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Abstract. Two discontinuous dynamic diffusion formulations for thenmerical solution of advection-
diffusion equations are proposed in this work. The first cefermulates, using broken spaces, the
Consistent Approximate Upwind Petrov-Galerkin (CAU) fnélement model. The second one consid-
ers a two-scale framework and introduces an artificial diéfin to DG formulation that acts isotropically
in both scales. The amount of artificial diffusion is dynaatli determined by the resolved scale so-
lution at an element level, yielding a self adaptive and ipater-free method. This formulation takes
into account the effective flux through inter-element edgdseep the consistency property. Numerical
experiments are conducted, which cover a variety of prolpanameter ranges, in order to show the
behavior of the proposed methods in comparison with soneadisuous Galerkin methods.
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1 INTRODUCTION

The design of numerical methods for advection dominanspart equations aims to yield
stability and accuracy. As far as finite element methods ane@rned, the most common ap-
proach to reach this aim is known as stabilized methods. el'hethods add to the Galerkin
formulation perturbation terms associated to the operatdrcontaining stabilizing parameters
dependent on the mesh. In essence, they add some sort afartifssipation to avoid energy
accumulation at the grid scale. The accuracy and stabiliti@solutions obtained with these
methodologies rely on suitable designs of the stabiliragarameter(s)John and Knobloch
(2007, 2008). These works present a review and comparison among mafgraoing methods
which have been proposed in the literature to overcomeapsigscillations. An interesting ap-
proach to evaluate the parameters in numerical methodseva$oghed irOberai and Wanderer
(20054, derived from an extension of the variational Germano tideiOberai and Wanderer
(20050). In this approach, some restrictions of the numericalitsmh onto coarse function
spaces are imposed and the parameters are easily comptlited &#re assumed to be constant
in the computational domain. The obtained parameters ajlgidepend on the approximate
solution, yielding nonlinear methods.

The Germano identity, initially derived i@ermano et al(1991), is a popular tool for com-
puting the magnitude of the eddy viscosity in the large edohukation of turbulent flows. The
dynamic introduction of some artificial dissipation (eddgoosity) is the basis of this proce-
dure, based on the notion of scale separation. The idea dfiagpeddy viscosity models
only onto the small scales results in the subgrid eddy viscosethod developed iGuermond
(200)); Kaya and Rivierg2005, which is similar in spirit to the spectral viscosity tedtune
introduced byTadmor (1989 to approximate nonlinear conservation equations by meéns
spectral methodsErn and Guermon@2004). The methods proposed @uermond(2007);
Kaya and Rivierg2005 still require tunable parameters whose selection is &ytriask for
actual problems. The nonlinear subgrid diffusivity methgiesented irsantos and Almeida
(2007); Arruda et al (2010 were attempts to avoid user-defined coefficients by meaasob-
grid diffusivity which is a nonlinear local functional ofélresolved scale solution. These free
parameter methods present good stability and converganopenies for singular perturbed
transport problems, although oscillations still remairsame situations, mainly when the ve-
locity field is not constant and when external layers areguresin this latter case, appearing
in conforming formulations, spurious modes may only be coste by relaxing the boundary
conditions in a DG way.

Motivated by eddy viscosity models in which the dissipatioechanism is introduced either
on all scales or on the subgrid scale, we propose a discanusiwo-scale method where an
artificial diffusion appears on all scales. The addition#udion is dynamically determined
by imposing some restrictions on the resolved scale solutidhe same spirit of the meth-
ods presented iBantos and Almeid§2007); Arruda et al.(2010, which assume a two level
decomposition of the velocity field. This approach results ifree parameter method, called
Dynamic Diffusion method (DD), in which an artificial diffis» model acts isotropically and
is locally adapted to guarantee stability of the resolvealessolution. We find that the pro-
posed methodology outperforms some subgrid diffusion@gagres for transport problems as
well as some discontinuous capturing methods. In particwa reformulate, using broken
spaces, the Consistent Approximate Upwind Petrov-GalgBAU) finite element model and
we compared it with the new proposed dynamic diffusion disicmous method.

The outline of this paper is as follows. Section 2 briefly @&ddes the transport problem
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and introduces the used notation. In section 3, the diswootis version of the CAU method is
presented. The Dynamic Diffusion method is introduced icti®a 4. Numerical experiments
are conducted in Section 5 to show the behavior of the praposthodologies for a variety of
transport problems as well as convergence rates for regaolations. Section 6 concludes this

paper.
2 PROBLEM STATEMENT AND NOTATION

We consider the steady-state advection-diffusion-rea@guation as follows:

Lu = —eAu+p-Vu+ou=f, inf (1)
u = g on Iy

whereQ) C R? (d = 2) is an open bounded domain with a Lipschitz boundaryVe define the
inflow and outflow parts of', respectively in the usual fashion:

' ={zel:B(x) n(z) <0} (2
'y ={zel:B(x) n(x) >0}, 3)

wheren(x) denotes the unit outward normal vectorltatz € I'. In (1), A andV are the
Laplacian and gradient operators, respectiv8lys W1>(Q)? is the divergence free velocity
field; ¢ is the diffusion coefficienty € HY2(T'y); 0 € Lo(Q) and f € L,(f2), the reaction
coefficient and the source term, respectively, are realedhfunctions. We also assume that
there exists a real constanyf such thatr > o, > 0. We define® := {e, 3, f} as the set of
input data. Moreover, for functions andv in (Ly(D))™, D C R* andm > 1, let (w,v),, =
[, w - v de. For functionsw andv in (Ly(Y))™, T € R**, (w,v)y = [,w-v ds. Also,
hereafter/! (-) and H} (-) denote the usual Sobolev spaces.

In order to derive a DG formulation fol), we have to introduce some notation. The subgrid
stabilization considered here is based on a two-level eligation so that two nested grids must
be built. We consider a coarsest regular triangulafignof the domain(2 into triangles’y,
where H stands for the diameter &f; in 7y. For each triangld’y € 7y, four triangles
are created by connecting the midpoint of the edges and thtirgy finer triangulation is
denoted by7,. Let &, be the set of edges &f,. Letey = {ei,ex}, e; € &, j = 1,2,
be an edge of a macro trianglg; € 7. Figurel shows the particular case wheyy is an
interior edge shared by the macro triandlgs7; € 7y ande; € ey, is shared by triangles
T ;,15; € 7. The set of all edges dfy; is then defined by = Uz, eyn. We also define
E=& NEg = E°UET, where£? and&T are the sets of internal edges and of edges on the
boundaryl’, respectively. The generic edgehat is in an inflow part of the domain belongs to
the se€? = {e € £°: B(z) -n(z) < 0,Vz € ¢}, ifitis an interior edge, orté&, - = E'NT_,
if it lies on the boundary. Moreover, let' andn? be the unit normal vectors ar} pointing
outward toZ; ; andT; ;, respectively. We introduce boundary operators as average jumps
of scalar and vector-valued functiopsandr in the following way: piecewise smooth dfj,

with ¢’ := ¢|4, ; for each edge;, j = 1,2, we define
1 1 2 1.1 2,2 P .
{¢} = 5(@ +¢°), [¢] =¢n +¢°n” forallinternal edges; 4)
1 .
{r} = 5(7-1 +7?), [r]=7'-n'+7*.n* forallinternal edges, (5)
with o' := o|r,, andT’ := 7|1, ,. For all edges on the boundafy the jump and average

operators ofp andr coincide with their traces on
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® X, nodes O X nodes

Figure 1: Schematic representation of thve-levelP; setting

A two-level piecewise linear finite element approximatisrmefined by introducing the fol-
lowing two broken spaces on the partitiGp:

X ={un € Lo(Q) | un|r, € H' (Ty) NPe(Ty), YTy € Ty}; (6)
Xh = {uh c LQ(Q) | uh|TH c Hl(TH), uh|Th - Pk(T), VT € %,VTH € TH}, (7)

wherelP, stands for the set of interpolation polynomials of degres ker equal td:. In this
paper we set = 1 and we denote the finite element approximation defined byttheduple
(Xg, X3) by two-levellP;. Higher order polynomials may be used as well. We also iniced
an additional discrete spacé’’ C X}, such that the following decomposition holds:

X, =Xy ® XF, (8)

where X7 is the resolved (coarse) scale space whek&ass the subgrid (refined) scale space.
Givenu,, € X, anduy € X such that,;, anduy coincide in the coarse scale nodes, we define
uf’ € X} and the space decompositi®) {(mplies thatu! = u; — uy. More precisely, let
Py : X;, — Xy be the projection of;, onto X that is parallel taX/?. For allv, € X}, we set
vy = Pyv, andv}! = (I — Py)wv,. The definition of Py for the two-levelP; setting defined
by the coupl€ X, X},) is given inErn and Guermon®004) (page 242).

One may notice that the spadg is required to be continuous inside of edGh, although it
Is discontinuous alongy, C £y. As a two-level piecewise linear finite element approximati
will be considered here, the subgrid scale solution may bee across thé; mesh lines.
This property will be used to build the new nonlinear disamnus subgrid formulation in
section 4.

A DG (Discontinuous Galerkin) formulation fol) is given by: findu; € X}, such that

Bpe(un,vn) = Fpa(vy), Yo, € Xp, 9)
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where
Bpe(up,vn) = TZ{ (EVun, Vun)p + ; (B Vuy, + oup, vy
+ ;}h([[uh]h {eVun}), — Z;({eVuh}, [on]). + ;} (mlun] - [on]).
- Zh (8- [unl, vn). — Z} (8- n)up, vn), h
cce) ccel -
+ > (un (eVon-n)), = > {(eVun-m),un), + > (s, vn), ;(10)
ecel ecEl =2
Fpe(v,) = ZT (fron)p+ D {9 (VU -m)) + > (mg,vn).— Y ((B-m)g,vn),, (11)
TeT, ce€l ecel ceel-

andn, = 4¢/s, s = min{meas(T1 ;)¢ meas(Ty )/}, j € {1,2}, whereT: ;, Ty ; € T, are
the triangles sharing an edge

It is well known that formulationg) might present non-physical oscillations in the neigh-
borhood of steep gradients, so that some additional stabdn may be necessary, depend-
ing on the problem. Some approaches to overcome this diffieué based on slope limiters
(Biswas et al.(19949); Hoteit et al. (2009); Klieber and Riviere(2006), Petrov-Galerkin sta-
bilizations Houston et al(2000; Brezzi et al.(2006)], bubble stabilizationAntonietti et al.
(2009; Rochinha et ali2007), interior penalty-type stabilizationB(ezzi et al(2006; Burman
(2009) and subgrid stabilizationK@aya and Riviereg(2009). In essence, the last three ap-
proaches use some sort of artificial diffusion to improvéiitg, which will be used here by
considering a discontinuity-capturing and a subgrid fdatian. As we will see in the follow-
ing, although having much in common, they present remaekdiffierences that yield different
accuracy behaviors.

3 DCAU - DISCONTINUOUSCAU METHOD

The stability of the DG formulatior®) may be generically improved by adding a model term
such that the formulation reads:

Find u;, € X, such that (12)
Bpg(uh,vh) —|—M(uh,vh;@,h,7') = Fpg(Uh), Vvh c Xh .
In other words, the model terov (-, -; -, -, -) depends on the weighting functiap, the trial

functionu,, may depend on the input data and the characteristic mesth siewentually, it
may also depend on one or more user-specified non-negatiampterr € L> (Q2). Differ-
ent model terms yield different methods. The SUPG methadefample, provides an addi-
tional control of the solution gradient in the streamlineadtion. It is originally proposed in
Brooks and Hughefl982, whose model term is

Msupg: Z (ﬁuh - f, 7'supg6 : VUh)T ) (13)
TeTh

was first combined with DG formulations fohnson et al(1984) for linear hyperbolic prob-
lems. The discontinuous method proposedHmuston et al(2000 combines the DG formu-
lation (9) with (13), which yields quasi-optimal error estimates in a meshedépnt norm. A
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gap of1/2 is observed in thd., error estimates for regular solutions. However, as its con-
tinuous counterpart, spurious modes might still appear s&gep gradients. A common ap-
proach to overcome or to reduce this difficulty is to use aatiiauity-capturing model (see
John and Knoblocli2007 for a review). Many discontinuity-capturing models areieglent

to split the stabilization model term into two parts. Onetpaia linear stabilization term, like
the standard SUPG operatdi3J. The second part is intended to control the solution gradi-
ent on the remaining directions, preventing localized Imns around boundary layers. It
usually depends on the approximate solution, hence itdotres a nonlinearity in the solution
process. A method of this type is the Consistent Approxirggeind Petrov-Galerkin (CAU)
finite element model proposed @aledo and do Carm@d988. In this method, the model term

is given by

2
Meauw = Z (Lup, — f, TsupgB - Vup)p + Z (TcaUMVuh,Vvh> ) (14)

TeT; TET, ‘ Vuh

This term is obtained from the definition of an approximatevingl direction3,,, = = 8+
(1o — 1) (6—3) that considers an auxiliary velocity fiefd , which is obtained by requiring
that it must be as close as possible from the actual veloeity fin thel, sense) and-cAu,, +
B-Vu, + ou, — f = 0in eachT € 7,. These conditions lead to

B—B-22"Lvu, if |vul£0,
|Vuh\
and3—3 = 0 otherwise. Thus, the model term,, is obtained by taking3,,,, - Vv, as
a Petrov-Galerkin perturbation of the weight function deseach elemerit € 7, assuming
T) = Tsupg@Nd Ty — 71 = Tequ. We may notice that the formulatiod?) with (14) preserves
consistency property of the DG method and the stability eced by introducing the artificial
diffusion associated tdl@). However, the correct choice of the stabilization pararsets,yg
and ., in this case) is a key issue here and in many stabilizationgatares as well. In the
numerical experiments we perform here, we use the defingtfoposed iMAlmeida and Silva
(1999.

We should remark that a shock capturing procedure may algirbeuced without including
a linear stabilization term. This is the approach followadHiartmann(2006, in which an
interior penalty DG method with the model tetM = > ;.- (€ (un) Vuy, Vuy) is used to
reduce overshoots at discontinuities for the compresslblger-Stokes equations.

4 DD-DYNAMIC DIFFUSION METHOD

There are many multiscale methods that can be put into thergkeform (2). In a con-
forming setting, the linear subgrid scale method SGS deeslon Guermond(1999 defines
the model term as

MSGS = Tsgs Z (VuhH, VU;IL{)T,
TeT,
which amounts to introduce a dissipative operator asstianly to the subgrid scales. The
SGS main drawback is that the amount of artificial diffusi@pends on the choice of,,, a
(global) user-defined parameter that plays a crucial rolénaccuracy of the method. This
issue drove the development of the conforming nonlineagsdiscale method (NSGS) for
advection-diffusion problems presented3antos and Almeidé2007), whose the main idea is
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to decompose the velocity field into the resolved (coarsé)ummesolved (subgrid) scales, with
respect to the grid scales, 8s= 3,, + B;. . Inspired by the CAU method, the subgrid velocity

field B, is determined by requiring the minimum of the associateatitnenergy £ ]65}2)
for which the residual of the resolved scale solution (w8th) vanishes. The solution of this
minimization problem yields a subgrid velocity field at edittite element that is effectively a
projection of the coarse scale residual along the gradiktiteoresolved scale solution when
Vug # 0 in the form:

R(ug)

H

= 1
where R(uy) = —eAuy + B - Vuy + ouyg — f. When Vuy = 0, the subgrid velocity

vanishes. Thus, the amount of subgrid diffusion requiredissipate the small scale kinetic
energy is defined as

A (16)

and the NSGS model term is given by

Mnysas = Z (ehHVuhH,va)T if |Vug|#0,
TeT),

andM yscs = 0 otherwise. Itis a free parameter method since the the tififfusions! is
not determined a priori but is evaluated based on the redslvale approximate solutian;.

In Arruda et al.(2010 the NSGS was reformulated using broken spaces, which &ireede
on the coarsest partition. The approximation spage defined onZ,, is split into resolved
scales ;) and subgrid scales\(;) spaces so that continuity is enforced inside each macro
element. The formulation, called NSDG, is built by considgrthe following subgrid eddy
viscosity modela laNSGS, and an additional subgrid edge stabilization

Muyspa =Y (e Vu, Vo) + > [ naluf] - [vr]ds, (17)

TeTy, ecg0 V€

wheren, = 4¢17/s. The first term of {7) acts inside each element @f; (or 7;), introducing

the necessary amount of artificial diffusion to dissipate kinetic energy associated to the
unresolved scales. The second term, weighted.byntroduces a penalty of the unresolved
scale jumps. Since, depends orxf’, which depends on the residual of the resolved scale
solution inside eacli’y € 7y (R(um)|r,), this penalty term is also self adaptive. Optimal
convergence rates are obtained for regular problems. Hawescillations still remain in some
situations, mainly when the velocity field is not constant.

A new version of a two-scale method is introduced here ainngplve these drawbacks.
The underline idea still is to control the resolved scale@isoh so that the spurious modes are
confined to the subgrid scales. We call this method the dymdifiusion (DD) method since it
adds to the DG formulatior®f the following model term:

MDD = Z £I€_1|TH (V'Uh, Vuh)Tu (18)

TET,

which dynamically introduces an isotropic artificial déion onto all scales. The consistency,
stability and convergence properties of the resulting wadtogy relies on the definition of the
artificial diffusion¢/’ |1,,. Like in the NSGS and NSDG methods, its magnitude is dyndiyica
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determined by imposing the same restrictions on the redaeale solution. However, instead
of (16), |7, is assumed constant in ea€h € 7 and determined as

J 181 | dz

T

1
&l |y = §h (18/1), where(|B;) = T Tde (19)
T

and the length scalkis defined as

_ 184]
|bTH|7

where the tensoW . is the Jacobian of the coordinate system ang denotes the element
local coordinates. With these definitions, we generalieanieasure of the subgrid velocity field
<|ﬁhH|> for any space dimension and the length sdatakes into account the direction of the
subgrid velocity field3;, decreasing the dependence of the solution with the meshtation.

Another important issue in the design of this new method lsted to the effective flux
through inter-element edges to keep the consistency ggoperorder to keep optimal conver-
gence order in thé, norm, the DG formulation must consider the effective diffusntroduced
by the model. To this end, lgt = ¢ + &/ denote the effective diffusion coefficient that acts
inside each macro eleméent;. Thus, the DD method reads: fing € X, such that

h br, = (Vo ) B

Bpp(un,vs) + Mpp = Fpp(vy), Vo, € Xy, (20)
where
Bpp(un,vp) = TZ; (5Vuh,Vvh)T+Tz; (8- Vup + o, vh)
+ Z:d[uhu, {CVun}), - Z ({CVund, [onl), + Z (m:[un] - [on]),
- é (8- [un], va), — Zg (8 - m)un, vn), h
+ Z (un, ((Von - m)), e—egi (CVun - ) on), + Y (yun, vn), 3(21)
vt ot s
Fpp(vy) = ZT (f, m)ﬁZg <g,<wvh-n>>e+2; (g, vn),— Y ((B-m)g,m),, (22)
= rt ceat et

whererj, = 4¢* /s with ¢* = e + & & = max {& (un|r,), & (unl|r,) }. Here, Tt and
T, are the macro elements that share an edge

We should remark that the operat@Bf has much in common with the nonlinear term of the
discontinuity capturing method proposedGaledo and do Carmd988, although it has been
developed by following a different approach, yielding detént artificial diffusion which only
depends on the resolved scale degrees of freedom. Moremather remarkable difference is
that the proposed two-scale framework yields a method vatstabilization coefficients and no
extra linear stabilization term. It also differs from the DS method developed iArruda et al.
(2010 because the regularization provided by the motie), is applied on all scales. The
consistency property comes directly from the fact that lbthexact and the resolved scale
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solutions have no subgrid scales. The numerical expersneoriducted in this paper show
that the DD method presents optimal convergence rates afakyhigher stable resolved scale
solutions for general meshes and when the velocity field isapstant, outperforming many
DG methods, with or without discontinuity capturing terms.

5 NUMERICAL RESULTS

In this section, two classical academic numerical expemnisiare conducted to illustrate the
behavior of the proposed discontinuous formulations apllo advection-diffusion problems.
The new formulations are compared here with the DG methadguise formulation developed
in Houston et al(2000. Since a continuous solution is desired for advectiofudibn equa-
tion, all the approximated solutions are represented inrdirm@ous way, where the solution
in each node of the mesh is the average solution of all casreipg degrees of freedom. In
the following computational experiments the convergericeenonlinear procedure is attained
setting a tolerance equal 16 3.

5.1 Examplel: Parabolic and exponential layers

This example simulates a two-dimensional advection-datethproblem witlr = 1 x 1074,

B = (1,0) and a constant source terfn= 1in Q = (0,1) x (0,1). The Dirichlet boundary
conditions are homogeneouslin The exact solution is an inclined plane having5a slope,
with parabolic layers aj = 0 andy = 1 and a exponential layer at= 1.

Numerical results for a partition of the domain with divisions in each side are presented
in Figure2. The comparison between the DCAU and DG solutions revealsttey yield
similar behavior. Indeed, Figuré&ga) and2(b) show that both methods give rise to spurious
oscillations in the neighborhood of the parabolic layensctSovershoots are damped by using
the DD method, whose solution is depicted in Fig@¢e). The profiles ay = 0.5, z = 0.5,

y = x andy = 1 — z, presented in Figur, provide a better comparison among the methods.
We may see that the DD solution is almost free of spurious matiall sections.

5.2 Example 2: Rotating pulse with internal and external layers

This example considers a transport problem with 107¢, 8 = (2y(1 — 2?), —22(1 — y?)),
f=0andQ = (—1,1) x (0,1). The inflow and outflow boundaries afér,0); -1 < x <
0} and{(z,0);0 < z < 1}, respectively. At the outflow, homogeneous natural boundar
conditions are prescribed. There is a discontinuity at tiilew boundary, where Dirichlet
boundary conditions are given by

0, If —1<z<-0.5;

u(,0) = { 1, if —05<z<0. (23)

On the remaining boundary, homogeneous Dirichlet boundanglitions are set on the sides
xr=—1andy = 1, andu = 1 is set atzr = 1. The inflow discontinuity propagates across the
domain and gives rise of a semi-circular internal layer. &wer, an external layer appears at
x=1.

Figure4 shows the approximate solutions obtained with the DG, DCAWY BD methods,
using a partition of the domain witk8 and24 divisions inz andy directions, respectively. The
profiles aty = 0.25, z = 0, y = x andy = —x are presented in Figufe We may notice that
again the DG and the DCAU methods present oscillations aloagternal layer. As depicted
in Figure5, these oscillations are almost completely damped usingpihenethod, although
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(b) DCAU Solution (u1,).

(a) DG Solution ¢y,).

HRONOOTONHO

SoScococs ¢

(c) DD Solution ().

Figure 2: Example 1.
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(c) Diagonal Sectiom(= x). (d) Diagonal Sectiony(= 1 — x).

Figure 3: Example 1 - Solution profiles.

we observe non-negligible oscillations at the inflow. Thas e easily overcome by strongly
imposing the inflow Dirichlet conditions.

5.3 Example3: convergencerates

Finally, in this example we numerically evaluate the cogeerce properties of the proposed
methodologies. It simulates and advection-diffusion feobwithe = 1073 ande = 10~¢ and
B=(1,0)inQ2=(0,1)x(0,1). The source term and Dirichlet boundary conditions are ehos
according to the smooth exact solution, given by

u(z,y) = sin(mx)sin(mry). (24)

Figure 6 show the least-square linear approximation of the solutiwars associated with
the DG, DCAU and DD methods, measure in th&2) and H'(2) norms. Figure$(a)-(b)
show the results obtained with= 10-3, while Figures6(c)-(d) refer toe = 1075. Optimal
convergence rates are obtained for both methods, indepiynad the diffusivity coefficient
value. As expected, the errors of the DG and DCAU methods arehmalike and, since the
DD method provides stronger regularization, it yields leigtherrors. We may also notice that
the DD method presents slightly higher convergence rates BFG and DCAU methods, That
difference is more pronounced for= 103.

6 CONCLUSION

Two new discontinuous for the numerical solution of adwaetiliffusion-reaction problems
are developed. The first one reformulates, using brokenespac shock capturing method
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Figure 4: Example 2.
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Figure 5: Example 2 - Solution profiles.

2023

named Consistent Approximate Upwind Petrov-Galerkin (TAléthod. Although it has good

stability properties when used in a conforming settingektension in the context of discon-
tinuous Galerkin methods as performed here (the DCAU mettods not preserve similar
property. Moreover, since it introduces a nonlinearitylte model solution, the disadvantage
of this approach for solving linear transport problems igiobs. On the other hand, the nonlin-
ear two-scale method proposed here improves by far the aocumear sharp boundary layers

whenever spurious oscillations have to be suppressed. Thmé&hod provides stabilization

by means of a local resolved scale residual-based staimlizand by a jump penalty that takes
into account the effective flux through inter-element edgéke latter term guarantees opti-

mal convergence rates for regular problems and the consisfgoperty comes directly from

the fact that the exact and the resolved scale solutions i@aweibgrid scales. A remarkable
issue of this method is that its inherent adaptive abilityadgust the stabilization terms does
not depend on any user defined stabilization parameter. dergit reduces the number of

degrees-of-freedom since discontinuities are allowey onlthe resolved scale.
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Figure 6: Convergence rates.
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