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Abstract. The Generalized Finite Element Method (GFEM) can be vievgaalstandard Finite Element
Method (FEM) enriched by a family of shape functions appeiply chosen. Many applications of the
GFEM can be found in literature, mostly when some infornra@out the solution is known a priori.
This paper presents the application of the GFEM to the prmoldétransient dynamic analysis of bars
and trusses. Since the analytical solution of this probleads, in most cases, to a trigopnometric series,
the enrichment used in this paper is composed of sine andec@snctions. The method of Newmark
is used for the time integration procedure. The results amplementation issues are then compared to
the ones obtained with a standard FEM using linear elemantsa Hierarchical Finite Element Method
(HFEM) using higher order elements.
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1 INTRODUCTION

Dynamic analysis of structures is an essential part of @&ging mechanic€hopra 1999,
and the application of the Finite Element Method (FEM) te thioblem has been one of the
most widespread approaches over the last dec@ikskiewicz and Taylarl991; Bathe 1996
Hughes 2000. In this context, the accuracy of numerical solutions foese problems are
influenced mainly by two aspects: numerical errors involveiime integration procedure; and
errors involved in field quantities approximation.

The errors involved in the time integration procedure hagenbsubject of study of many
authors, but a general review is presented@hyhe(1996, Hughes(2000 andChopra(1995.

In a few words, there is a wide range of methods availabldiisrtask (i.e. Central Differences,
Newmark’s Method, Houbolt's Method), but once some metlsothbsen numerical errors can
be reduced by assuming smaller time steps.

The field quantities approximations is, in general, made dyes numerical method such
as the FEM, the Boundary Element Method (BEM) or the Finitédbénces Method (FDM).
Anyway, the errors involved in this approximation dependi@form assumed for the approx-
imation (i.e. constant, linear, quadratic) and on the nurobdegrees of freedom used. That is,
one can reduce errors by assuming higher order approxinsabioby increasing the number of
nodes used.

The resulting errors of dynamic analysis depend on bothithe integration procedure and
the field quantities approximation. Thus, these errors ctlpa reduced indefinitely by improv-
ing only one of them. This can be better understood by corisigl¢he analogy presented in
Fig. 1. One cannot reduce the errors of dynamic analysis dirdatiycan only exert indirect
influence on it by reducing the errors from FEM (field quaestapproximation) or by reduc-
ing the errors from the time integration procedure. HoweNa@me assumes a poor time step
(thus leaving the errors from time integration at a high lgwhen one cannot reduce the er-
rors indefinitely only by improving the field approximatiomhe inverse situation is also true.
The only option to reduce the resulting error from dynamialgsis to a very low level is to
reduce both the errors from the time integration proceduatkthe field approximation. This
work is concerned with the reduction of errors from field apgmation, by using an enriched
version of the FEM called Generalized Finite Element Met(®BEM) (Babuska et al.2004
Strouboulis et a).2001 Arndt, 2009 Ardnt et al, 2010.

In order to improve the FEM approximation one can increageniimber of degrees of
freedom (i.e. increase the number of elements and nodef&)rantprove the approximation
given by each finite element (i.e. increase the order of thgnpmial used). In most situa-
tions it has been observed that increasing the order of tlya@mials used leads to better re-
sults than simply increasing the number of nodé&srikiewicz and Taylqrl991 Bathe 1996
Hughes 2000. However, it is difficult to formulate standard finite elemt of very high or-
der, since each time a new polynomials is included in the@ppration all the polynomials
used must be rewritten. In order to avoid this difficulty, oauthors presented polynomials
basis that are hierachical. That is, each time a new polyalamincluded in the approximation
the other polynomials remain the same. This leads to theaklécal Finite Element Method
(HFEM), that has been successfully applied to many probiexdving higer order finite ele-
ments Golin et al, 2004).

Here we propose an hierachical formulation that is basechenGFEM Babuska et a).
2004 Strouboulis et a).2001; Arndt, 2009 Ardnt et al, 2010 and the Partition of Unity (PU)
(Melenk and Babuskd 996 approaches. In this case, the FEM approximation is erditlye
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Figure 1: The relation of the errors involved in dynamic gsi.

shape functions that are obtained applying the PU appraesiné and cossine functions, thus
giving a GFEM. This approach has already been successfppiieal to the modal analysis
of bars and trusses brndt (2009 and Ardnt et al.(2010, but now we apply it to dynamic
analysis using direct time integration procedures (by gidiewmark’s method). A detailed
survey of the literature regarding the subject is presebyefirndt (2009.

2 GENERALIZED FINITE ELEMENTS FORMULATION

In a standard Finite Elements formulation, the displaceamarside a given finite element
are approximated byfenkiewicz and Taylarl991 Reddy 1998

un(€) = Z ui N, (€), (1)

whereu; are nodal degrees of freedomv;(¢) are the shape functions agds the position
inside the domain of a given finite element.
However, the approximation given by Ed.) can be enriched by using

un(§) =Y wiN(§) + D cohi(§), (2)
i=1 i=1

whereg;(£) are enrichment functions angdare the associated degrees of freedom.

According toMelenk and Babuské 996, Babuska et al2004 andStrouboulis et al(20017),
the enrichment functions;(£) can be obtained using a Partition of Unity (PU) approach rethe
the shape functiond’;(¢) from standard FEM form a PU. However, as can be seen fromFig.
the PU for the FEM is actually given by the "hat" function definover two elements. In Fig.
2 the finite elements are tagged as el. 1, el. 2, etc. The PUsgged as)q;, 72, etc. Note
that each PU is defined over a dom&irand that the domair(@ for which the PUs are defined
are actually superposed. Actually, each PU is, in geneediheld over two finite elements. The
enrichment functions are then given by the multiplicatibthe PUs by basis functions chosen
appropriately.
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Figure 2: The Partition of Unity for a unidimensional finitement mesh.

The procedure described here for obtaining the enrichmenttions is that proposed by

Arndt (2009 andArdnt et al.(2010, and leads to a Generalized Finite Element Method (GFEM)

formulation. For a suppof? defined over two finite elements the PU can be defined as

ne={,_ ¢ 15y ©

where¢ is the local coordinate inside the support defined by twodialementg = [0, 2].
This PU is presented in Fig.

A

‘ >
| 2 5
Figure 3: The Partition of unity for a suppdtdefined by two finite elements.

The basis functions(¢) are assumed here to be given by

X = span{1,sin (n&r),cos (n(§ — )m) — 1,...}, 4)

wheren is an integer. The trigonometric basis functions are shawig. 4 for n = 1. The
reason behind this choice is described in detailaindt (2009 andArdnt et al.(2010.
An arbitrary finite element is defined by the superpositionved supports Arndt, 2009

Ardnt et al, 2010, as can be seen in Fig. Note that the element 1 is defined in the intersection

betweer); and(2,. Consequently, the displacement in this element is appratad by the PU
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Figure 4: Basis functions for = 1 on the support defined by two finite elements.

no1 Multiplied by the basis functions on the supp@rtplus the PUyq, multiplied by the basis
functions on the suppofi,.

As can be verified by the reader, this gives the following agpnation on an arbitrary finite
element defined on the local coordinages [0, 1] (Arndt, 2009 Ardnt et al, 2010:

un(€) = wm () Fuama(§)+Y_ {erm (§)mi€) + camn (§)72i(€) + caima(§)7s:(6) + cama(§)7ai(€)}

i=1

(5)
where
mE)=1-
772(<s)>:f (im¢)
Vi = sin(m
Yoi(§) = Cos(mf) ’ (6)
¥3i(§) = sin(im(§ — ))
Y4 (§) = cos(im(€ — 1)) — 1

u; andu, are nodal degrees of freedomy, are the degrees of freedom related to the enrich-
ment functions andh is the level of enrichment used. The functions from H).afe presented
in Fig. 5, form = 1.

At this point itis interesting to discuss the role of the sh&mctions, the basis functions and
the PUs. The functiong(¢) are shape functions used for the enrichment. Until here parage
the shape functions in two classes: the nodal shape fusctiom standard FEMV(¢); and
the enrichment shape function$). The enrichment shape functiong() are given by the
multiplication of the basis functiong(¢) by the PUs;(¢).

The basis functions(¢) are chosen in order to incorporate some information thandsva
a priori, that is a general rule from the GFEMabuska et al.2004 Strouboulis et a).200%
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Figure 5: The functiong and~ for m = 1.

Arndt, 2009 Ardnt et al, 2010. Here we chose trigonometric functions as basis functomse
we know that the analytical solution of the problem leadsts type of function. Besides, the
basis functions used here already produced good resultaddal analysis, as discussed by
Arndt (2009 andArdnt et al.(2010.

Finally, the PUs)(£) can be taken as the shape functiong), since summation of all the
shape functions from standard FEM always result in unitywelcer, we still call the PUg(¢)
in order to emphasize that these functions are taking tleeafch PU and not the role of a shape
function.

Assuming one level of enrichment, thatsis = 1, the resulting shape functions can be
rewritten as

() =1-¢

wz(f) =¢

Y3(§) = (1 = &) (sin(nE)) 7)
¥a(§) = (1 = )(cos(m§) — 1)

¥5(§) = E(sin(m(§ — 1))

and the approximation inside a given finite element can btemras

up(§) = urh1(§) + ugha(§) + c1v3(€) + catha(§) + esv5(8) + catds(§), (8)

wherey are the shape functions (either the ones from standard FEdid the enrichment
onesy), u are nodal degrees of freedom anale field degrees of freedom. The shape functions
from Eq. (/) are shown in Fig6. Note that we now denote all the shape function/hyn order
to emphasize that once all the shape functions are obtaiegdite all treated in the same way.
That is, we now apply the standard procedure of the FEM fahalkhape functions. In this
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context it is clear that the main difference between the FEMthe GFEM lies in the way that
the shape functions are obtained.

1 t/lz

4

0,5 3

D T T T T
02 04 06 03
X
05 - Vs 5
Y,

Figure 6: The shape functions for one enrichment level of3REM.

Assuming Eqg. §) as the displacement approximation and that the crosseatead and
the Young Modulug are constant within a given element, the stiffness and massa®as can
be obtained using the same procedure that is standard féiENe That is, we substitute the
shape functions and its derivatives on integral expresdiuet are obtained by the virtual work
principle or weighted residuals, as describedBayhe(1996.

For the finite element using EgB)(as displacement approximations we have

1 -1 0 0 0 0
1 0 0 0 0
3422 3—72 o _m
k — EA |. : 12 12 4 2 (9)
- L 342m2 s T
: : : 12 2
—3+42r2 21—72
12 12
—3+2r
L 12
and
(1 1 724 4 m2—6 1T
3 6 3 53 372 6
1 4 w4 1 _72-6
3 3 3 32
2r?—3 _7r5r+3 _ 37216 4
— : : 1272 272 473 w3
m = pAL om0 4 372-16 | (10)
1272 5r3 473
27 —15 7243
472 1g7r2
2r<—15
L 472

that are both symmetric matrices.
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3 HIERARCHICAL FINITE ELEMENTS FORMULATION

The Hierarchical Finite Element Method (HFEM) formulatiproposed here uses Lobatto
polynomials as described [8olin et al.(2004. In this case, the shape functions are given by

n(§) =1-¢

Va(§) = ¢

ha(§) = i\/ﬁ((% - 1) 1)(2€ - 1) ’
Us(8) = 1 VI4((2€ — 1)? = 1)(5(26 — 1)* — 1)

v6(§) = 15 V2((26 = 1)* = 1)(7(26 — 1)* = 3)(26 - 1)

that are presented in Fid.

0,3
0,6
0,4+

0,2

-0,4 1

06 v,

Figure 7: The shape functions for the HFEM using Lobatto poiyials.

Using Eqg. (1) the stiffness matrix and the mass matBathe 1996 for a finite element
become

1 -1 0 0 0 O

1 0 0 0 0

FA 20 00
k=~ 50 0 (12)

2 0

- 2_
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and

11 V6 V10 7

3 6 1 o6 VU 0

1 _v6 _Vio 0

3 12 60
_ Lo -3 o0 13

21 1 420

N

1
L . 77 A

that are both symmetric matrices.

4 TRUSS STRUCTURES

In the previous sections we have presented the stiffnessnasd matrices for the GFEM
and HFEM of a bar finite element. In order to obtain the equatior a truss finite element,
that can be oriented in an arbitrary direction in space, fieisessary to apply some coordinate
transformation ruleBathe 1996 Zienkiewicz and Taylqrl1991).

For a linear finite element the following coordinate tramsfation hold Bathe 1996:

Uy

uy|  |cos@ sing 0 0 o

Lﬁlj —[ 0 0 cosf sin@| ug|’ (14)
U2

wherewu’ are the nodal displacements in local coordinateandv are the horizontal and
vertical nodal displacements in global coordinates @rslthe angle of inclination of the truss
element.

Note that according to Figé and7, the nodal degrees of freedom for both the GFEM and
the HFEM formulation are not influenced by the field degreeseddom. Consequently, the
coordinate transformation for the GFEM and the HFEM desdtipreviously can be written as
(Arndt, 2009 Ardnt et al, 2010

Uy
)] [cos sinf 0 0 00 0 0] (v
ul 0 0 cosf sinff 0 0 0 Of |uy
ch 0 0 0 0 1 0 0 0] |v
Al 0 0 0 0O 0 1 0 Of ||’ (15)
cy 0 0 0 0O 0 0 1 0| |
4] Lo o 0 0 000 1]]c
[ C4

that is, the field degrees of freedom in local coordinatese the same as the field degrees
of field in global coordinates, since they do not "act" on the nodes.

5 ERROR EVALUATION

One way of evaluating the error between the analytical gmiui(z,¢) and the numerical
solutionuy(z, t) for a given position of the bar = x, in the time intervalt,, ] would be to
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evaluate the integral

e= / lu(zo, t) — up(xo, t)|dt, (16)

wherex = x, is taken as a constant since the error is evaluated for a fiasitign of the
bar,u is the analytical solutions ang, is the approximated solution.

Equation Eqg. 16) could be used as an error estimate of the time integratiooepiure in
a given position of the bar. However, it is not efficient to &g (16) in practice since the
numerical results are given as discrete points in time.

However, an approximation for EqL§) can be written as

e~ Z At|Au| = ZAHU(” — uﬁf)|, (17)
i=1 i=1

wheren is the number of time steps!” is the analytical solution at time stép for z = x,
uﬁf) is the numerical solution at the time st@p for = = x, andAt is the time interval.

The error estimate given by Eql7) is pictured in Fig.8. The integral from Eq. 16) for
a given time interva(t@~Y, ¢}, is approximated by the product betwean and Au®. This
error estimate can be computed efficiently since it dealb wetctor quantities and thus the
computational effort involved is small.

A
Cu?
DYrou
0
e
A
— >
t(i-l) t(i)

Figure 8: Error estimate for the time integration procedure

A generalization of Eqg. 16) can be written by using the definition of the internal praduc
between two functionreyszig 1978 Reddy 1999. This gives

e(u,up) = (u— up, ) =

/ \u—uh|p|¢|pdt’p, (18)

0

whereu anduy, are functions of for a givenz = xq and¢ is a weight function. That is, the
error can be evaluated by taking the internal product of ifferdnce between the analytical
and numerical solutions by some weight functign

In Eq. (16) we assumeg = 1 and¢ = 1, and thus Eq.X6) is a particular case of Eq19).
However, Eqg. 18) can lead to other useful error estimates. In order to see shppose that
the weight functiony is actually taken as the analytical solutienin this case, the difference
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between the analytical and the numerical solutior u;| that appear in Eq.1Q) is multiplied
by the analytical solution itself, and we get

u — up|P|u|Pdt (19)

e(u,up) = (u — up,u)pr =

From Eq. (9) we note that differences — w;, will contribute more to the error when |s|
is bigger. Consequently, errors in displacements peakswiimore important than errors for
small displacements. That is, E4.9f can be used when one wants to compare the performance
of the algorithm to reproduce displacement peaks.

Whenp is increased from to a very big number in Eq1§), bigger differences — wu;, will
prevail over small ones and we get

e(u,up) = (u— up, ¢)r~ = max (Ju — up|p) , (20)

whenp — oo.

Note that when we take = 1 both bigger smaller differencesu will have the same impor-
tance for the error estimate. However, when we take5, for example, bigger differencesu
will prevail over the small ones. That ig,can be modified in order to tune the importance of
bigger differences — u; over smaller ones.

As occurs for Eqg. 16), the errors estimates given by EdL8], Eq. (19) and Eq. R0) are
difficult to evaluate in practice. However, applying the gam@asoning used for obtaining Eq.
(17), an approximation for Eq.18) can be written as

ZAt(w —uf[l¢¢ |)], (21)

that is ap vector internal product between the vectors giveriay®)| and ¢, where each
component is evaluated in the tim&?. Note that the step from Eq18) to Eq. Q1) is taken
by going from the internal product between two functionsh® internal product between two
vectors. In this context, the vectors that appear in E2{l) é&re analogue the functions that
appear in Eq.18).

In this paper we adopt two error estimates, by taking the médigction as) = 1 and¢ = .
Besidesp is take equal td. The expressions for both these errors estimates can bmedta
from Eq. 1) as

e(u, up) ZAt | Au®]||¢@] ]

ey R Z At|u® — uﬁf)| (22)
i=1
and
ep R Z At|ul) — ug)\\u(i)\, (23)
i=1

wheree, is a general estimate amglis an error estimate aimed for peak displacements.
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6 NUMERICAL RESULTS
6.1 First example: bar subjected to initial displacement

The first example is that of a bar subjected only to an initigbldcement, as presented in
Fig. 9. Thebarhast = 1, A = 1,p = 1, L = 1 and is fixed at both ends. The initial
displacement is as presented in Rgwhere the maximum displacemeny,,. is prescribed at
the middle of the bar. Finally, there is no force acting onlthe This problem can be solved
analytically by separation of variablesreyszig 2006.

E A p=1

L=1

} u = 0.25

Figure 9: Bar fixed at both ends and its initial displacement.

Initial displacement

The displacement at the middle of the bar obtained using FhiNl limear elements, GFEM
and HFEM is presented in Fid.0. All analyses were made using a time st&®p= 0.003125.
Besides, the analyses were made using 21 and 41 degreesdydifie The errors, ande, are
presented in Tall. In Fig. 10the results for 41 degrees of freedom are not presented @r ord
to summarize the results.

0.25
0.2F 7
0.15F

0.1

0.05

Displacement
o

Analytical
GEFEM
HFEM
-0.15f FEM

_0'2 -

-0.251

Time

Figure 10: Analytical and numerical results at the middletaf bar for the first example using 21 degrees of
freedom.
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[ Error [ GFEM21| HFEM21| FEM21] GFEMA41[ HFEM41 | FEM41 |

» 0.0045 | 0.0045 | 0.0150| 0.0019 | 0.0019 | 0.0072
g 0.0340 | 0.0343 | 0.1020| 0.0139 | 0.0140 | 0.0454

Table 1: Errors for the first example.

e

(&

From this analysis it can be seen that both the HFEM and theMGgdve better results than
the FEM with linear elements. Besides, the results of theMHEEd the GFEM are similar and
it can not be concluded which one performed better in thisngle.

An interesting result can be obtained by evaluating theiicgldoetween the errors obtained
with the FEM and the GFEM. For 21 degrees of freedom, thidicelefor errorse,, is equal
to 3.00, while for errorse, the same relation gives33. That is, the FEM appears to give
worse results according to the error estimate aimed for gesgptacements,, than for the error
estimatez,. The same behavior is observed when this relation is madé&éaresults obtained
with 41 degrees of freedom. In this case, the relation betwlee errors i$.27 and3.79 for ¢,
ande, respectively. Thus, it seems that the errors given by the F&Nulation are severely
influenced by its inability to represent peak displacements

6.2 Second example: bar subjected to harmonic force

This is example is that of a bar with zero initial displaceisdyut subjected to a time depen-
dent forceF'(t) applied to the left end, as shown in Fifl. The force is given by

P(t) = fsin(wi), (24)

wheref is the magnitude of the force andis the frequency of the force.

This problem can be solved using the separation of varidbteson homogeneous boundary
conditions Pinchover and Rubinsteil005 and its analytical solution for a bar of length= 1
is

u(z,t) = frsin(wt) + f Z {sin(k,x)[C,, sin(k,ct) + B, (t)]}, (25)
i=1
where

0, = e (26)

knc

_ Apw?sin(wt)  Apw?sin(knct)

Balt) = k2 —w? k3 — ckyw? 7)
A - _Q[kn cos(ky,) — sm(kn)]’ (28)

Kz
kn = 1 (29)

n=m(n=g].

For this example two cases are studied, by taking 10 andw = 30. Besides, the magni-
tude of the harmonic force if = 1. Forw = 10 the time step is\¢ = 0.0015625 while for
w = 30 the time step is reduced vt = 0.00078125. The analyses were made using 21 and 41
degrees of freedom. The displacement at the middle of théobar = 10 is presented in Fig.
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% L=1 F()

Figure 11: Bar fixed at one end subjected to a time dependerg.fo

12, and forw = 30 is presented in Figl3where the numbers after the name of the formulations
indicate the number of degrees of freedom used. The errensrasented in Tal2 and Tab.3.

0.37
0.2r
0.1r

Displacement
o
—

Displacement
o
[

-0.1r

—— Analytical 0.05} | —Analytical
-0.2+ —— GEFEM — GEFEM
_o3l| HFEM of|— HFEM
|| —FEM —FEM
-0.4 L . . . . —0.05k L . . . f .
0 2 4 6 8 10 8.8 8.9 9 9.1 9.2 9.3 9.4
Time Time

Figure 12: Analytical and numerical results for= 10 at the middle of the bar for using 21 degrees of freedom.

0.3r 0.3¢
b
0.2 !
0.2p ) /N
g Ok peb il 2 ol
g 0*“\)% — Analytical ; t g N —Analytical | |
g - -Gerem21 I S ol|- - “GEFEM21 | X
2-0.1F |-~ -HFEM21 | o -~ ~HFEM21 |/
2 —_FEM21 B _gqll---FEM21 |
-02r | ——GEFEM41 | ——cEFEMA41
03k —HFEM41 — HFEM41
03 ——FEM41 —0.2 —— FEM41 |
2 4 6 8 10 9.4 9.5 9.6 9.7 9.8 9.9 10
Time Time

Figure 13: Analytical and numerical results for= 30 at the middle of the bar for the second example.

From these results it can be seen that both the GFEM and th&Hirésented better results
than the FEM with linear elements. In Figj2 the solutions given by the GFEM and the HFEM
are almost identical to the analytical solution, while tb&ugon given by the FEM with linear
elements is not as accurate as the other two. In E&ghe solutions given by the GFEM and
the HFEM for 41 degrees of freedom are also almost identicdie analytical solution, while
the solutions given by the FEM are very poor.

The errors presented in TaB.and Tab.3 also show that the results by the GFEM and by
the HFEM are much better than the one given by the FEM usirepilielements. It is also
interesting to note that the errors given by the FEM for bdtla@d 41 degrees of freedom are
almost the same. This indicates that the FEM is not able tmdee the analytical solution
adequately. Finally, the GFEM presented better resultsttrje HFEM for this example.
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‘ Error\ GFEM21 ‘ HFEM21 ‘ FEM21 ‘ GFEM41 ‘ HFEM41 ‘ FEM41 ‘
e, | 6.6275e-004 8.1969e-004 2.5703e-002 1.4103e-004 1.5886e-004 6.8325e-003
eg | 6.7929e-003 8.1286e-003 2.6448e-001 1.3957e-003 1.5899e-003 7.1470e-007

Table 2: Errors for the second example dor= 10.

‘ Error‘ GFEM21 ‘ HFEM21 ‘ FEM21 ‘ GFEMA41 ‘ HFEMA41 ‘ FEM41 ‘
e, | 2.5999e-002 4.7577e-002 8.7083e-002 4.7481e-004 4.9143e-004 1.0390e-001,
eq | 3.1942e-00] 5.6963e-001 8.2445e-001 5.7397e-003 5.8875e-003 9.4303e-001

Table 3: Errors for the second example dor= 30.

6.3 Third example: truss subjected to an harmonic force

The third and last example is that of the truss from Hig.that is subjected to an harmonic
force and null initial displacements. This is an interggtaxample since it is not possible to
increase the number of degrees of freedom when using the Fi#Mimear elements. That's
because each bar cannot be divided in two finite elements #iewould create a mechanism
inside the structure. When using the GFEM and the HFEM, auktés is possible to increase
the number of degrees of freedom by increasing the numbéragiesfunctions.

Here we assume that the applied force show in BEghas a frequency = 5 and a mag-
nitude f = 1. All bars haveF = 1, A = 1 andp = 1. The lengthZ shown in Fig.14is also
taken equal to 1. Finally, the time step is taken equalte= 0.0125.

This problem is solved using the FEM with linear elementsygithe GFEM and using the
HFEM. For both the GFEM and the HFEM two cases are studiedgusenrichment functions
and using 8 enrichment functions. The extra shape functeesled for the GFEM can be
obtained by assuming= 1,2, ...,n in Eq. 6). For the HFEM, instead, generation of the extra
shape functions is not an easy task. However, Lobatto patyais up to order 10 are presented
by Solin et al.(2004.

The vertical displacement of the node shown in Fid.is presented in Figl5, where the
number after the name of the formulation indicates the nurabenrichment functions used.
The results given by the GFEM and the HFEM appear to converghe same result. The
results given by the FEM with linear elements, instead, dcageee with those give by the the
GFEM and the HFEM.

F) = fsin(g0)
e

Figure 14: Truss subjected to an harmonic force.

As discussed previously, when using the FEM formulatios iat possible to increase the
number of degrees of freedom used. Consequently, one canpiave accuracy of the results
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for a fixed time step. When using the GFEM and the HFEM, instaecuracy can be improved
by increasing the number of enrichment functions.

The results given both by the GFEM and the HFEM seem to corverthe same solution.
The results given by the FEM, however, do note agree with ¢selts given by the GFEM
and the HFEM. This is an evidence that the results given by-EM with linear elements are
unsatisfactory for this example. Another evidence of ttasesnent can be found in Fig5, for
the time interval [0,1]. When using the GFEM and the HFEM tha&ion only arrives at the
node considered after some time. This is an expected behaince the motion really takes
some time to exert its influence over all parts of the strectitowever, when using the FEM
with linear elements, the motion is "felt" at the node coesédl almost instantaneously. This,
appears to put in evidence the inability of the standard F&Ekproduce the wave propagation
phenomenon.

Errors estimates for this example cannot be evaluatede siveanalytical solution of this
problem is not known. Anyway, it seems that both the GFEM dwedHFEM performed better
than the FEM in this case. However, it is important to point tat the generation of extra
enrichment functions for the HFEM are not an easy task, amdast cases one is limited to
the Lobatto polynomials presented in literature. The egtrachment functions used by the
GFEM, instead, can be readily obtained by assumirgl, 2, ... in EQ. 6).

0.2

- - -GEFEM4

- - ~HFEM4 . 01sf N\
015 _rem \ AN /// .
——GEFEMSB | | [y //
Lo | 01y -
‘ -

- - ~-GEFEM4
0.05[ - - - HFEM4
---FEM
—— GEFEMS
[| — HFEMS8

0.1l — HFEM8 \

7& l’ //A \
0.05f /m / | N
ARV
Of~== 4
-0.05 . . : ! ' : . :
0 2 4 6 8 10 8 8.5 9 9.5
Time Time

Displacement
Displacement

Figure 15: Vertical displacement of the node shown in Eiy.

7 CONCLUSIONS

This paper presented a GFEM formulation for the transiemiadyic analysis of bars and
trusses. The time integration procedure was implemented) uke Newmark method. Nu-
merical errors can result both from the time integratiorcpoure and from the finite element
model. Errors from the numerical integration procedurelmaneduced by decreasing the time
step used, while errors from the finite element model can theced by using a more accurate
approximation.

The GFEM allows one to use an enriched approximation for thelacements that is easy
to obtain and does not affect nodal quantities. This appmaekbn leads to better results than
standard linear FEM. For the wave propagation phenomermGH#FEM also gives results at
least as good as classical HFEM using Lobatto polynomiatsidgs, this GFEM formulation
is an hierarchical one (as is the case of HFEM), since theoappation can be enriched without
changing the shape functions already used.

The GFEM approach proposed here can be applied to both dgraaralysis problems and
wave propagation problems. Notice that a FEM formulatiothWwhear elements is inappropri-
ate for most wave propagation problems, since one wouldswe&dmany degrees of freedom
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in order to capture an accurate result. This is especially/for problems involving truss struc-
tures, since the division of bars in more that one elementléacomputational difficulties.
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