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Abstract. The kinematic Laplacian equation (KLE) method solves the Navier–Stokes equations by
means of its vorticity-velocity formulation. This method has been used to calculate the time dependent
flow around moving bodies and other fluid dynamic problems with great success.

The KLE computes the time evolution of the vorticity as an ordinary differential equation (ODE) in
each node of the discretized space. The input data for the vorticity transport equation at each time step is
provided by a modified version of the Poisson linear partial differential equation for the velocity, called
KLE Equation.

This paper presents an object oriented implementation based on a general purpose and high perfor-
mance framework for solving partial differential equations by the finite and spectral element methods.
The framework can interact with different high-performance linear algebra libraries, either for dense or
sparse matrices.

Different matrix assembly and boundary condition imposition methods were tested as well as two
different solvers in order to find the code version with the best performance. The method was validated
against a problem with known analytical solution. Scalability tests were performed to study the behavior
of the method as the complexity of the problem increases. Results showing the benefits obtained with
this implementation are presented.
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1 INTRODUCTION

The classic formulation of Navier–Stokes equations is expressed as a function of velocity
and pressure. The kinematic Laplacian equation (KLE) method (Ponta, 2005), instead solves
the Navier–Stokes equations starting from a vorticity-velocity, also known as hybrid, formu-
lation. The KLE calculates the evolution in time of the vorticity as an ordinary differential
equation (ODE) in each node of the discretization. The input data for the vorticity transport
equation at each time step is computed using a modified version of the linear Poisson partial
differential equation for velocity, called KLE equation. There are several implementations of
this method, ranging from functional prototypes to the ones developed on interpreted languages
or C++. This work is an evolution of Bursztyn et al. (2008) which presented an object oriented
implementation of the KLE method based on a general purpose and high performance frame-
work for solving partial differential equations by the finite and spectral element methods. Due
to the interfaces developed, this framework is able to make use of different high-performance
linear algebra libraries, either for dense or sparse matrices.

A brief overview of the KLE method is presented in section 2. The framework used and the
KLE implementation are explained in sections 3 and 4 respectively. The main improvements
of this implementation with respect to that of Bursztyn et al. (2008) are exposed in section 5.
Finally, the results about the performance achieved by means of different approaches to impose
boundary conditions and different solvers are shown in section 6.

2 THE KLE METHOD

Ponta (2005) presented a new method based on the vorticity-velocity formulation (ω, v) to
model the Navier–Stokes equations. The KLE method is characterized by a complete decou-
pling of the two variables, vorticity in time - velocity in space. In this way, it reduces to three
the number of variables to be solved in the temporal integration process with respect to the six
that have other hybrid formulations. Furthermore, this decomposition of the problem allows the
use of algorithms such as ODE solvers of variable order and adaptive time step to improve the
efficiency and robustness of the integration process.

The KLE method consists of two parts. First, the so-called kinematic Laplacian equation,
which is a modified version of the Poisson equation for velocity, responsible for solving the
kinematics of the problem. Second, the algorithm to integrate the equations related to the dy-
namics of the problem, in other words, the vorticity transport equation, which is resolved as an
ODE on each node of the discretization. Both sides feed each other and together are known as
KLE method.

The expression of the variational formulation of the KLE for incompressible flow, which is
used in this work can be expressed as

∫
Ω

∇v :∇δv + αD(∇·v)(∇·δv) + αω(∇× v)·(∇× δv) dΩ =∫
Ω

(∇× ω)·δv + αωω·(∇× δv) dΩ, (1)

where v is the velocity, ω is the vorticity and αD and αω are the penalty constants for the
constrains∇·v = D and∇× v = ω, where D is the expansion rate.
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2.1 Flow temporal evolution

The KLE method represents the flow dynamics by means of the Navier–Stokes equations in
terms of the vorticity. Namely,

∂ω

∂t
= −v·∇ω + ν∇2ω + ω·∇v. (2)

It is obtained from the full three-dimensional incompressible flow in a domain Ω, with a solid
boundary ∂Ω and far from the outer boundary in a reference frame fixed to the solid.

If at any moment the velocity field v is known for the whole domain Ω, then eq. 2 can be
rewritten as

∂ω

∂t
= −v·∇(∇× v) + ν∇2(∇× v) + (∇× v)·∇v, (3)

so that we know the time derivative of the vorticity ω at that moment at each point of discretiza-
tion in the Ω domain, and ω can be determined at a later time by integrating eq. 3 by means of
an ODE integration algorithm.

In this way, the variational formulation of the kinematic Laplacian equation 1 is used as a
counterpart of the vorticity transport equation 2 in a vorticity - velocity formulation to approxi-
mate the solution of the Navier–Stokes equations. The time integration of the vorticity transport
equation produces the distribution of vorticity ω in the Ω domain. For incompressible flows,
the rate of deformation D, i.e. the divergence of velocity is assumed zero.

2.2 The discretization method

The variational formulation of eq. 1 is discretized by the spectral element method as ex-
plained in Bursztyn et al. (2008). This method is a particular implementation of the p version
of the finite element method (FEM) where the nodes of the elements are located at points of a
Gauss–Lobatto grid. This way of locating the nodes of the spectral elements presents an advan-
tage: low-order elements (p = 1 or 2) correspond to the classical finite elements with 2 and 3
nodes in each dimension. Thus, there is a variable order method which contains classical low-
order elements as special cases. For high order elements, the distribution of nodes according
to a Gauss–Lobatto grid is more convenient than classical equidistant spaced nodes (Hourigan
et al., 2001). Once the nodes are located in the master element as described in Otero (2008),
interpolating functions are constructed as Lagrange polynomials associated with these nodes.
Then, their derivatives with respect to natural coordinates are calculated.

The discretization of eq. 1 in each element (Otero and Ponta, 2006; Otero, 2008) can be
written as

δV̂
eT

(Ke
L +Ke

D +Ke
ω)︸ ︷︷ ︸

Ke

V̂e = δV̂eT
(Re

L +Re
ω)︸ ︷︷ ︸

Re

ω̂e, (4)

where

Ke
L =

∫
Ωe

BeT Be dΩ

=
∫ 1

−1

∫ 1

−1

BeT Be |J | drds,

Ke
D =

∫ 1

−1

∫ 1

−1

αD BeT mT mBe |J | drds,

Ke
ω =

∫ 1

−1

∫ 1

−1

αω BeT rT rBe |J | drds,

Re
L =

∫ 1

−1

∫ 1

−1

HeT Be
ω |J | drds,

Re
ω =

∫ 1

−1

∫ 1

−1

αω BeT rT He
ω |J | drds,

and δV̂e is the array of nodal values of the components of an arbitrary field δv.
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The element matrices Ke and Re are assembled in the respective global matrices to obtain
the global system that represents the discretization of the KLE

K V̂ = R ω̂. (5)

To evaluate the right-hand-side of the system of ODE describing the temporal evolution,
eq. 5 is rewritten as

∂ω

∂t
= F (ω, t) =∇× (ν∇·∇v − v·∇v) , (6)

and after the discretization, it results

F(ω̂, t) = Ĉurl

(
ν D̂iv − V̂adv

)
ĜradV̂. (7)

3 THE FRAMEWORK

We use the framework presented in Quinteros et al. (2007) to implement numerical models
based in finite element method. This framework is based on a class structure that represents each
of the entities that are often part of a problem solved by the FEM. According to the concepts of
object-oriented programming, each class provides a specific functionality that clearly represents
an object. The developer must take care that each object will provide the consistent functionality
expected in this type of implementations. A detailed description of the characteristics of the
framework can be found in Quinteros (2008), whereas here we only mention some of them.

In this work we use a particular type of finite element called spectral element to implement
the KLE. These type of elements had not been included in the original version of the framework,
so an extension was included in the class structure (Bursztyn et al., 2008).

3.1 General characteristics of the class structure

One of the major purposes of the FEM is to define a base of functions, based on subdividing
the domain into subregions called finite elements. Each element is composed of nodes. In
the framework, the domain is represented by the Domain class which includes all necessary
information to represent the geometry to be modeled by a set of elements and nodes stored in
the Elements and Nodes attributes. Each element contains references to nodes that belong
to it, storing in the idNodes attribute the corresponding global identification numbers. To
calculate the stiffness matrix of each element, we must evaluate the interpolating functions and
their derivatives at the Gauss points determined by the order and type of the element used. This
information is represented by the GaussPoint class.

Figure 1 shows a schematic plot of a domain composed by 2 elements. These elements are
defined by 4 nodes located in the corners. Also, there are 4 Gauss points where the numeric in-
terpolation is calculated. Figure 2 shows part of the class diagram that provides the framework.
One can see the classes Domain, Element, Node, GaussPoint and Boundary among
others.

In order to implement the KLE method by using spectral elements, a Spectral class was
created to implement the spectral elements with configurable number of nodes. This class,
according to the framework structure, inherits from Element all its properties and methods.

3.2 Libraries used by the framework

The framework isolates the linear algebra operations so that they are carried out by means
of external libraries with optimum performance and independently from the implementation
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Figure 1: Domain composed of two 4-node elements with their Gauss points (modified from
Quinteros et al., 2007).

Figure 2: Class diagram.

of the FEM in particular. The stiffness matrix associated with each instance of the Element
class is computed using dense matrices related to geometric properties of the element. A class
called Matrix provides a simple interface to operate with dense matrices, including the most
common operations needed, by means of operator overloading and polymorphism. In this case,
the algebraic operations are performed by the Lapack library1 (Anderson et al., 1999).

Another class called SparseMatrix is designed to improve memory management and
performance in operations with large sparse matrices, as it is often the case of global stiffness
or mass matrices. Like the Matrix class, it separates the user from the actual implementation
of algebraic operations, which in this case could be either SuperLU2 (Demmel et al., 1999) or
Pardiso3 (Schenk et al., 2001).

1http://www.netlib.org/lapack/
2http://crd.lbl.gov/~xiaoye/SuperLU/
3http://www.pardiso-project.org/
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Figure 3: Class Element y Spectral.

3.3 Boundary condition parser

A new interface to a parser called muParser4 was implemented to calculate dynamically
the boundary conditions defined by a multi-variable-dependent function. It computes at runtime
the value of the function from its definition. muParser interprets any string as a function,
receiving the information of the variables, constants and functions to use. In this case, the
variables defined were the spatial coordinates (x, y) and time (t). This extension allows to
define more complex problems in a simple way. The model receives as a parameter the name of
a configuration file where the vorticity w, the boundary conditions on the velocity and its partial
derivatives, as a function of time, are defined.

4 KLE METHOD IMPLEMENTATION

The methods calc_kle and calc_kleOP which implement the KLE method were added to the
Element class, as shown in figure 3. The methodology explained in Bursztyn et al. (2008),
where a calc_equation method invokes another method called eval_equation, was
maintained (here equation is the name which defines the problem).

The calc_kle method is responsible for carrying out the integration at Gauss points for the
matrices of eq. 4. It calculates the element matrices Ke and Re by means of the eval_kleL
and eval_kleW methods, that perform the operations related to the basic Laplacian for-
mulation and the penalty terms of vorticity and divergence of the velocity, respectively. The
calc_kleOP method also performs the integrations in the Gauss points, but for the differential
operators needed in eq. 7. This method calls the eval_kleOP method to calculate the ma-
trices evaluated at the integration points necessary to build the derivation operators, which are
used to evaluate the right-hand-side of the ODE system in successive time steps (Ponta, 2005;
Otero and Ponta, 2006).

Figure 4 shows the KLE method steps which will be explained in this section.

4.1 Domain discretization

This implementation accepts as input data text files with a format similar to the one used
by the GID5 application. Through this file, an instance of the Domain class which represents
the domain is created, with all the elements, nodes and boundary conditions. Finally, using the
GaussPointGenerator class the Gauss points are generated and the shape functions and
its derivatives calculated. Gauss points and all the associated information are stored in the static
variables gpsfull and gps, as already explained in Bursztyn et al. (2008).

4http://muparser.sourceforge.net/
5http://www.gidhome.com/
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• Domain discretization

• Matrices structure generation

• For each element

– Calculation of the element matrices and integration in the Gauss
points

– Assembly of global matrices

– Calculation of the differential operators

• Boundary condition imposition

• Solution of the system of equations

Figure 4: KLE method diagram.

4.2 Matrices structure generation

The matricesK andR in eq. 5 usually have a small amount of non-zero values. These matri-
ces are represented as instances of the SparseMatrix class and their structure is built based
on the connectivity list that relates elements and nodes. Similarly, the empty structures of BRot,
BGrad and BDiv, which represent necessary arrays to calculate the differential operators of
eq. 7, are built.

After this step, the assembly of the element matrices in the global matrix is substantially
improved, as all the positions were previously allocated and structured, avoiding memory blocks
reallocation during this stage.

4.3 Elemental integration and global assembly

As shown in figure 4, for each element, element matrices are calculated. To this end, we
integrate in the Gauss points by means of the calc_kle method. Using eval_kleL and
eval_kleW methods the corresponding integrations to calculate these matrices are performed
(for details see eq. 4). Taking as example two of these matrices

Ke
L =

∫
Ωe

BeTBe dΩ =

∫ 1

−1

∫ 1

−1

BeTBe |J | drds,

Re
L =

∫ 1

−1

∫ 1

−1

HeTBe
ω |J | drds,

the calc_klemethod uses for each Gauss point the eval_kleLmethod to calculate BeTBe|J |
and HeTBe

ω |J | and sums up the result multiplied by the weight corresponding to the point of
integration for the double integral, to compute Ke

L and Re
L. By the summation of Ke

L, Ke
D,

Ke
ω ,Re

L andRe
ω the element matrices are obtained.

Once obtained the element matricesKe andRe, they are assembled into the global matrices
which are sparse. SparseMatrix class has an interface that facilitates the operation

K =
∑

e
Ke (8)

where the summatory implies a mapping between elemental and global numbering of the nodes.
The same is done with the global matrixR and element matricesRe.
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4.4 Calculation of the differential operators

For the temporal integration, differential operators Ĉurl, Ĝrad and D̂iv are calculated in or-
der to be used in the evaluation of the right-hand-side of the vorticity transport equation 7. These
operators are calculated with full integration over Gauss points, carried out by the calc_kleOP
method from the Element class. This method has its corresponding eval_kleOP method.
Finally, the element matrices are assembled into global operator matrices. With the purpose of
optimizing the process time, this calculation is performed within the same element cycle along
with the calculation of the matricesK andR as shown in figure 4 so that only one pass through
all the elements is required.

5 IMPROVEMENTS IN B.C. IMPOSITION AND SYSTEM RESOLUTION

In the previous versions, once the global matrices were assembled, boundary conditions
were imposed in order to solve the system expressed by eq. 5. The boundary conditions and the
vorticity vector ω̂ are part of the input information of the problem. If we define F = R ω̂, the
problem can be expressed as

K V̂ = F , (9)

where V̂ is the vector which contains the unknowns we want to obtain after solving the system.
Depending on the size of the problem, different stages of the resolution can be the most time-

consuming. In particular, the assemblage of element/global matrices, imposition of boundary
conditions and resolution of the system of equations. We tried to improve two of them in order
to reduce the computational time and increase the overall performance.

We compared two different ways of assembling and imposing boundary conditions. The
original one was to assemble the element matrices Ke and Re into the global ones K and R.
Then, boundary conditions were imposed overwriting the values of K and F where needed.
A second way is to impose the boundary conditions at the moment of the element matrix cal-
culation. The matrix K is split in four submatrices to separate the degrees of freedom that
were imposed by boundary conditions from those which were not. Matrix R is split into two
submatrices so that F is decomposed in an analogous way. Namely,

K =

[
Kuu Kuk

Kku Kkk

]
, F =

[
Fu

Fk

]
, (10)

where the subscript k represents the known degrees of freedom, related to Dirichlet boundary
conditions, and the subscript u represents the unknown degrees of freedom.

Then, equation 9 can be expressed as[
Kuu Kuk

Kku Kkk

]
∗
[
Vu

Vk

]
=

[
Fu

Fk

]
, (11)

where Vk is the velocity array containing the known (input) values, Vu is the velocity array
containing the unknown values and Fu and Fk contain the values of F corresponding to the
degrees of freedom whose values are unknown and known respectively.

It is not necessary to calculate the matricesKku,Kkk andRk from eq. 10 because it is enough
to solve just the first line of eq. 11. Thus, while in the original implementation 2 big matrices
are assembled, only 3 smaller matrices are assembled in this new approach. Immediate benefits
are a decrease of allocated memory (allowing to solve bigger problems) and the execution time.

At the resolution stage, we tested and compared a second version of the SparseMatrix
class (Quinteros et al., 2009) based on the Pardiso solver. The rest of the code remained
unchanged because the class declaration was the same.
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6 RESULTS

6.1 Model setup

All the results shown in this section were obtained on a PC with a processor Intel Core 2
Quad 2.4 Ghz and 8GB RAM with Debian GNU/Linux kernel 2.6.32-3.

In this work we used a two-dimensional regular mesh with Nel elements in each direction.
Each element, according to the order p, have NGL = p+1 nodes in each direction, giving a total
of NGL

2 nodes per element. N∗ is the inverse of the mean internodal distance, such that the total
number of nodes in the mesh is (NGL + 1)2. The problem was solved by changing the order of
the elements (modifying the number of nodes in the element), as well as the number of elements
within the mesh in order to study the behavior regarding p and h refinement respectively.

6.2 Validation of results

To validate the results obtained by this implementation, we used a velocity field given by
the error function which corresponds to the solution of the flow over an infinite flat plate
(see Sec. 4.3 from Batchelor, 2000, among others) which has been proposed as a benchmark
for vorticity-velocity methods by Otero and Ponta (2006). First, we defined the velocity from
which the vorticity was calculated. Then, imposing that vorticity in the whole domain and the
given velocity in the mesh boundaries, eq. 5 was solved to recover the velocities which were
compared against the original values. The exact solution of the streamwise velocity for different
values of the time parameter τ =

√
4 ν t/Y is shown in figure 5.
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Figure 5: Exact solution of the flow over an infinite flat plate, streamwise velocity (see Sec. 4.3
from Batchelor, 2000, among others).

Validation results were already shown in Bursztyn et al. (2008). There, one can see the
expected spectral convergence for the p refinement in comparison with the normal expected
convergence of the classical FEM approach and h refinement, which shows a straight line of
slope equal to the order p of the element in logarithmic plot.

Similar experiments were performed to validate the accuracy of the calculation of differential
operators. It was observed that the h refinement gives a straight line whose slope decreased
in magnitude with the order of the derivatives. In contrast, the curves associated with the p
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refinement showed the typical behavior of spectral convergence (Boyd, 2000). Also, it was
found that error increased as a higher order derivatives were computed.

6.3 Performance of the different approaches

The different implementations were tested varying the solver and the method for assembling
and imposing the boundary conditions used, as explained in section 4. The first version, which
assembles into 2 matrices and uses the SuperLU library, is the one already presented in Bursz-
tyn et al. (2008). In the second version (B.C. in E.M.), the assemblage is made into 3 smaller
matrices and the boundary conditions are imposed on the element matrices. The third version
(B.C. in E.M. + Pardiso) is similar to the second, but using the new SparseMatrix class,
which uses the Pardiso solver.

Figure 6 shows the total execution time for each approach varying the number of elements
of order p = 2 (h refinement). Other elements with different orders behave in the same manner.
p refinement is not shown because when the size of the problem increases both approaches tend
to be exactly the same, as the domain is formed by a small number of elements. It can be
seen that the new BC imposition has a better performance than the previous one and that the
difference becomes bigger when the size of the problem increases. When SuperLU is replaced
by Pardiso the performance is again enhanced, showing a better behavior for the whole range
of experiments. Moreover, given that the slope of the third version is significantly lower than
that of the version of Bursztyn et al. (2008), it will have better scaling capabilities and could
perform much better in problems bigger than those exposed here.

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

N*

T
IM

E
[s

ec
]

TOTAL TIME

(Bursztyn et al. 2008)
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B.C. in E.M. + PARDISO

Figure 6: Total execution time for the different versions using a grid with elements of order
p = 2 varying the number of elements.
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Figure 7: Time spent in different implementations using a grid with elements of order p = 4
varying the number of elements for the assembling (a) and solving the system (b).

It is important to mention that SuperLU and Pardiso solvers do not use the same sparse
matrix representation in terms of memory allocation. Thus, if we use the same method to
assemble and to impose the boundary conditions, they will not necessarily use the same amount
of time. A similar situation happens when we keep the same solver but change the method to
impose the BC, as we need to assemble 3 smaller matrices compared with the 2 original ones,
which means that the final system of equations will differ. This means that an influence between
these two stages will be seen in the results.

As an example of this, it can be seen in fig. 7a, which shows the time to assemble for a grid
composed by elements of order p = 4, that the time needed to assemble the global matrices
is reduced almost by a factor of 2. This is related to the different storage specifications of
SuperLU and Pardiso. While the former needs to store all the non-zero values in memory,
the latter allows to store only those in the upper half part in case of a symmetric matrix. It can
be seen in the same figure that when the same solver (SuperLU) is used, the overhead in time
due to the inclusion of the BC imposition in the assemblage is negligible, despite of the size of
the problem. The advantage in this case is the elimination of the boundary condition imposition
step over the assembled matrices.

The time needed to solve the system of equations for each approach is shown in fig. 7b. The
second approach shows a better performance than the previous one when the problem is small,
but the difference slowly vanishes when the size of the problem increases. This is a direct cause
of the size of the system of equations to solve, which is reduced by splitting the matrix K in
submatrices related to the known and unknown degrees of freedom (see eq. 11). However,
when the problem size increases, the number of degrees of freedom related with BC increases
linearly, while the unknowns increase quadratically. Due to this, the difference in computational
time will be less important for bigger problems.
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Figure 8: Error as a function of total computational time for elements of different order.

On the other hand, the performance with the inclusion of Pardiso enhances the computa-
tional time by more than one order of magnitude. The cause of this improvement is the reduced
storage required by Pardiso when the global stiffness matrix is symmetric and positive defi-
nite.

These results lend us to infer that the imposition of BC in the assemblage and the use of
Pardiso solver seem to be the best approach, so in the next sections we will study how it
behaves and compares against the previous KLE implementations.

6.4 Influence of the element order on precision and execution time

An interesting performance measure is the relation between precision and execution time
for a given problem size. In order to test the order p that performs the best, the problem was
run for different meshes with increasing number of elements with the same order. Figure 8
shows curves of constant order p for different meshes. It can be seen that to achieve the same
numerical precision (error), more computational time is needed when low order elements (p =
2) are used, in comparison with medium or high order (p ≥ 4) elements, which show some
sort of convergence to a performance limit. An improvement in performance can be achieved
increasing the order up to p ≈ 6, but no further benefits are obtained for higher order, at least
in terms of computational time. This behavior deserves a deeper study to evaluate if this keeps
on happening for different solution smoothness degree. There is also an apparently anomalous
behavior for p = 8. Another performance measure that could be considered and we plan to
study in the future is the relation between precision and memory requirements. According to
that it might be useful to work with orders higher than 6.

To further study the contribution of each step of the problem solution, we split the execution
time in 3 different stages: the matrix structure creation as explained in section 3 (CREATE
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Figure 9: Execution times in meshes composed by elements of p = 4 order in percent of total
time (a) and in logarithmic scale (b).

MAT. STRUCT.), the assembly time to build the matrices from eq. 5 imposing the boundary
conditions (ASSEMBLY) and the time to solve the system of equations 5 (SOLVE).

Figure 9 shows the contribution to the total time of each stage in meshes of increasing number
of elements of order p = 4. The contribution of each stage is almost constant in the range of
problems shown. Figure 9a shows the percent of total time while figure 9b shows the time, in
logarithmic scale, spent at each stage.

The assembly time is the higher among the three stages. Due to the way that KLE method
works, this assemble operation needs to be performed only at the beginning of a simulation
or when the shape of the mesh changes, since all matrices assembled during this stage depend
mainly on the geometry. Regarding the creation of the matrix structures, it only needs to be
done if the connectivity of the mesh is modified, which is something very unusual during a
simulation. Something important related to the time for solving the system of equations is that
in the first resolution, it is necessary to reorder and compute the triangular factors of the global
matrix. In the case that the geometry of the mesh does not change all along a simulation, these
factors can be stored and used in successive resolutions saving the corresponding amount of
time. In the case that the geometry of the mesh does change, but its connectivity does not, the
reordering can be reused, which also allows to save time. The solution time presented in the
results in this section always includes the reordering and factorization time mentioned.

6.5 Comparison with previous implementations

Several experiments with identical meshes were run in order to compare the implementation
presented by Otero and Ponta (2006) and the one presented by Bursztyn et al. (2008) with
this implementation. The main difference is that the former was completely implemented in
Matlab. Between both implementations in C++ the principal differences are the way boundary
conditions are imposed and the solver used to find the solution of the system of equations. The
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Figure 10: Execution time comparing the previous implementations and this implementation
using meshes of elements with p = 4 order: (a) total and (b) solve.

problem was solved for meshes with elements of different order varying the number of elements
in the mesh. Results for meshes composed by elements of order p = 4 are shown in fig. 10. As
the main contribution to the total time comes from the assemblage stage we present, in fig. 10a,
results of total time, which can be directly related to the assemble. On the other hand, the
solve time becomes almost negligible when compared with the total, so results for that stage are
shown alone in fig. 10b.

Figure 10 shows that for small problems Bursztyn et al. (2008) implementation needs twice
the time that the implementation presented here. This relation is kept almost constant in the
whole range shown. Comparing Otero and Ponta (2006) implementation, it can be seen that
it takes one order of magnitude more time than this implementation for small problems, while
for medium sized problems it takes almost three orders of magnitude more. Regarding the
solution of the system of equations this implementation is considerably better than both imple-
mentation, improving by at least one order of magnitude with respect to Bursztyn et al. (2008)
implementation and one and a half order of magnitude with respect to Otero and Ponta (2006)
implementation. Both behaviors are strongly related to the capability of assembling only the
half of the stiffness matrix.

A convenient way to evaluate the scalability of each implementation is to study the slope
when plotting the time against the size of the problem in a logarithmic plot. These slopes
represent the order of dependence of time respect to the problem size. In this case, as for
general nonstructured meshes the parameter N∗ has no direct meaning, it is better to use the
total number of nodes in the mesh which, roughly, grows as the square of N∗. Thus, the slopes
will be almost half of those seen in plots againstN∗. In table 1, the slopes measured for different
element orders are presented. Results are given for individual stages and for the total time.
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ASSEMBLE + B.C. SOLVE TOTAL
NGL (a) (b) (c) (a) (b) (c) (a) (b) (c)

3 2.0 1.5 1.0 1.6 1.7 1.2 2.0 1.4 1.0
5 2.1 1.4 1.0 1.8 1.7 1.1 2.2 1.4 1.0
9 2.0 1.1 1.0 1.6 1.2 1.0 2.0 1.1 1.1

Table 1: Slopes in logarithmic plots of time vs total number of nodes for: (a) Otero and Ponta
(2006); (b) Bursztyn et al. (2008); (c) this implementation.

In table 1 it can be seen that slopes of Otero and Ponta (2006) implementation almost double
those of the implementation presented herein while those of Bursztyn et al. (2008) implementa-
tion are about 40 – 50 % higher in the assemble and boundary condition imposition, about 50 %
higher in the solution and about 40 % higher in total. In view of these results, this implementa-
tion is clearly the best option at the moment, considering the scalability in bigger problems.

7 CONCLUSIONS AND FUTURE WORK

In this work, a new implementation of the KLE method was presented which improves the
performance of previous implementations. Two main modifications were added, namely, the
way boundary conditions are imposed and the library used to solve the sparse system of equa-
tions. The boundary conditions are now imposed at elemental level before assembling global
matrices. Pardiso library was used to replace SuperLU in the solution of the sparse sys-
tem of equations. With these two modifications a better memory use and a fast resolution is
achieved. From the analysis of time measurements for different element orders it can be con-
cluded that significant time savings are obtained. In the assemble stage, this is mainly due to
the possibility of storing only one triangular part of the global stiffness matrix. This also helps
to reduce the time needed to solve the system.

The scalability of this new version was also analyzed and compared with the previous ones.
The dependence of the time required on the problem size, represented by the slopes in loga-
rithmic plots, shows an improvement on the scalability in every stage as well as the complete
process. This indicates that this version is better suited for increasing problem sizes and as a
base of future parallel implementations.

Work has already been initiated to incorporate an ODE solver to the C++ framework. As
the code is already capable of computing the differential operator matrices required to evaluate
the right hand side of equation 7, after finishing this task, this implementation will be ready to
simulate time dependent bidimensional incompressible flows. Possible extensions in the future
could be towards the solution of three dimensional problems, turbulent flows by the addition of
a subgrid model in a large eddies simulation formulation and complex multiphysics problems
by the coupling with ODEs representing other phenomena.
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