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Abstract: In this work, the Euler-Bernoulli linear beam theory is used to study the vibrations of 
simply supported beams subjected to moving loads and controlled by a moving vibration absorber. 
The beam is considered as a linear elastic continuous system and the vibration absorber is described as 
a linear spring-mass-damper system moving with a constant velocity along the beam. A modal 
expansion with five modes is used to model the lateral displacements of the beam and the Galerkin 
method is used to obtain a set of equations of motion which are, in turn, solved by the Runge-Kutta 
method. The obtained results show the importance of position and velocity of the damper on the 
vibration control of beams with moving loads. 
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1 INTRODUCTION 

The study of bridge oscillations and control is a problem that has been the object of interest 
of engineers and scientist over the last century (Museros and Martinez-Rodrigo, 2007; Yang 
et al, 1997). For example, Den Hartog (1956) has derived the optimum parameters of the 
absorber for suppressing the dynamic response of the single degree-of-freedom spring-mass 
system. Here only a few investigations will be cited. 

Greco and Santini (2002), by using an extension of the complex mode superposition 
method, analyzed the dynamic problem of a continuous beam with two end rotational viscous 
dampers under a single moving load. They concluded that the damper’s effectiveness is 
strongly dependant on the load velocity and proved that, in the relevant range of velocities, a 
considerable reduction of the dynamic response of the beam is to be expected if the damper’s 
constants are selected properly. 

Wu (2006) proposed the use of helical absorber to reduce the vibrations of beams subjected 
to moving loads. The finite element method was used to model the beam. The damper was 
located in the middle of the beam, taking into account the spring mass. To study the behavior 
of the beam, the governing equations were reduced to the first modal coordinate and, 
following Den Hartog’s approach (Den Hartog, 1956), this simplified model was used to 
obtain optimal values for the stiffness and damping ratio of the absorber. 

The possibility of reduction of the resonant vibration of simple beams under moving loads 
by increasing the structural damping with passive energy dissipation devices was evaluated by 
Museros and Martinez-Rodrigo (2007). The authors used a linear viscous damper (FVDs) to 
connect the main beam, which carries the loads, to an auxiliary beam placed underneath the 
main one. The results show that the resonant response of the main beam can be drastically 
reduced with this type of device and that proposed methodology has potential applications for 
reduction of the response of railway bridges subjected to the transit of high-speed trains. 

Recently, Thompson (2008) used a continuous damped mass–spring system added to a 
beam to attenuate the propagation of structural waves and to reduce the radiated noise while 
Samani and Pellicano (2009) analyzed the effectiveness of a dynamic vibration absorber 
applied to a simply supported beam excited by moving loads. The performance of both linear 
and nonlinear dampers was analyzed. The performance of the dynamic dampers in vibration 
reduction was estimated through the maximum amplitude of vibration and by the amount of 
energy dissipated by the dynamic damper.  

In this work, the Euler-Bernoulli linear beam theory is used to study the vibrations control 
of simply supported beams subjected to moving loads and controlled by a fixed or moving 
absorber. The beam is considered as a linear elastic continuous system and the absorber is 
described as a linear spring-mass-damper system moving with a specified velocity along the 
beam. A modal expansion with five modes is used to model the lateral displacements of the 
beam and the Galerkin method is used to obtain a set of discretized equations of motion which 
are, in turn, solved by the Runge-Kutta method. The initial results show the importance of 
position and velocity of the damper on the vibration control of the beam and can be used for 
engineers to optimize the position of vibration absorbers. 

2 PROBLEM FORMULATION 

Consider a simply supported elastic beam with length L, Young’s modulus E, inertia I, 
distributed mass m and damping coefficient c subjected to a moving load F(x,t) with velocity 
VL as shown in Figure 1. The beam is connected to an absorber represented by a small mass 
m2, a linear spring with stiffness k2 and a linear viscous damper with damping coefficient λ. It 
is assumed that the absorber can either be fixed or move along the beam with a velocity VA. 
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Figure 1 - The controlled beam model 

In this work the mathematical formulation will follow that previously presented by Samani 
and Pellicano (2009). The partial differential equation of motion governing the flexural 
behavior of a simply supported beam using the linear Euler-Bernoulli theory can be found in 
the work of various authors such as Yang et al. (1997), Greco and Santini, 2002; and 
Muserosa and Martinez-Rodrigo (2007) and is written as:  
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where y(t) represents the lateral displacement field of the beam; v(t) is the absolute position of 
the mass m2; d is the absorber position and u(t) = y(d, t)-v(t). 
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where x = d represents the location of the damper in the beam at time t; VA is the absorber 
velocity; δ is the Dirac delta function which defines the location of the dynamic damper and 
H(t) is the Heaviside function. 

The external force F(x, t) is a moving load given by: 
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The boundary conditions for the simply supported beam and initial conditions for the 
problem are given by: 
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The attached mass is small compared to the beam mass. In this work, the lumped mass of 
the absorber is taken to be 5% of the total mass of the beam (Wu, 2006). 

The equations of motion of the system represented by Eqs. (1) and (2) are analyzed after 
projecting the partial differential Eq. (1) into a complete orthonormal basis (Samani and 
Pellicano, 2009). The eigenfunctions of the simply supported beam with no attachments can 
be used as interpolating functios. They are given by: 

∑ 







=

r L

xr
x

π
φ sin)(    r = 1, 2, 3 …. (8) 

The natural frequency of the beam for the rth mode is given by: 
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Finally, the transverse vibration of the beam can be assumed as (Museros and Martinez-
Rodrigo, 2007; Samani and Pellicano, 2009): 
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where the Ar(t) are the unknown functions of time and φr(x) is given by Eq. (8). 
Substituting Eq. (10) into Eqs. (1) and (2), applying the Galerkin method and using the 

orthonormality conditions, the following system of equations is obtained: 
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2.1  Absorber optimal parameters 

 
The dynamic amplification factor for the principal system with an added classic absorber 

as shown in Figure 1, is given by (Den Hartog, 1956; Ávila, 2002; Wu, 2006): 
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where ξ1 and ξ2 are respectively the damping ratio of the principal system and absorber; α is 
the ratio of the natural frequencies of the absorber and the principal system; µ is the ratio of 
the masses of the absorber and the principal system and β is the ratio of the frequency of the 
external excitation and the natural frequency of the principal system. 

The system optimal parameters can be found by applying different control theories, in this 
work the Den Hartog (1956) theory will be used. Assuming zero damping for the principal 
system (ξ1 = 0), it is possible to find the classical expressions obtained by Den Hartog (1956) 
for the optimum tuned mass and the optimal damping ratio which are given respectively by: 
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where m1 is the mass and ωo is the natural frequency of the principal system and µ is written 
as: 
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Thus, the absorber stiffness k2 and the damping coefficient of the viscous damper λ are, 
respectively, given by: 
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3 NUMERICAL RESULTS 

For the numerical analysis, consider a beam with Young’s modulus E = 206.8 GPa, mass 
density ρ = 7820 Kg/m

3, the cross-sectional area 0.03 m x 0.03 m, ξp = 0 (p = 1, 2, …) and 
Fo = 9.8 N. For the beam, three different lengths are used in the analysis and were chosen only 
to extend the length of Samani and Pellicano (2009). They are shown in Table 1 together with 
the associated system parameters. 

 L (m) m1 (Kg) ωo (rad/s) m2 (Kg) 1
~m  (Kg) 1

~
k  (N/m) k2 (N/m) λ  (Ns/m) 

L4 4 28.152 27.471 1.4076 14.076 10622.92 877.92 12.98 
L5 5 35.197 17.582 1.7595 17.595 5438.93 494.45 10.89 
L6 6 42.228 12.209 2.1114 21.114 3147.24 286.11 9.076 

Table 1 – Parameters of the beam and absorber with µ = 0.1; αot = 0.909 and ξ2ot = 0.18464. 
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3.1. Fixed absorber and moving load 

To check the accuracy of the present model, consider the system shown in Figure 1 with a 
fixed absorber (Va(t) = 0 and d = 0.5L) and an external force with constant amplitude and 
constant velocity VL(t) ≠ 0. Figure 2 shows the maximum displacement at the mid-span of the 
L4 beam as a function of the velocity of the moving load. The results compare well with those 
obtained by Samani and Pellicano (2009). Figure 3 shows the maximum displacement at the 
mid-span of the beam L4 with and without damper as a function of the load velocity. The 
maximum displacement occurs for a velocity VL = 21.2 m/s. The inclusion of the absorber 
reduces the maximum displacement of the beam up to 5%. 

 

 

Figure 2 - Beam subjected to moving load and connected to linear fixed damper. Maximum displacement at mid-
span of the L4 beam as a function of the load velocity. 
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Figure 3 - Comparison maximum displacement at mid-span of the beam (x = 0.5L). Beam L4 with and without 
absorbers. 

Figure 4 shows the influence of the beam length on the mid-span displacement of the beam 
without absorber. It is possible to observe that the maximum displacement occurs for different 
load velocities: for the L4 beam the maximum displacement occurs for VL = 21.2 m/s, for the 
L5 beam at VL = 16.7 m/s and for the L6 beam at VL = 13.9 m/s. 
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Figure 4 - Comparison of the displacement at mid-span of the beams lengths shown in Table 1. 

The optimization of the dynamic damper is focused on the minimization of the maximum 
beam displacement. Then, the stiffness, the viscous damping coefficient and the location of 
the dynamic absorber can be varied to find the optimum values. 

Figure 5 shows the maximum displacement at mid-span of the beam (x = 0.5L) against 
load velocity (VL) considering different absorber positions (d). As can be observed, the 
damper position has an important influence on the beam response. The displacement variation 
due to the load velocity can be also observed in Figure 6, where a projection of Figure 5 on 
y(0.5L, t) versus VL is displayed. The dispersion of results at each velocity value shows the 
variation of the displacement with the absorber location. 

 

 
(a) L4 beam (b) L5 beam (c) L6 beam 

Figure 5 - Maximum displacement at mid-span of the beam (x = 0.5L) as a function of the absorber location 
(d/L) and load velocity (10 ≤ VL≤ 50). (a) L4 beam, (b) L5 beam and (c) L6 beam. 
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(a) L4 beam (b) L5 beam (c) L6 beam 

Figure 6 - Maximum displacement at mid-span of the beam (x = 0.5L) versus load velocity (VL). (a) L4 beam, (b) 
L5 beam and (c) L6 beam. 

Figure 7 displays another projection of Figure 5 where the displacement of the beam at 
x = 0.5 L is shown as a function of the absorber position (d/L). For any velocity and beam 
length, the best absorber position is located in the range of 0.4 < d/L < 0.6. 

 

   
(a) L4 beam (b) L5 beam (c) L6 beam 

Figure 7 - Maximum displacement at mid-span of the beam (x = 0.5L) as a function of the absorber location 
(d/L). (a) L4 beam, (b) L5 beam and (c) L6 beam. 

The absorber position was varied considering the load velocities that generate the 
maximum displacements at the beam (L4, VL = 21.2 m/s; L5, VL = 16.7 m/s; L6, VL = 13.9 
m/s). The results are displayed in both Table 2 and Figure 8. In Table 2 the parameter lmáx/L 
indicates the position at which the maximum displacement occurs. As can be observed, the 
best absorber position is located close to the mid-span of the beam. 

 
 VL (m/s) lmáx/L d/L 

L4 21.2 0.525 0.540 
L5 16.7 0.520 0.544 
L6 13.9 0.533 0.543 

Table 2 – Location of maximum beam displacement and optimal absorber position. 
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(a) L4 beam (b) L5 beam (c) L6 beam 

Figure 8 – Maximum beam displacement with varying absorber position. (a) L4 beam, (b) L5 beam and (c) L6 
beam. 

Figure 9 displays the beam coordinate where the maximum displacement occurs 
considering different absorber positions (0 < d < L varied with increments of 0.1 m) and 
different load velocities varying from 10 m/s to 50 m/s with increments of 1 m/s. From all 
absorber positions and load velocities combinations, this Figure displays only the maximum 
obtained values and they fit between x/L = 0.38 and x/L = 0.54. This means that the maximum 
beam displacement occurs approximately in mid-span of the beam. 

 

 

Figure 9 – Maximum beam displacement and coordinate at which it occurs for different absorber position (0 ≤ d 
≤ L) and load velocity varying in the interval 10 m/s ≤ VL ≤ 50 m/s. 

3.2. Moving absorber and moving load 

Consider now the system of Figure 1, with a moving load and a moving absorber with 
velocity Va(t) = constant. Figure 10 shows the maximum displacement at the mid-span of the 
beam for the three considered models as a function of the load velocity VL for five different 
values of the absorber velocity VA. The maximum displacement curves are rather similar but 
the maximum in shape, being a function of both the load and absorber velocity. 

Figure 11 displays the variation of the maximum displacement at the mid-span of the beam 
for varying absorber velocity and for a load velocity that generates the maximum 
displacement in Figure 10. The maximum displacement varies with the absorber velocity and, 
in most cases the maximum reduction is achieved for ratios VA / VL around 0.9 and, this ratio 
should be due to the maximum energy absorption with at almost the same velocities. Figure 
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12 shows a comparison of the maximum displacements displayed in Figure 11 but normalized 
in relation to the maximum of the beam when VA / VL = 0.9 and, as can be observed, the 
obtained results show that all beams display the same normalized behavior. 
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(a) L4 beam (b) L5 beam (c) L6 beam 

Figure 10 - Maximum displacement at mid-span of the beams (x = 0.5L) versus Load velocity (VL). (a) L4 beam, 
(b) L5 beam and (c) L6 beam. 
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(a) L4 beam (VL = 21,5 m/s) (b) L5 beam (VL = 17,2 m/s) (c) L6 beam (VL = 14,3 m/s) 

Figure 11 – Maximum displacement at mid-span as a function of VA/VL. (a) L4 beam, (b) L5 beam and (c) L6 
beam. 
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Figure 12 – Normalized maximum displacement at mid-span of the beam. 
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Figure 13 shows the position in the beam where the maximum displacement occurs as a 
function of x/L. Again, as seen in Figure 9, the maximum displacement occurs in a range 
located very close to the mid-span of the beam. 
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Figure 13 - Maximum displacement x beam normalized coordinate. 

4 CONCLUSION 

In this work, the Euler-Bernoulli linear beam theory is used to study the vibrations control 
of simply supported beams subjected to moving loads and controlled by a moving absorber. 
The beam is considered as a linear elastic continuous system and the absorber is described as 
a linear mass-spring-damper system moving with a defined velocity along the beam. The 
maximum vibration amplitudes of the beam depend on both the load and absorber velocity. 
The absorber velocity can be optimized to obtain the maximum displacement reduction and, 
as observed in results, for all combinations of both absorber and load velocities, the maximum 
displacement reduction achieved is for ratios VA / VL around 0.9. These initial results show the 
great influence of a moving absorber on the beam vibrations and, depending on both the 
absorber velocity and load velocity, the maximum beam displacement occurs very close to the 
mid-span.  
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