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Abstract. Two discontinuous dynamic diffusion formulations for the numerical solution of advection-
diffusion equations are proposed in this work. The first one reformulates, using broken spaces, the
Consistent Approximate Upwind Petrov-Galerkin (CAU) finite element model. The second one consid-
ers a two-scale framework and introduces an artificial diffusion to DG formulation that acts isotropically
in both scales. The amount of artificial diffusion is dynamically determined by the resolved scale so-
lution at an element level, yielding a self adaptive and parameter-free method. This formulation takes
into account the effective flux through inter-element edgesto keep the consistency property. Numerical
experiments are conducted, which cover a variety of problemparameter ranges, in order to show the
behavior of the proposed methods in comparison with some discontinuous Galerkin methods.
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1 INTRODUCTION

The design of numerical methods for advection dominant transport equations aims to yield
stability and accuracy. As far as finite element methods are concerned, the most common ap-
proach to reach this aim is known as stabilized methods. These methods add to the Galerkin
formulation perturbation terms associated to the operatorand containing stabilizing parameters
dependent on the mesh. In essence, they add some sort of artificial dissipation to avoid energy
accumulation at the grid scale. The accuracy and stability of the solutions obtained with these
methodologies rely on suitable designs of the stabilization parameter(s) (John and Knobloch
(2007, 2008)). These works present a review and comparison among many conforming methods
which have been proposed in the literature to overcome spurious oscillations. An interesting ap-
proach to evaluate the parameters in numerical methods was developed inOberai and Wanderer
(2005a), derived from an extension of the variational Germano identity (Oberai and Wanderer
(2005b)). In this approach, some restrictions of the numerical solution onto coarse function
spaces are imposed and the parameters are easily computed ifthey are assumed to be constant
in the computational domain. The obtained parameters typically depend on the approximate
solution, yielding nonlinear methods.

The Germano identity, initially derived inGermano et al.(1991), is a popular tool for com-
puting the magnitude of the eddy viscosity in the large eddy simulation of turbulent flows. The
dynamic introduction of some artificial dissipation (eddy viscosity) is the basis of this proce-
dure, based on the notion of scale separation. The idea of applying eddy viscosity models
only onto the small scales results in the subgrid eddy viscosity method developed inGuermond
(2001); Kaya and Rivière(2005), which is similar in spirit to the spectral viscosity technique
introduced byTadmor(1989) to approximate nonlinear conservation equations by meansof
spectral methods (Ern and Guermond(2004)). The methods proposed inGuermond(2001);
Kaya and Rivière(2005) still require tunable parameters whose selection is a tricky task for
actual problems. The nonlinear subgrid diffusivity methods presented inSantos and Almeida
(2007); Arruda et al.(2010) were attempts to avoid user-defined coefficients by means ofa sub-
grid diffusivity which is a nonlinear local functional of the resolved scale solution. These free
parameter methods present good stability and convergence properties for singular perturbed
transport problems, although oscillations still remain insome situations, mainly when the ve-
locity field is not constant and when external layers are present. In this latter case, appearing
in conforming formulations, spurious modes may only be overcome by relaxing the boundary
conditions in a DG way.

Motivated by eddy viscosity models in which the dissipationmechanism is introduced either
on all scales or on the subgrid scale, we propose a discontinuous two-scale method where an
artificial diffusion appears on all scales. The additional diffusion is dynamically determined
by imposing some restrictions on the resolved scale solution in the same spirit of the meth-
ods presented inSantos and Almeida(2007); Arruda et al.(2010), which assume a two level
decomposition of the velocity field. This approach results in a free parameter method, called
Dynamic Diffusion method (DD), in which an artificial diffusion model acts isotropically and
is locally adapted to guarantee stability of the resolved scale solution. We find that the pro-
posed methodology outperforms some subgrid diffusion approaches for transport problems as
well as some discontinuous capturing methods. In particular, we reformulate, using broken
spaces, the Consistent Approximate Upwind Petrov-Galerkin (CAU) finite element model and
we compared it with the new proposed dynamic diffusion discontinuous method.

The outline of this paper is as follows. Section 2 briefly addresses the transport problem
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and introduces the used notation. In section 3, the discontinuous version of the CAU method is
presented. The Dynamic Diffusion method is introduced in Section 4. Numerical experiments
are conducted in Section 5 to show the behavior of the proposed methodologies for a variety of
transport problems as well as convergence rates for regularsolutions. Section 6 concludes this
paper.

2 PROBLEM STATEMENT AND NOTATION

We consider the steady-state advection-diffusion-reaction equation as follows:

Lu = −ε∆u + β · ∇u + σu = f, in Ω; (1)

u = g on Γd,

whereΩ ⊂ R
d (d = 2) is an open bounded domain with a Lipschitz boundaryΓ. We define the

inflow and outflow parts ofΓ, respectively in the usual fashion:

Γ− = {x ∈ Γ : β(x) · n(x) < 0}; (2)

Γ+ = {x ∈ Γ : β(x) · n(x) > 0}, (3)

wheren(x) denotes the unit outward normal vector toΓ at x ∈ Γ. In (1), ∆ and∇ are the
Laplacian and gradient operators, respectively;β ∈ W 1,∞(Ω)d is the divergence free velocity
field; ε is the diffusion coefficient;g ∈ H1/2(Γd); σ ∈ L∞(Ω) andf ∈ L2(Ω), the reaction
coefficient and the source term, respectively, are real-valued functions. We also assume that
there exists a real constantσ0 such thatσ > σ0 ≥ 0. We defineΘ := {ε, β, f} as the set of
input data. Moreover, for functionsw andv in (L2(D))m , D ⊂ R

d andm ≥ 1, let (w, v)D =
∫

D
w · v dx. For functionsw andv in (L2(Υ))m , Υ ⊂ R

d−1, 〈w, v〉
Υ

=
∫

Υ
w · v ds. Also,

hereafterH1 (·) andH1
0 (·) denote the usual Sobolev spaces.

In order to derive a DG formulation for (1), we have to introduce some notation. The subgrid
stabilization considered here is based on a two-level discretization so that two nested grids must
be built. We consider a coarsest regular triangulationTH of the domainΩ into trianglesTH ,
whereH stands for the diameter ofTH in TH . For each triangleTH ∈ TH , four triangles
are created by connecting the midpoint of the edges and the resulting finer triangulation is
denoted byTh. Let Eh be the set of edges ofTh. Let eM = {e1, e2}, ej ∈ Eh, j = 1, 2,
be an edge of a macro triangleTH ∈ TH . Figure1 shows the particular case wheneM is an
interior edge shared by the macro trianglesT1, T2 ∈ TH andej ∈ eM is shared by triangles
T1,j, T2,j ∈ Th. The set of all edges ofTH is then defined byEH = ∪TH

eM . We also define
E = Eh ∩ EH = E0 ∪ EΓ, whereE0 andEΓ are the sets of internal edges and of edges on the
boundaryΓ, respectively. The generic edgee that is in an inflow part of the domain belongs to
the setE0− = {e ∈ E0 : β(x) ·n(x) < 0, ∀x ∈ e}, if it is an interior edge, or toEΓ

−

h = EΓ∩Γ−,
if it lies on the boundary. Moreover, letn1 andn2 be the unit normal vectors onej pointing
outward toT1,j andT2,j, respectively. We introduce boundary operators as averages and jumps
of scalar and vector-valued functionsϕ andτ in the following way: piecewise smooth onTh,
with ϕi := ϕ|Ti,j

for each edgeej , j = 1, 2, we define

{ϕ} =
1

2
(ϕ1 + ϕ2), JϕK = ϕ1n1 + ϕ2n2 for all internal edges; (4)

{τ} =
1

2
(τ 1 + τ 2), Jτ K = τ 1 · n1 + τ 2 · n2 for all internal edges, (5)

with ϕi := ϕ|Ti,j
andτ i := τ |Ti,j

. For all edges on the boundaryΓ, the jump and average
operators ofϕ andτ coincide with their traces one.
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Figure 1: Schematic representation of thetwo-levelP1 setting.

A two-level piecewise linear finite element approximation is defined by introducing the fol-
lowing two broken spaces on the partitionTH :

XH = {uH ∈ L2(Ω) | uH |TH
∈ H1(TH) ∩ Pk(TH), ∀TH ∈ TH}; (6)

Xh = {uh ∈ L2(Ω) | uh|TH
∈ H1(TH), uh|Th

∈ Pk(T ), ∀T ∈ Th, ∀TH ∈ TH}, (7)

wherePk stands for the set of interpolation polynomials of degree less or equal tok. In this
paper we setk = 1 and we denote the finite element approximation defined by the the couple
(XH , Xh) by two-levelP1. Higher order polynomials may be used as well. We also introduce
an additional discrete spaceXH

h ⊂ Xh, such that the following decomposition holds:

Xh = XH ⊕ XH
h , (8)

whereXH is the resolved (coarse) scale space whereasXH
h is the subgrid (refined) scale space.

Givenuh ∈ Xh anduH ∈ XH such thatuh anduH coincide in the coarse scale nodes, we define
uH

h ∈ XH
h and the space decomposition (8) implies thatuH

h = uh − uH . More precisely, let
PH : Xh → XH be the projection ofXh ontoXH that is parallel toXH

h . For allvh ∈ Xh we set
vH = PHvh andvH

h = (I − PH) vh. The definition ofPH for the two-levelP1 setting defined
by the couple(XH , Xh) is given inErn and Guermond(2004) (page 242).

One may notice that the spaceXh is required to be continuous inside of eachTH , although it
is discontinuous alongeM ⊂ EH . As a two-level piecewise linear finite element approximation
will be considered here, the subgrid scale solution may be nonzero across theTH mesh lines.
This property will be used to build the new nonlinear discontinuous subgrid formulation in
section 4.

A DG (Discontinuous Galerkin) formulation for (1) is given by: finduh ∈ Xh such that

BDG(uh, vh) = FDG(vh), ∀vh ∈ Xh, (9)
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where

BDG(uh, vh) =
∑

T∈Th

(ε∇uh, ∇vh)T +
∑

T∈Th

(β · ∇uh + σuh, vh)T

+
∑

e∈E0

h

〈JuhK, {ε∇vh}〉e −
∑

e∈E0

h

〈{ε∇uh}, JvhK〉e +
∑

e∈E0

h

〈η1JuhK · JvhK〉e

−
∑

e∈E0−

h

〈β · JuhK, vh〉e −
∑

e∈E
Γ
−

h

〈(β · n)uh, vh〉e

+
∑

e∈EΓ

h

〈uh, (ε∇vh · n)〉e −
∑

e∈EΓ

h

〈(ε∇uh · n), vh〉e +
∑

e∈EΓ

h

〈η1uh, vh〉e ;(10)

FDG(vh) =
∑

T∈Th

(f, vh)T +
∑

e∈EΓ

h

〈g, (ε∇vh · n)〉e+
∑

e∈EΓ

h

〈η1g, vh〉e−
∑

e∈E
Γ
−

h

〈(β · n)g, vh〉e , (11)

andη1 = 4ε/s, s = min{meas(T1,j)
1/d, meas(T2,j)

1/d}, j ∈ {1, 2}, whereT1,j , T2,j ∈ Th are
the triangles sharing an edgee.

It is well known that formulation (9) might present non-physical oscillations in the neigh-
borhood of steep gradients, so that some additional stabilization may be necessary, depend-
ing on the problem. Some approaches to overcome this difficulty are based on slope limiters
(Biswas et al.(1994); Hoteit et al. (2004); Klieber and Rivière(2006)), Petrov-Galerkin sta-
bilizations (Houston et al.(2000); Brezzi et al.(2006))], bubble stabilization (Antonietti et al.
(2009); Rochinha et al.(2007)), interior penalty-type stabilizations (Brezzi et al.(2006); Burman
(2005)) and subgrid stabilization (Kaya and Rivière(2005)). In essence, the last three ap-
proaches use some sort of artificial diffusion to improve stability, which will be used here by
considering a discontinuity-capturing and a subgrid formulation. As we will see in the follow-
ing, although having much in common, they present remarkable differences that yield different
accuracy behaviors.

3 DCAU - DISCONTINUOUS CAU METHOD

The stability of the DG formulation (9) may be generically improved by adding a model term
such that the formulation reads:

{

Finduh ∈ Xh such that

BDG(uh, vh) + M(uh, vh; Θ, h, τ) = FDG(vh), ∀vh ∈ Xh .
(12)

In other words, the model termM(·, ·; ·, ·, ·) depends on the weighting functionvh, the trial
function uh, may depend on the input data and the characteristic mesh sizeh. Eventually, it
may also depend on one or more user-specified non-negative parameterτ ∈ L∞ (Ω). Differ-
ent model terms yield different methods. The SUPG method, for example, provides an addi-
tional control of the solution gradient in the streamline direction. It is originally proposed in
Brooks and Hughes(1982), whose model term is

Msupg =
∑

T∈Th

(Luh − f, τsupgβ · ∇vh)T , (13)

was first combined with DG formulations inJohnson et al.(1984) for linear hyperbolic prob-
lems. The discontinuous method proposed inHouston et al.(2000) combines the DG formu-
lation (9) with (13), which yields quasi-optimal error estimates in a mesh-dependent norm. A
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gap of1/2 is observed in theL2 error estimates for regular solutions. However, as its con-
tinuous counterpart, spurious modes might still appear near steep gradients. A common ap-
proach to overcome or to reduce this difficulty is to use a discontinuity-capturing model (see
John and Knobloch(2007) for a review). Many discontinuity-capturing models are equivalent
to split the stabilization model term into two parts. One part is a linear stabilization term, like
the standard SUPG operator (13). The second part is intended to control the solution gradi-
ent on the remaining directions, preventing localized oscillations around boundary layers. It
usually depends on the approximate solution, hence it introduces a nonlinearity in the solution
process. A method of this type is the Consistent ApproximateUpwind Petrov-Galerkin (CAU)
finite element model proposed inGaleão and do Carmo(1988). In this method, the model term
is given by

Mcau =
∑

T∈Th

(Luh − f, τsupgβ · ∇vh)T +
∑

T∈Th

(

τcau
|Luh − f |2

|∇uh|
2

∇uh, ∇vh

)

. (14)

This term is obtained from the definition of an approximate upwind directionβapp = τ1 β+

(τ2 − τ1)
(

β−β
)

that considers an auxiliary velocity fieldβ , which is obtained by requiring
that it must be as close as possible from the actual velocity field (in theL2 sense) and−ε∆uh +
β · ∇uh + σuh − f = 0 in eachT ∈ Th. These conditions lead to

β−β =
Luh − f

|∇uh|
2

∇uh if |∇uh| 6= 0,

andβ−β = 0 otherwise. Thus, the model termMcau is obtained by takingβapp · ∇vh as
a Petrov-Galerkin perturbation of the weight function inside each elementT ∈ Th, assuming
τ1 = τsupg andτ2 − τ1 = τcau. We may notice that the formulation (12) with (14) preserves
consistency property of the DG method and the stability is enhanced by introducing the artificial
diffusion associated to (14). However, the correct choice of the stabilization parameters (τsupg

andτcau in this case) is a key issue here and in many stabilization procedures as well. In the
numerical experiments we perform here, we use the definitionproposed inAlmeida and Silva
(1997).

We should remark that a shock capturing procedure may also beintroduced without including
a linear stabilization term. This is the approach followed in Hartmann(2006), in which an
interior penalty DG method with the model termM =

∑

T∈Th
(ε (uh) ∇uh, ∇vh) is used to

reduce overshoots at discontinuities for the compressibleNavier-Stokes equations.

4 DD- DYNAMIC DIFFUSION METHOD

There are many multiscale methods that can be put into the general form (12). In a con-
forming setting, the linear subgrid scale method SGS developed inGuermond(1999) defines
the model term as

MSGS = τsgs

∑

T∈Th

(

∇uH
h , ∇vH

h

)

T
,

which amounts to introduce a dissipative operator associated only to the subgrid scales. The
SGS main drawback is that the amount of artificial diffusion depends on the choice ofτsgs, a
(global) user-defined parameter that plays a crucial role inthe accuracy of the method. This
issue drove the development of the conforming nonlinear subgrid scale method (NSGS) for
advection-diffusion problems presented inSantos and Almeida(2007), whose the main idea is
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to decompose the velocity field into the resolved (coarse) and unresolved (subgrid) scales, with
respect to the grid scales, asβ = βH + βH

h . Inspired by the CAU method, the subgrid velocity
field βH

h is determined by requiring the minimum of the associated kinetic energy (1
2

∣

∣βH
h

∣

∣

2
)

for which the residual of the resolved scale solution (withβH) vanishes. The solution of this
minimization problem yields a subgrid velocity field at eachfinite element that is effectively a
projection of the coarse scale residual along the gradient of the resolved scale solution when
∇uH 6= 0 in the form:

βH
h =

R(uH)

|∇uH |2
∇uH , (15)

whereR(uH) = −ε∆uH + β · ∇uH + σuH − f. When ∇uH = 0, the subgrid velocity
vanishes. Thus, the amount of subgrid diffusion required todissipate the small scale kinetic
energy is defined as

εH
h :=

1

2
h
∣

∣βH
h

∣

∣ (16)

and the NSGS model term is given by

MNSGS =
∑

T∈Th

(

εH
h ∇uH

h , ∇vH
h

)

T
if |∇uH | 6= 0,

andMNSGS = 0 otherwise. It is a free parameter method since the the artificial diffusionεH
h is

not determined a priori but is evaluated based on the resolved scale approximate solutionuH .
In Arruda et al.(2010) the NSGS was reformulated using broken spaces, which are defined

on the coarsest partition. The approximation spaceXh, defined onTh, is split into resolved
scales (XH ) and subgrid scales (Xh

H) spaces so that continuity is enforced inside each macro
element. The formulation, called NSDG, is built by considering the following subgrid eddy
viscosity model,à la NSGS, and an additional subgrid edge stabilization

MNSDG =
∑

T∈Th

(

εH
h ∇uH

h , ∇vH
h

)

+
∑

e∈E0

∫

e

η2Ju
H
h K · JvH

h KdS, (17)

whereη2 = 4εH
h /s. The first term of (17) acts inside each element ofTH (or Th), introducing

the necessary amount of artificial diffusion to dissipate the kinetic energy associated to the
unresolved scales. The second term, weighted byη2, introduces a penalty of the unresolved
scale jumps. Sinceη2 depends onεH

h , which depends on the residual of the resolved scale
solution inside eachTH ∈ TH (R(uH)|TH

), this penalty term is also self adaptive. Optimal
convergence rates are obtained for regular problems. However, oscillations still remain in some
situations, mainly when the velocity field is not constant.

A new version of a two-scale method is introduced here aimingto solve these drawbacks.
The underline idea still is to control the resolved scale solution so that the spurious modes are
confined to the subgrid scales. We call this method the dynamic diffusion (DD) method since it
adds to the DG formulation (9) the following model term:

MDD =
∑

T∈Th

ξH
h |TH

(∇vh, ∇uh)T , (18)

which dynamically introduces an isotropic artificial diffusion onto all scales. The consistency,
stability and convergence properties of the resulting methodology relies on the definition of the
artificial diffusionξH

h |TH
. Like in the NSGS and NSDG methods, its magnitude is dynamically
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determined by imposing the same restrictions on the resolved scale solution. However, instead
of (16), ξH

h |TH
is assumed constant in eachTH ∈ TH and determined as

ξH
h |TH

=
1

2
~
〈

|βH
h |
〉

, where
〈

|βH
h |
〉

=

∫

TH

∣

∣βH
h

∣

∣ dx

∫

TH

dx
(19)

and the length scale~ is defined as

~ =

∣

∣βH
h

∣

∣

|bTH
|
, bTH

=
(

∇NTH

)

βH
h ,

where the tensor∇NTH
is the Jacobian of the coordinate system andNTH

denotes the element
local coordinates. With these definitions, we generalize the measure of the subgrid velocity field
〈

|βH
h |
〉

for any space dimension and the length scale~ takes into account the direction of the
subgrid velocity fieldβH

h , decreasing the dependence of the solution with the mesh orientation.
Another important issue in the design of this new method is related to the effective flux

through inter-element edges to keep the consistency property. In order to keep optimal conver-
gence order in theL2 norm, the DG formulation must consider the effective diffusion introduced
by the model. To this end, letζ = ε + ξH

h denote the effective diffusion coefficient that acts
inside each macro elementTH . Thus, the DD method reads: finduh ∈ Xh such that

BDD(uh, vh) + MDD = FDD(vh), ∀vh ∈ Xh, (20)

where

BDD(uh, vh) =
∑

T∈Th

(ε∇uh, ∇vh)T +
∑

T∈Th

(β · ∇uh + σuh, vh)T

+
∑

e∈E0

〈JuhK, {ζ∇vh}〉e −
∑

e∈E0

〈{ζ∇uh}, JvhK〉e +
∑

e∈E0

〈η1JuhK · JvhK〉e

−
∑

e∈E0−

〈β · JuhK, vh〉e −
∑

e∈EΓ
−

〈(β · n)uh, vh〉e

+
∑

e∈EΓ

〈uh, (ζ∇vh · n)〉e −
∑

e∈EΓ

〈(ζ∇uh · n), vh〉e +
∑

e∈EΓ

〈η1uh, vh〉e ;(21)

FDD(vh) =
∑

T∈Th

(f, vh)T +
∑

e∈EΓ

〈g, (ζ∇vh · n)〉e+
∑

e∈EΓ

〈η1g, vh〉e−
∑

e∈EΓ
−

〈(β · n)g, vh〉e , (22)

whereη1 = 4ζ∗/s with ζ∗ = ε + ξH
h,max, ξH

h,max = max
{

ξH
h (uH |T1

), ξH
h (uH |T2

)
}

. Here,T1 and
T2 are the macro elements that share an edgee.

We should remark that the operator (18) has much in common with the nonlinear term of the
discontinuity capturing method proposed inGaleão and do Carmo(1988), although it has been
developed by following a different approach, yielding a different artificial diffusion which only
depends on the resolved scale degrees of freedom. Moreover,another remarkable difference is
that the proposed two-scale framework yields a method with no stabilization coefficients and no
extra linear stabilization term. It also differs from the NSDG method developed inArruda et al.
(2010) because the regularization provided by the modelMDD is applied on all scales. The
consistency property comes directly from the fact that boththe exact and the resolved scale
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solutions have no subgrid scales. The numerical experiments conducted in this paper show
that the DD method presents optimal convergence rates and yields higher stable resolved scale
solutions for general meshes and when the velocity field is not constant, outperforming many
DG methods, with or without discontinuity capturing terms.

5 NUMERICAL RESULTS

In this section, two classical academic numerical experiments are conducted to illustrate the
behavior of the proposed discontinuous formulations applied to advection-diffusion problems.
The new formulations are compared here with the DG method, using the formulation developed
in Houston et al.(2000). Since a continuous solution is desired for advection-diffusion equa-
tion, all the approximated solutions are represented in a continuous way, where the solution
in each node of the mesh is the average solution of all corresponding degrees of freedom. In
the following computational experiments the convergence of the nonlinear procedure is attained
setting a tolerance equal to10−3.

5.1 Example 1: Parabolic and exponential layers

This example simulates a two-dimensional advection-dominated problem withε = 1×10−4,
β = (1, 0) and a constant source termf = 1 in Ω = (0, 1) × (0, 1). The Dirichlet boundary
conditions are homogeneous inΓ. The exact solution is an inclined plane having a45o slope,
with parabolic layers aty = 0 andy = 1 and a exponential layer atx = 1.

Numerical results for a partition of the domain with20 divisions in each side are presented
in Figure 2. The comparison between the DCAU and DG solutions reveals that they yield
similar behavior. Indeed, Figures2(a) and2(b) show that both methods give rise to spurious
oscillations in the neighborhood of the parabolic layers. Such overshoots are damped by using
the DD method, whose solution is depicted in Figure2(c). The profiles aty = 0.5, x = 0.5,
y = x andy = 1 − x, presented in Figure3, provide a better comparison among the methods.
We may see that the DD solution is almost free of spurious modes at all sections.

5.2 Example 2: Rotating pulse with internal and external layers

This example considers a transport problem withε = 10−6, β = (2y(1−x2),−2x(1− y2)),
f = 0 andΩ = (−1, 1) × (0, 1). The inflow and outflow boundaries are{(x, 0);−1 ≤ x ≤
0} and {(x, 0); 0 ≤ x ≤ 1}, respectively. At the outflow, homogeneous natural boundary
conditions are prescribed. There is a discontinuity at the inflow boundary, where Dirichlet
boundary conditions are given by

u(x, 0) =

{

0, if − 1 ≤ x < −0.5;
1, if − 0.5 ≤ x ≤ 0.

(23)

On the remaining boundary, homogeneous Dirichlet boundaryconditions are set on the sides
x = −1 andy = 1, andu = 1 is set atx = 1. The inflow discontinuity propagates across the
domain and gives rise of a semi-circular internal layer. Moreover, an external layer appears at
x = 1.

Figure4 shows the approximate solutions obtained with the DG, DCAU and DD methods,
using a partition of the domain with48 and24 divisions inx andy directions, respectively. The
profiles aty = 0.25, x = 0, y = x andy = −x are presented in Figure5. We may notice that
again the DG and the DCAU methods present oscillations alongthe internal layer. As depicted
in Figure5, these oscillations are almost completely damped using theDD method, although
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Figure 3: Example 1 - Solution profiles.

we observe non-negligible oscillations at the inflow. This can be easily overcome by strongly
imposing the inflow Dirichlet conditions.

5.3 Example 3: convergence rates

Finally, in this example we numerically evaluate the convergence properties of the proposed
methodologies. It simulates and advection-diffusion problem with ε = 10−3 andε = 10−6 and
β = (1, 0) in Ω = (0, 1)×(0, 1). The source term and Dirichlet boundary conditions are chosen
according to the smooth exact solution, given by

u(x, y) = sin(πx)sin(πy). (24)

Figure6 show the least-square linear approximation of the solutionerrors associated with
the DG, DCAU and DD methods, measure in theL2(Ω) andH1(Ω) norms. Figures6(a)-(b)
show the results obtained withε = 10−3, while Figures6(c)-(d) refer toε = 10−6. Optimal
convergence rates are obtained for both methods, independently of the diffusivity coefficient
value. As expected, the errors of the DG and DCAU methods are much alike and, since the
DD method provides stronger regularization, it yields highest errors. We may also notice that
the DD method presents slightly higher convergence rates than DG and DCAU methods, That
difference is more pronounced forε = 10−3.

6 CONCLUSION

Two new discontinuous for the numerical solution of advection-diffusion-reaction problems
are developed. The first one reformulates, using broken spaces, a shock capturing method
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Figure 5: Example 2 - Solution profiles.

named Consistent Approximate Upwind Petrov-Galerkin (CAU) method. Although it has good
stability properties when used in a conforming setting, itsextension in the context of discon-
tinuous Galerkin methods as performed here (the DCAU method) does not preserve similar
property. Moreover, since it introduces a nonlinearity to the model solution, the disadvantage
of this approach for solving linear transport problems is obvious. On the other hand, the nonlin-
ear two-scale method proposed here improves by far the accuracy near sharp boundary layers
whenever spurious oscillations have to be suppressed. The DD method provides stabilization
by means of a local resolved scale residual-based stabilization and by a jump penalty that takes
into account the effective flux through inter-element edges. The latter term guarantees opti-
mal convergence rates for regular problems and the consistency property comes directly from
the fact that the exact and the resolved scale solutions haveno subgrid scales. A remarkable
issue of this method is that its inherent adaptive ability toadjust the stabilization terms does
not depend on any user defined stabilization parameter. Moreover, it reduces the number of
degrees-of-freedom since discontinuities are allowed only on the resolved scale.
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