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Abstract. This study is motivated by current issues in transportation acoustics, where the goal is to
predict and reduce the noise radiated by vibrating structures. Potential applications include passive and
active vibroacoustic control of extended sources. In this work, the vibration of structures is described
by numerical techniques. Structures like beams and plates can be modeled by finite element techniques.
Nonlinearities effects originated by large displacements formulation are use to describe the mechanical
system. In this implementation, the dynamic model of the Von-Kármán equations is used and the solu-
tions are projected over the linear modes of the structure. The structural system is coupled to the infinity
fluid action. It was used one temporal formulation calculated by a convolution integral of the fluid ra-
diation impedance and the champ of velocities of the mechanical system. The fluid-structure effects are
extent to heavy fluid coupling. The goal of this work is put numerical simulation of sound radiated by
vibrating structures including sound-structure coupling. The formulation is developed in the extended
case including resonance modes and geometrical nonlinearities of the structure. Two geometrical config-
urations of the plate were used. The results obtained by the numerical method using the present models
are achieved and the influence of geometrical nonlinearities on sound radiation is explored. Firstly, the
linear model was used to study the acoustic radiation influence on the dynamical responses. One second
analysis was performed, using a nonlinear formulation. This way, the heavy fluid radiation effects on the
nonlinearities were investigated.
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1 INTRODUCTION

In the last years, the acoustic propagation radiated by vibrating structures has been studied
for the noise reduction application. Several authors showed special interest on perturbations
in a linear acoustic field generated by structural non-linearities (Ginsberg, 1975; Nayfeh and
Kelly, 1978). One application is the electrodynamic loudspeakers design (Quaegebuer, 2007).
It is expected a linear transduction. However, for high levels of vibrations, nonlinear phenom-
ena appear and are responsible for audible distortions (Quaegebeur and Chaigne, 2008). The
goal of this paper is to present one formulation for structural-acoustic problems composed by
a non-linear elastic plate coupled to the infinity fluid loading. In order to test the methodology,
it was proposed several numerical solutions for an elementary model loudspeaker. For this,
it is necessary to understand the validity of the proposed models. In this work, the large dis-
placements nonlinear effects are coupled to an impedance fluid model. Two deferents values of
impedance was tested. In this work, it was considered light and heavy fluids. It was determi-
nated the radiation effect of structures in high levels of amplitudes on acoustic domains. The
model is based in a process of radiation of small amplitude sound waves by an oscillating struc-
ture. In this model, fluctuations of physical properties, like as air density and sound speed, are
neglected. The mechanical system is composed by a elastic circular plate in baffled conditions.
The non-linear geometry results in cubic non-linearity of Von-Kármán equations dynamic ana-
log. It is considered that the sound wave radiation and velocities are governed by the linear
wave Helmholtz equation. In fact, sufficiently far from the structural surface, the fluid motion
is acoustical, (Kinsler et al., 1995). In order to instigate the coupling among the structural me-
chanical behavior and the acoustic impedance effect, one temporal formulation calculated by
a convolution integral of the fluid radiation impedance and the champ of velocities of the me-
chanical system was performed. The fluid-structure effects are extent to heavy fluid coupling.
Analytical solutions for circular plates was projected on a linear mode base in order to expand
the temporal solution of the coupled system. The aims of this paper is to present a formulation
of a problem of structural acoustics in heavy fluid loading conditions of a non-linear elastic
structure and clarify the nonlinear structural effects on acoustical fluid radiation done by a tem-
poral numerical approach. The outline of the rest of the paper is as follows. In Section2, the
acoustic-structure coupling for a baffled plate modeling a loudspeaker is described. Moreover,
the basic assumptions of the model are presented. In the next section, we state the bending plate
problem with large displacements. The Von-Kármán dynamic analog model is presented by the
governing equations description. In this context, analytical and numerical approaches are ap-
plied to describe the system and a modal superposition technique is used to model the coupled
dynamic system. In addition, the procedure to decompose the heavy acoustic radiation effect in
a time formulation is presented in this section. In Section4, the numerical results are presented
and the performance of the method is illustrated. The conclusions are outlined in Section5.

2 PROBLEM DESCRIPTION

In this work, the dynamical response of a loudspeaker model is performed by numerical
methods. The problem consists of a mechanical system under acoustic impedance effects. The
structure is placed in baffled conditions. In order to model the dynamical behavior of the system,
an acoustic-structure coupling problem among one circular elastic plate and the exterior fluid
is evaluated. Therefore, the reaction of the surrounding fluid on the structure is considered
as dissipative and it acts against the motion sense. In general, the excitation forces of the
loudspeaker system are electromagnetic nature. In this work, the eletro-mechanical coupling
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analysis is beyond the scope of this paper. The coupling is performed by a convolution integral
of the acoustic impedance function and the normal spatial velocity distribution of the plate. The
analog equations of Von-Kármán are used to describe the mechanical system. The boundary
conditions and the forces of the mechanical system are presented in Fig. (1).

Figure 1:Model for the Acoustic-Plate Coupling.

In this work, two geometrical configurations of the circular plate with acoustic radiation
coupling were tested. The first one, it is considered flat and circular. The second configuration
is more realistic. Therefore, the loudspeaker is viewed as the combination of an spherical
central structure with a conical suspension. More details of the geometries are described in
next sections. The assumptions of the model are: the plate is considered thin in according with
the Kirchhoff-Love bending theory and the rotatory inertia effect in plane is not considered.
In addition, the nonlinear terms are cubic nonlinearities. In the next section, the Governing
Equations for the acoustic-structure coupling are presented.

3 GOVERNING EQUATIONS

In this approach, the wave propagation theory done by Von-Kármán equations dynamic ana-
log is valid for low frequency range and linear acoustic propagation conditions. For the fre-
quency analysis, all dependent displacements represent small fluctuations around a static ref-
erence value and the material behavior is linear and the mechanical properties, like as Young’s
moduliE, densityρ and Poisson’s ratioν, etc, are continues in the elastic domain.We supposed
a forced symmetric circular plate model. Therefore, a axisymmetric formulation is developed
and depending of the radial positionr. The transverse displacement is time depending and
denoted forw(r, t). Likewise, we have the longitudinal displacement describe byu(r, t). For
large displacements, the geometrical nonlinearities are not neglected, taking into account the
stretching of the mid-plane of the plate.
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3.1 The Mechanical Equations

The dynamic equations for the bending circular plate in polar coordinates are written as
(Nayfeh and Mook, 1995):

ρhẅ + D∇4w =
1

r

∂

∂r
(F,rw,r)− 2µẇ + T (r, t)− T f (r, t) (1)

whereh is the thickness of the plate,µ is the damping coefficient andD is the flexural rigidity
done by:

D =
Eh3

12 (1− ν2)
(2)

The termsT andT f are external pressures on the domain: excitation of system and acoustic
fluid coupling, respectively. More details about these terms are presented in next sections. One
relation among the nonlinear forceF and the displacements is done by:

∇4F = −Eh

2r

∂

∂r

(
w2

,r

)
(3)

For the axisymmetric case, the differential operator∇4 is done by:

∇4 =

(
∂2

∂r2
+

1

r

∂

∂r

)2

(4)

The longitudinal and transverse displacements and the nonlinear force termF can be related
by Eq. (5) and (6).

Eh

(
u,r +

1

2
w2

,r

)
=

1

r
F,r − νF,rr (5)

Eh
u

r
= F,rr − ν

r
F,r (6)

In this point, one analysis with dimensionless variables is more convenient. The new vari-
ables are defined as follows:

r = Rr∗, t = R2
√

ρh
D

t∗, w =
h2

R
w∗

u =
h4

R3
u∗, µ =

24(1−ν2)
R4

√
ρh5Dµ∗

T =
Dh2

R5
T ∗, F = Eh5

R2 F ∗

whereR is the radius of the circular plate.
By substituting the dimensional relations into Eq. (1), (3), (5) and (6), it results in a dimen-

sionless problem forr with variation [0,1] done by:

ẅ +∇4w = ε

[
1

r

∂

∂r
(F,rw,r)− 2µẇ

]
+ T (r, t)− T f (r, t) (7)
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∇4F = − 1

2r

∂

∂r

(
w2

,r

)
(8)

u,r +
1

2
w2

,r =
1

r
F,r − νF,rr (9)

u

r
= F,rr − ν

r
F,r (10)

where the dimensionless termε is done by Eq. (11). All dimensionless variables are O(1) as
ε → 1.

ε =
12 (1− ν2) h2

R2
(11)

The edges of the plate are considered clamped. Therefore, the boundary conditions for the
mechanical system are done by:

w(1) = 0, u(1) = 0, w,r(1) = 0 (12)

3.2 Modal Expansion of the transverse displacement

In order to solve, the transverse displacement is describe by uncoupled form. Therefore,
the spatial and temporal problems can be solved. By using, the mathematical properties of the
eigenmodes, (Ewins, 1995), an expansion is reached in terms of structural modes, as follows:

w (r, t) =
∞∑

m=1

φm (r) ψm (t) (13)

whereψm is the generalized temporal variable andφm is the linear mode vector in free-oscilla-
tions condition, associated to the natural frequencyωm. Thus, the modal vector and the natural
frequency are obtained by eigenvalue problem solution. In general, the modesφm are normal-
ized to unit, as follows:

1∫

0

rφmφndr = δmn (14)

By analytical solution of the circular plate eigenvalue problem, (Meirovitch, 2000), the de-
scription of the modeφm is done by:

φm = Cm [J0 (βmr) I0 (βm)− J0 (βm) I0 (βmr)] (15)

whereβm is relationship with the natural frequency asωm = β2
m. The functionsJ0 andI0 are

the Bessel functions and modified Bessel function of first kind, respectively.
For the circular plates case with the boundary conditions described in Eq. (12), the necessary

conditions for the modes functions inr = 1 are: φm (1) = 0 andφ
′
m (1) = 0. In addition to

exigency that mode function inr = 0 is a finite value. It results in a nonlinear roots problem
done by Eq. (16).

I0 (βm) J
′
0 (βm)− J0 (βm) I

′
0 (βm) = 0 (16)
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3.3 Modal Expansion of the Nonlinear Force Term

The nonlinear force can be expanded in terms of orthogonal modes. In this point, it is more
convenient to expand the spatial derivativeG = F,r (Nayfeh and Mook, 1995). Thus, the
combinations of the Eq. (8) through (10) and Eq. (13) results in the Eq. (17) and (18).

G,r − νG = 0 (17)

r2G,rr + rG,r −G = −r

2

( ∞∑
m=1

φ
′
m (r) ψm (t)

)
(18)

Therefore, one possible expansion forG is done by:

G (r, t) =
∞∑

m=1

J1 (ζmr) ηm (t) (19)

whereζm is the argument of the Bessel functionJ1 andηm is the generalized temporal force
function.

The Eq. (17) is a boundary conditions equation forr = 1 and substituting the expansion
described in Eq. (19), it results in a nonlinear root problem forζm as follows:

ζmJ0 (ζm)− (1 + ν) J1 (ζm) = 0 (20)

It is noted that problem is material dependent. In general, the employed materials for loud-
speaker plates hasν = 1/3.

3.4 The Fluid Force Term

For several authors, a problem of non-linear vibrations of a heavy fluid-loaded structure can-
not be approached as a standard structural acoustics problem (Sorokin, 2000). In this work,
the structural non-linearity is combined with the acoustic radiation effect in a coupled formu-
lation and the structural responses are compared. Actually, several tests to determine the limit
of light fluid loading theory in wave propagation analysis of acoustic medium in contact with a
structure which presents large displacements can be found in references (Sorokin and Kadyrov,
1999; Sorokin, 2000).

The first hypothesis for the radiation acoustic coupling is the plate edge effects neglecting.
It is assumed one fluid pressure forceT f (r, t) acting on a baffled planar piston radiating in free
space. The pressure force is done by a convolution among the radiation impedance functionZr

and the plate velocitẏw, as follows:

Zr ∗ ẇ =

t∫

0

Zr (τ) ẇ (t− τ) dτ (21)

Following the Rayleigh theory, the radiation impedance of a baffled circular piston of radius
R is then given by (Fahy, 2000):

Zr = ρ0c0 [R1 (2kR) + jX1 (2kR)] (22)

whereρ0c0 is the acoustic impedance of the propagating medium andk is the wave number,
done by:k = ω/c0. The termsR1 andX1 are the reactance and inertance of acoustic medium,
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respectively. These functions are dependent on the frequency and can be expressed as (Kinsler
et al., 1995):

R1 (2kR) = 1− 2
J1 (2kR)

2kR
(23)

X1 (2kR) = 2
H1 (2kR)

2kR
(24)

whereJ1 andH1 represent the Bessel and Struve functions of first kind, respectively.
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Figure 2:Radiation Impedance functionZr.

The values of reactance and inertance are normalized toZ0 = ρ0c0. The functions in the
frequency domain are presented in Fig. (2a). For temporal analysis, the Eq. (22) must be
written in a time formulation. In this work, the radiation impedance function is approximate
to an infinity polynomial series (Doutaut et al., 1998). The mathematical description for the
temporal transformation is presented in the Eq. (25) and (26):

Zr

Z0

=

∞∑
i=0

βi (jω)i (R/c0)
i

∞∑
i=0

αi (jω)i (R/c0)
i

(25)

wherei is the polynomial order,βi andαi are numerical coefficients obtained by mean square
method.

In Fig. (2b), it is presented a mean square approximation for the real and imaginary radiation
impedance. In general, a few terms are necessary to reach a good agreement among the curves.
In Table1, it is compared the coefficients values obtained by the Rayleigh second order and
Mean Square approximations.

Coefficients β0 β1 β2 α0 α1 α2

Rayleigh (second order)0.0000 0.8488 0.4000 1.0000 1.0186 0.4000
Mean Square 0.0000 0.8488 0.4887 1.0000 1.0754 0.4887

Table 1:Values ofαi andβi.
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For the convergence of the transformation series by polynomial approximation, is is neces-
sary to satisfy the stability criteria ofKreiss(1968). By Fourier transformation, the Eq. (25)
can be rewritten in terms of temporal derivatives, by using the differential operatorsAr andBr

as follows:

Br

(
R
c0

dt

)

Ar

(
R
c0

dt

) =

∞∑
i=0

βi (R/c0)
i di/dti

∞∑
i=0

αi (R/c0)
i di/dti

(26)

Therefore, the radiation fluid effect introduces differential operators with bigger order in the
Mechanical Equations (1).

3.5 Summary of the Governing Equations

In order to resume the formulation, one presents the nonlinearly coupled differential equa-
tions system in time domain, as follows:

ψ̈n + ω2
nψn = ε

[ ∞∑
m=1

∞∑
p=1

∞∑
q=1

Γnmpqψmψpψq − 2µnψ̇n

]
+ Tn (t)− T f

n (t) (27)

The Eq. (27) represents a global balance of the mechanical effects. Thus, the quantities and
properties are determined by integration over the domain. The Eq. (28) through (30) represent
the external forces and the structural damping of the system, respectively.

Tn (t) =

1∫

0

rφnT (r, t) dr =

1∫

0

rφnT̄ (t)δ (r − r0) dr (28)

T f
n (t) =

1∫

0

rφnT
f (r, t) dr =

1∫

0

rφnZr ∗ ẇ (r, t) dr (29)

µn =

1∫

0

µrφ2
ndr (30)

One expression for the nonlinear coefficientΓnmpq is obtained using the orthogonality prop-
erties of the modal expansion proposed to the nonlinear force, described in Section (3.3). Fi-
nally, the nonlinear coefficient is presented in the Eq. (31) as:

Γnmpq =
∞∑

k=1

1∫
0

φ
′
pφ

′
qJ1 (ζkr) dr

1∫
0

φ
′
nφ

′
mJ1 (ζkr) dr

(ζ2
k − 1 + ν2) J2

1 (ζk)
(31)

In order to solve the system described in Eq. (27), it was used analytical and numerical
methods to determine the modal parameters. In this work, the time solution was obtained by
use of mathematical commercial codes, like as Matlab. The analysis of convergence is not
presented here. In the next section, several numerical tests are presented.
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4 NUMERICAL RESULTS

In this section, one presents the numerical results obtained for the dynamical response of cou-
pled plate model with nonlinearity geometrical. In this paper, the numeric tests were performed
for two geometrical configurations of the plate. In Fig. (3), it is presented two configurations
for the loudspeaker plate.

(a) Flat Plate (b) Conical Shell
Figure 3:Geometries for the Loudspeaker Plate.

In this analysis, two values for the radius dimension were used in order to observe the in-
fluence of the area value on the acoustic radiation damping. The dimensional parameters and
mechanical properties of a typical material used to build loudspeakers are listed in Table2.

thickness (mm) Young’s moduli (GPa) Poisson’s ratio density(kg/m3)

9 1.30 0.33 1420

Table 2:Geometrical and Material Parameters.

4.1 Modal Results

Several parameters described in Governing Equation Section (3) are determined by series
solutions and numerical approximations. In this work, a number of five modes were used for
the expansion modal. Moreover, the formulation is dimensionless. Thus, the modal results
presented are normalized. For the flat plate case, the modal parameters for the three first natural
frequencies and nonlinear coefficient are presented in Table3 and compared with results found
in literature.

Mode ωa ωa (Nayfeh and Mook, 1995) 3Γaaaa 3Γaaaa (Nayfeh and Mook, 1995)

1 10.2158 10.2158 1.6222e+002 162.22
2 39.7711 39.7710 5.5521e+003 5552.1
3 89.1041 89.1040 3.4270e+004 34401

Table 3:Validation of the numerical results obtained by the code implemented.

For the first plate configuration, the structural modes obtained are presented in Fig. (4).
For the second plate analysis, the modal parameters were determined by a finite element ap-
proach (Zienkiewicz and Taylor, 1991; Reddy, 1984). The first natural frequencies and struc-
tural modes are presented in Fig. (5). It can be noted that frequency values are lower than ones
obtained in the first analysis.
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(a) Mode 1
ω1 = 10.2158

(b) Mode 2
ω2 = 39.7711

(c) Mode 3
ω3 = 89.1041

Figure 4:Axisymmetric structural modes of the flat plate configuration.

(a) Mode 1
ω1 = 4.1994

(b) Mode 2
ω2 = 8.9767

(c) Mode 3
ω3 = 11.3405

Figure 5:Axisymmetric structural modes of the conical shell configuration.

In general, the first frequency of loudspeaker structure must be as low as possible, otherwise,
the others natural frequencies must be as high as possible, in order to extend the bandwidth
where the transducer works as a rigid piston (Quaegebeur and Chaigne, 2008).

4.2 Time Results

In this section, the numerical results on the time domain for the two plates configurations
are presented. The accuracy of the implementation approach was investigated and validated by
frequency results convergence.
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(b) R = 564.2mm

Figure 6:Analysis of the flat plate with random excitation.
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The results are resumed as linear and nonlinear approach. The flat plate was tested for
low displacements conditions and for the conical shell, the tests were based in a nonlinear
formulation with geometric nonlinearities.

For the flat plate, two excitations forces types were used: random and harmonic natures.
In this study case, the influence of the heavy fluid radiation was investigated. Moreover, the
dynamical performance of the system was analyzed by spectrum techniques and Frequency
Response Functions (FRF). The chosen point for excitation and displacement response was the
middle of the domain.

The time results of the flat plate with random excitation can be found in Fig. (6a) and (6b).
For the random excitation, the results in frequency domain were obtained and compared for the
two radius values. The frequency responses are presented in Fig. (7a) and (7b). It can be noted
that in both cases, the natural frequencies changed due to the acoustic radiation damping.
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(b) R = 564.2mm

Figure 7:Frequency Response Functions of the flat plate.
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Figure 8:Analysis of the flat plate with periodic excitation.

Mecánica Computacional Vol XXIX, págs. 1747-1759 (2010) 1757

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



In order to clarify the acoustic radiation effect, the next example aims to provide the temporal
response of the system with periodic excitation, as it is described in Fig. (8). The excitation
frequency is closer to the first natural frequency. For this reason, the superposition of waves
provide a beat vibration. The acoustic radiation modified the beat frequency value.

The proposed nonlinear model was adjusted for the conical shell case and it was admitted
only cubic nonlinearities. In fact, the nonlinear effect for conical shell is smaller than flat plate
case. The application of this method consists in a first approximation to determine the coupled
response of an acoustic-structure system with nonlinearities. This way, the influence of heavy
acoustic radiation on the time and spectral results was investigated.

First of all, the conical shell system was excited by the periodic force with increasing am-
plitude presented in Fig. (9c). The external radius of the conical shell was 101.5 mm. The
displacements and spectral results are described in Fig. (9a). Three time ranges can be ob-
served: the first one presents a weak excitation where linear and periodic results are observed,
a intermediary range with almost periodic response and the third one where the chaotic phe-
nomenons are evidenced.

(a) Response to excitation with increasing
amplitude.

(b) Response to excitation with increasing
amplitude and acoustic radiation included.
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(c) Excitation with increasing amplitude.
Figure 9:Uncoupled and Coupled Solutions on the Conical Shell Spectrogram.

The fluid coupling effect was introduced in the differential equations. In Fig. (9b), it can be
noted that the time solutions of the conical shell excited by periodic force were not modified
considerably. The displacement values were slightly affected. Therefore, the damping intro-
duced by heavy fluid radiation did not modify the time response to proposed excitation force.
For the spectral diagram obtained, the bifurcations remained the same.
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5 CONCLUSIONS

In this work, several numerical tests have been performance. Two geometrical configurations
for the plate found in typical loudspeakers has been tested. Temporal solutions based in the
analog dynamical equations of Von-Kármán for plate bending with large displacements were
obtained by using superposition of the linear structural modes. Coupling the system, acoustic
radiation effects were introduced. In order to amplify the radiation effects, it was chosen a heavy
fluid with large values of impedance. For the flat plate case, the tests provide the influence of the
heavy fluid damping effects in the time solutions and the natural frequencies values changing.
As expected, increasing the fluid-structure interface, the acoustic radiation effect was amplified
and the dynamical responses were modified considerably. It was created a first methodology to
detect the heavy fluid radiation effects on the nonlinear vibrations of plates type loudspeaker.
Finite elements techniques were used to determine the structural modes of conical shells and
adapted for the coupled formulation. Finally, by time results analysis, the heavy fluid radiation
effects did not change so evident the nonlinearities of the conical plate proposed.
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