(t),(t),(t),,(gt),(g ii 10zz &&&zbb =     (14) 
 m',l'+=i   ;t)(t),(t),(t),,(gt),(g ii 10≤= zz &&&zbb     (15) 

 
In dynamics of structures, the displacement vector z(t) must satisfy the equations of 
motion, a system of second-order ordinary differential equations:  

 
),,,,(),,,,(+)(),,,,(+)(),,,,( tttttt zzzzzz zzbpzzbRzzbCzzbM &&&&&&&&&&&&&&& =  (16) 
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with the initial conditions as 0000 )(and  )( zz  zz == tt && . Here M ),,,,( tzzzb &&&  and 
C ),,,,( tzzzb &&&  are the mass and damping matrices, respectively; the vector R ),,,,( tzzzb &&&  
is the generalized elastic force; and p ),,,,( tzzzb &&&  is the generalized force vector. 
Equations (12) and (13) include, for example, limits of the design variables. Equations 
(14) and (15) represent constraints on dynamic response such as the maximum and 
minimum values of the displacements z(t), dynamic strain and stress. The initial and 
final times are t0 and tf , respectively. 

During the design process, a set of parameters, denoted as design variables b, are 
selected to define the system. Once the design variables are specified, the vector z(t) is 
determined by Eq. (16). The displacements are called state variables, as they determine 
the structure configuration for every t ∈ [t0,tf], and Eq. (16) is the state equation. The 
constraints on dynamic response are explicit functions of state variables and implicit 
functions of the design variables. Usually, in structural optimization problems with 
dynamic constraints, the state variables vector is denoted as z(t). In this work, we use an 
equivalent static method where the analysis is done by computing the maximum 
amplitude of each mode of vibration and then using the RSS method, as shown 
previously in Eq. (11). 

There are several optimization methods to solve the problem defined by Eqs. 
(12) to (16). We treat this problem using the augmented Lagrangian method where an 
augmented functional is created using the objective and the constraint functions:  

 
),),(P()f(),,( rubgbrub +=Φ       (17) 

 
P(g(b),u,r) is a penalty functional, and u R∈ m'  and r R∈ m'  are the Lagrange 
multipliers and the penalty parameters, respectively. It is possible to determine u* and 
r* so that the minimum point b* of the functional defined in Eq. (17) is the minimum 
point of the problem defined by Eqs. (12) to (16). As we use iterative methods to find 
u* and r*, it is necessary to use a stopping criterion.  

The augmented Lagrangian method defines procedures for updating penalty 
parameters and Lagrange multipliers. This method can be simply described by the 
algorithm:  

Step 1. Set k=0, estimate vector u and r. 
Step 2. Minimize Φ(b,uk,rk) with respect to b. Let bk be the best point obtained in 

this step. 
Step 3. If the stopping criterion is satisfied, stop the iterative process. 
Step 4. Update uk and rk  if necessary. 
Step 5. Set k=k+1 and go to Step 2.  

 
The multipliers method is quite simple, and its essence is contained in Steps 2 and 4. 
The functional in Eq. (17) can be defined in several ways. In the present work, the 
Lagrangian functional adopted to solve the problem with dynamic response is defined 
as:  
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In Eq. (18) ri represents the penalty parameters and θi defines the Lagrangian 
multipliers as ui = riθi, for i=1,...,m’. Note that, in Eq. (18), the dynamic constraint 
functions are integrated over the time interval and combined with the objective function 
to obtain the Lagrangian functional. At Steps 2 and 3, it is necessary to adopt a stopping 
criterion. Here, we consider the following stopping criterion: 
 

K < p,          (19) 
 
where p is the maximum number of iterations, and 
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   (22) 
 
In Eq. (21) Kb is the maximum constraint violation, and in Eqs. (20) to (22) ε is the 
tolerance. If the algorithm is not converging, the condition in Eq. (19) states a finite 
number of iterations. Chahande and Arora (1994) noted in several examples analyzed 
that the best value for p is 2n. The process of updating the Lagrange multipliers and 
penalty parameters and more details on the adopted algorithm are presented by Arora 
(2004) and Chahande and Arora (1994). In the work of Chahande and Arora (1994), 
only Eq. (21) is suggested as the stopping criterion, but in this work, based on tests 
accomplished by the authors, we adopt other conditions as well. 

A computer program was developed, based on the augmented Lagrangian 
method. The following numerical methods were utilized to implement this method: 

- to solve the equations of motion (16), we use the procedure given in Section 2 
for non-linear analysis;. 

- related to unconstrained minimization (Step 2), we use the conjugate gradient 
method with Armijo line search; 

- to calculate the gradient vector, we use the finite difference method; 
- to solve linear systems, we use Cholesky decomposition. 
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5. DESCRIPTION OF THE STRUCTURES  

The RC towers analyzed here presents height varying from 20 m to 60 m with a 
circular cross-section. Based on that, we suggest that the results given here be used only 
to structures with height no larger than 60 m. The diameter, thickness and steel areas 
may change along the height of the tower and are different from one tower to the other. 
The concrete used in the fabrication of the tower has a characteristic resistance at 28 
days (fck) as 45 MPa, which gives secant elasticity modulus (Ecsec) of 31.9 GPa from Eq. 
(9). Applying the safety factor, the concrete design resistance is then fcd = 45/1.3 MPa. 
The steel has a cover of 25 mm, design resistance of fyd = 500/1.15 MPa and elasticity 
modulus Es = 210 GPa.  

The structures are discretized with 41 nodes and 40 elements. The first element 
starts at the first node and ends at the second, the second element starts at the second 
node and ends at the third, and so on. With this discretization, the structure has 240 
degrees of freedom. The displacement vector corresponding to the structural degrees of 
freedom is also denoted as the state variable vector. Fig. 5 shows a typical structure 
cross-section, where ø, e, As and Asw are respectively the external diameter, thickness, 
the longitudinal steel area and the traverse reinforcement. 

 

 
Fig. 5 – Cross-section 

 
As the ninety structures analyzed here are installed in several places in Brazil, 

the basic wind speed V0, topographic factor S1 and terrain roughness S2 ≡ (b; p; Fr), are 
adopted according to the local of installation. The statistical factor is S3 = 1.1. As stated 
before, the wind load on an area A is AqCF a= , where Ca represents the drag 
coefficients. Several pieces of equipment are installed on the structure, such as a ladder 
with anti-fall cable, a platform with antenna supports, night signer lights, a system of 
protection against lightning, and antennas. The values of A and Ca changes from tower 
to tower.  

Besides these areas and drag coefficients, the tower mass is considered 
distributed along the structure proportionally to the volume and can be computed using 
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a density of 2500 kg/m3. The masses of the other components are also considered. As 
the goal of the paper is to compare the static with the dynamic internal loads, specially 
the bending moment, these data are not important to the final result of the work. 

 
 

5. COMPUTATION OF THE DYNAMIC MAGNIFICATION FACTOR  
To explain the methodology and the results obtained here, let’s take as example 

a 40 m tall structure, whose diameter varies along the height. In this case, the damping 
factor ζ = 1.5 (ABNT, 1988). Accomplishing a dynamic finite element analysis, we 
compute the first natural frequency of vibration f1 = 0.42 Hz. The wind factors are V0 = 
40 m/s, topographic factor S1 = 1.0, and terrain roughness S2 ≡ III and the statistical 
factor is S3 = 1.1. The structure is loaded with antennas, supports, platforms, cables, 
ladder, etc. After analyzing this structure considering the static and dynamic models we 
obtain the bending moments given in Table 1. Note that the results of some nodes were 
suppressed to reduce the size of the table. 

 
Table 1 – Internal loads of a given 40 m tall structure 
Node (i) z (m) Mlsad (kN.m) Mldad (kN.m) γd

1 40,0 0,00 0,00
2 39,0 19,40 16,20 0,83
3 38,0 39,82 35,18 0,88
4 37,0 61,27 56,84 0,93

10 31,0 212,00 241,07 1,14
20 21,0 550,32 730,47 1,33
26 15,0 807,20 1109,14 1,37
27 14,0 853,96 1176,92 1,38
28 13,0 901,85 1245,82 1,38
29 12,0 950,87 1315,77 1,38
30 11,0 1000,99 1386,70 1,39
31 10,0 1052,22 1458,51 1,39
32 9,0 1104,54 1531,13 1,39
33 8,0 1157,91 1604,48 1,39
34 7,0 1212,33 1678,49 1,38
35 6,0 1267,76 1753,09 1,38
36 5,0 1324,18 1828,20 1,38
37 4,0 1381,56 1903,78 1,38
38 3,0 1439,85 1979,75 1,37
39 2,0 1499,02 2056,01 1,37
40 1,0 1558,76 2132,47 1,37
41 0,0 1619,01 2209,14 1,36

resume 100% 138% 1,38  
 

In this Table, z is the height above ground, while Mlsad and Mldad are the design bending 
moments given, respectively, by the linear static analysis and linear dynamic analysis. 
We consider the bending moment to develop the methodology proposed here because it 
is the most important internal load in this kind of structure. The magnification factor 
γd(i) of a given section (i) is computed as  
 

)(
)(

)(
iM
iM

i
lsad

ldad
d =γ         (23) 
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Fig. 6 – Dynamic and static flexure moment along the structure axis 

 
The magnification factor of the structure γd is the average of γd(i) computed in the 
results of nodes 27 to 41 (approximately the one third of structure near to the ground 
level): 

 

∑
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15
1

i
dd iγγ         (24) 

 
  In Table 1, in the resume line, 100% means the result of the static analysis while 
138% is the ratio between the dynamic and static results. It means that the dynamic 
flexure moment is 38% larger than the static flexure moment (average in the third part 
of the structure near to the ground level). So γd, defined here as the dynamic 
magnification factor, is the factor that can be used to find directly the dynamic results of 
a given tower. In Fig. 6 are shown these flexure moments along the structure axis.  
 
Table 2 – Values of γd for ζ = 1.5 and S2 = III 

H (m) f1 (Hz) γd γd0 γd1 γd2 E0 E1 E2
20 0,97 1,28 1,44 1,28 1,30 0,012 0,000 0,000
30 0,45 1,38 1,44 1,40 1,38 0,002 0,000 0,000
40 0,31 1,42 1,44 1,46 1,45 0,000 0,001 0,001
50 0,20 1,56 1,44 1,51 1,54 0,007 0,001 0,000
60 0,19 1,53 1,44 1,55 1,53 0,004 0,000 0,000
20 1,15 1,27 1,44 1,25 1,27 0,014 0,000 0,000
30 0,54 1,36 1,44 1,38 1,35 0,003 0,000 0,000
40 0,42 1,38 1,44 1,44 1,38 0,002 0,002 0,000
50 0,28 1,50 1,44 1,50 1,47 0,002 0,000 0,000
60 0,23 1,49 1,44 1,54 1,50 0,002 0,001 0,000
20 0,65 1,34 1,44 1,33 1,33 0,004 0,000 0,000
30 0,39 1,42 1,44 1,41 1,40 0,000 0,000 0,000
40 0,26 1,45 1,44 1,46 1,48 0,000 0,000 0,001
50 0,17 1,59 1,44 1,51 1,57 0,012 0,003 0,000
60 0,14 1,58 1,44 1,55 1,59 0,011 0,000 0,000

total error 0,086 0,075 0,009 0,002  
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Adopting the same procedure for several structures and grouping those that present the 
same value of ζ and S2, we can build a table similar to Table 2. In this table H is the 
structure height, f1 is the first natural frequency of vibration and γd the dynamic 
magnification factor. 
 
  Consider now that γd is written approximately as: 
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In Eq. (25) we note that for k = 0 the approximation of γd is given by a constant 
function, when k = 1 by a linear function and for k = 2 by a quadratic equation.  
  Considering the approximations given by Eq. (25), we define the following 
design variables of the optimization problem to determinate the dynamic magnification 
factor: 
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Consider respectively the real and approximated dynamic magnification factor vectors 
γd and γdk of a given group of structures which present the same ζ and S2. The quadratic 
error between the approximation γdk and the real factor γd is: 
 

  ∑
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i
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2
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Once that γdki, is computed according to one of Eq. (25), always generates an 
approximation error in (27), the problem of minimizing this error is an optimization 
problem. We formulate the following optimization problems: determine b that 
 
  Minimize  Ek(b) 
 
  Subjected to 
 
  jidki ,...,1    0)( =≥bγ        (28) 
 
Note that for k = 0 we have one optimization problem, k = 1 other problem and so on, 
and that the value of j is 15. The optimization problems presented here are of inverse 
analysis. As we mentioned in the present work, we analyzed a total of ninety towers and 
computed the real dynamic magnification factor vectors of groups of these towers with 
same ζ and S2. These vectors were used to compute the approximation dynamic 
magnification factor.  
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Coming back to Table 2, γd0 is the approximation of the constant function, while 
γd1 and γd2 are the approximations given by the linear and quadratic functions 
respectively. The same way, E0, E1 and E2 are respectively the approximation errors of 
constant, linear and quadratic functions. One can note that column E2 is the one that 
presents the smallest errors. However, in some cases, when the height is larger than 60 
m the value of γd2 can present non-realistic values. Because of that, we suggest to the 
readers and engineers that use the method to adopt the linear approximation γd1 and only 
consider the results presented here in structures no longer than 60 m. In Tables 3 to 8 
are shown the coefficients of γdk for several values of ζ and S2.  

 
Table 3 – Coefficients of γdk for ζ = 1.5 and S2 = II 

Design Variables
function a b c d e f

0 1,596397
1 1,592341 0,002299 ‐0,20851
2 1,095788 0,026414 0,632866 ‐0,03026 ‐0,00021 ‐0,11634  

 

 
Fig. 7 – Dynamic magnification factor γd1 for ζ = 1.5 and S2 = II 

 
Table 4 – Coefficients of γdk for ζ = 1.5 and S2 = III 

Design Variables
k a b c d e f
0 1,436333
1 1,3615 0,003594 ‐0,16339
2 0,943021 0,02439 0,575259 ‐0,02768 ‐0,00018 ‐0,08937  
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Fig. 8 – Dynamic magnification factor γd1 for ζ = 1.5 and S2 = III 

 
Table 5 – Coefficients of γdk for ζ = 1.5 and S2 = IV 

Design Variables
function a b c d e f

0 1,263054
1 1,172087 0,003751 ‐0,14004
2 0,79765 0,022412 0,50859 ‐0,02418 ‐0,00017 ‐0,08094  

 

 
Fig. 9 – Dynamic magnification factor γd1 for ζ = 1.5 and S2 = IV 
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Table 6 – Coefficients of γdk for ζ = 1.0 and S2 = II 
Design Variables

function a b c d e f
0 1,67104
1 1,635324 0,003093 ‐0,22068
2 1,128192 0,029525 0,704224 ‐0,03643 ‐0,00024 ‐0,10375  

 

 
Fig. 10 – Dynamic magnification factor γd1 for ζ = 1.0 and S2 = II 

 
Table 7 – Coefficients of γdk for ζ = 1.0 and S2 = III 

Design Variables
function a b c d e f

0 1,502536
1 1,393851 0,004403 ‐0,16899
2 0,94504 0,028501 0,636653 ‐0,03346 ‐0,00022 ‐0,06387  

 
Table 8 – Coefficients of γdk for ζ = 1.0 and S2 = IV 

Design Variables
function a b c d e f

0 1,320372
1 1,1939 0,004552 ‐0,13956
2 0,795803 0,026117 0,571883 ‐0,02973 ‐0,0002 ‐0,0557  
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Fig. 11 – Dynamic magnification factor γd1 for ζ = 1.0 and S2 = III 

 

 
Fig. 12 – Dynamic magnification factor γd1 for ζ = 1.0 and S2 = IV 

 
One can note that in the results showed in the present work γd varies from 1.2 to 

1.7. As we stated before, in this kind of structures, the main internal loads are the 
bending moment, the shear load and the axial load. Only the bending moment and the 
shear load are multiplied by the magnification factor to obtain the dynamic results. In 
cases analyzed here, the axial load is not influenced by the dynamic response. 
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6. CONCLUSIONS  
  We presented the linear static and dynamic models based on the NBR-6123 
(ABNT, 1988) code to compute the wind loads. A special emphasis was placed in pre-
cast RC towers. A new procedure, based on graphs and curves obtained using 
optimization techniques, uses the results of the static analysis to compute the dynamic 
response of this kind of structures. One peculiar characteristic of these pre-cast RC 
structures is that they often present the first natural frequency of vibration smaller than 1 
Hz and so the dynamic analysis is needed. The main feature researched is the dynamic 
magnification factor, defined here as the ratio between the bending moment given by 
the dynamic and static models (ABNT, 1988). Surfaces are created to give the dynamic 
magnification factor as a function of the structure height and the first natural frequency 
of vibration. To create these surfaces, optimization problems (inverse problems) were 
formulated where the objective function is the error between the dynamic magnification 
factor, computed according to (ABNT, 1988), and other given by equations, defined in 
function of the structure height and first natural frequency of vibration. The design 
variables are the coefficients of these equations and constraints are imposed to avoid 
negative and also very large frequencies. With the methodology proposed here only the 
static results and the first natural frequency of vibration are need to accomplish the 
dynamic analysis of a given structure. The method is easier and faster than the tradition 
dynamic analysis approach. In this work, results of the dynamic and static analysis of 90 
real structures are used in the optimization process. The methodology proposed here is 
quite precise and can reduce drastically engineering and computational time used to 
accomplish the dynamic analysis of RC Telecommunication Thus, the graphs created by 
the authors constitute a new tool that can easily be used by Engineers. 
  As suggestions for futures works we state the determination of a simplified 
model that takes into consideration the non-linearities of the structure 
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