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Abstract. The Boundary Knot Method (BKM) is a truly meshless, RBF-based methudhhas been
used to solve many problems in mathematical physics and engineering, like linédte problem,
plate vibration, Poisson, convection-diffusion, eigenanalysis in Acaystitc. In a recent work, the
BKM has been applied to two-dimensional harmonic elasticity and viscoelastibjigms. In this
paper, a new BKM representation is obtained by means of the Cauchgléski-Somigliana solution
of the displacements. The completeness of the BKM representations fociglaand viscoelasticity
problems is studied theoretically and numerically.
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1 INTRODUCTION

Meshfree methods for the solution of partial differentigiiations have gained large attention
in recent years. These methods avoid the computationat asociated to the mesh generation
in mesh-based methods like FEM or BEM. For high dimensionaimex-shaped problems,
the mesh generation process is usually very time consuresmgcially for problems where
remeshing is necessary, e.g., for accuracy reasons or \mleeapplication requires moving
boundaries, like in dynamic free-boundary problems or mpghoptimization.

Radial basis functions (RBF) are a general and powerful toolitii+wariable approximation
(Buhmann 2003. Using a particular radial solution of the governing edqu@ifrom now on
called radial Trefftz function) we can define a specialized RB&hod that, in conjunction
with the collocation technique, constitutes a truly mes$ilmethod, since it only needs a set of
distinct centers in the boundary of the domain to build tHatsm.

The first studied of such RBF-based methods is the well-knowthadeof fundamental
solutions (MFS) introduced bi¢upradze(1964). It has been recognized as being highly accu-
rate and fast convergent. However, it requires to set a eeertsial artificial boundary outside
the physical domainAlves, 2009 Cisilino and Sensale2002. In recent years, some tech-
nigues that avoid the use of the artificial boundary were @sed. For instance, the boundary
knot method (BKM), introduced bifang et al.(1999 and byChen and Tanaké&002. The
BKM has been used to solve many problems in mathematical ghysid engineering, like
plate vibration Kang and Leg2001), Poisson Chen et al.2005, inhomogeneous Helmholtz
(Jin and Zheng2005), etc.

In a recent work, the BKM has been applied to two-dimensiolastieity and viscoelasticity
problems Canelas and Sensal2010. However, a theorem showing the completeness of the
BKM representation for viscoelasticity problems has notbgesented yet. With the purpose
to obtain a complete representation, a new basis for théicolis obtained here by means of
the Cauchy-Kovalevski-Somigliana solution of the disptaeats Gurtin, 1972. Assuming
that the scalar BKM can represent any solution of the scalémhki@tz problem, the new basis
should be capable to represent any solution of the visdogtggproblem for the same domain.

The governing equation of harmonic elasticity and viscst@tdy problems is presented in
Section2. Section3 describes the BKM for the solution of these problems. The nasishis
presented in Sectioh The performance of the BKM using the new basis is studiedidenag
some examples presented in SectiorFinally, the conclusions of this work are presented in
Section®6.

2 THE ELASTODYNAMICSEQUATION

The general form of the elastodynamics governing equatiomiscoelastic materials in the
time domain is Christensen1982

C?D(ta ) * VV - u(x, ) - C?S‘(ta ) *V XV x u(iL’, ) + b($’t> = ﬁ(l‘,t) ) (1)

where *" denotes the viscoelastic operator:

1 90) = [ fengar, @
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u(z,t) is the displacement field at poimtand timet, b(z, t) is the body force, and, for the
synchronous approximatioRipkin, 1972 Sensale et §12001),

9 B 1—v 3
Bt = ey Pt ) ¢ and @)
C?@@? )* = mRE(tv )* ) 4)

are, respectively, the square of the P-wave velocity anddbeare of the S-wave velocity in the
viscoelastic casey is the Poisson ratiq is the density and?x(t, -) is the relaxation function
of the material Christensen1982.

For time-harmonic problems, a description of the govereigugation is achieved by applying
the Fourier transform to the general equation in the timexaa. For zero body forces, the
result may be written as:

cH(W)VV - u(r,w) — c5(w)V x V x a(r,w) + w*a(r,w) =0, (5)

wherew is the angular frequency, the bar over the displacemenbrdenotes the transformed
variable and

9 1—v

CP(w> = (1 + l/)(l o 2]/)p *(w) ) (6)
A = s E @), )

whereE*(w) is the Fourier transform aRz(t, -), and is known as the complex modulésgkin,
1972 Sensale et gl.200]). Fractional Boltzmann or Kelvin models can be used to define
E*(w), see Gchmidt and Gaul2002 Canelas and Sensa2010. In this paper, the follow-
ing model is used to define the complex modulus:

E*(w) = (1+2iB)E, 8)
whereF is the Young modulus of the material afdds known as the viscous damping factor.

3 THE BOUNDARY KNOT METHOD

The starting point in any Trefftz approach is the approxiorabpf the variable of interest,
in this case the displacement field, by a superposition ofige firumber of functions, each of
them solution of the homogeneous governing equation. Folhénmonic viscoelastic problem,
the approximatiomiy of the displacement field in the proposed method is

N
uy(z,w) = Zﬁ(x,:vj,w)aj, 9)

Jj=1

wherez is a point in the domaif of the problem and thé/ pointsz; are fixed sources located
in the boundanyf2. The Trefftz functiona, that provides a matrix of size x 2 in the two-
dimensional problem, has radial symmetry with respect eoshurcez;, i.e., a(z, z;,w) =
u(r,w) wherer = ||z — z,||. The expression ai is described in Sectiof The vectorsx; are
the unknowns of the method.
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As well as the radial Trefftz functions,y satisfies Eq.5), i.e.,
e (W)VV - uy (7, w) — c5(w)V x V x uy(z,w) + w?uy(z,w) = 0. (10)

Various alternatives exist for imposing the boundary ctods. In the collocation approach,
we require the satisfaction of the following equations:

uy(zj,w) =u(z;,w), Vz; €08y, (11)
pn(zj,w) =p(z;,w), Vz; €08y, (12)

where the left hand sides of Eq4.1f and (L2) are the approximation of the displacement as
given in Eq. @) and its associated traction force. The right hand sidesgst B1) and (2)
represent the known boundary conditions. Equatiddsgnd (L2) may be written using Eq9j

as:

N
j=1

wherea; contains the unknowns coefficients of tjie term of the expansion of EqQ), K;; =
u(z;,z;,w) andy; = u(z;,w) if z; € 0Qy, andK;; = p(z;,z;,w) andy; = p(z;,w) if
x; € 09p. The BKM solves the linear system of E4.3] to obtain the approximate solution
given by Eq. 9).

4 RADIAL TREFFTZ FUNCTIONS

The expression of the radial Trefftz function proposed@anelas and Sensaf2010 in
index notation is

1 or Or
0y — —— — Y — 14
Uyy, 2rp [Wsék X oz axlj (14)
where the functiong andy are
W(r) =177 [kprJi(kpr) — ksrJy(ksr) + kir® Jo(ksr)] (15)

x(r) =r72 2kprJi(kpr) — kpr®Jo(kpr) — 2ksr Ji(ksr) + k&r?Jo(ksr)] | (16)

wherer = ||z — z;||, the wave numbers afe> = w/cp(w), ks = w/cs(w), and.J, denotes the
Bessel function of the first kind and order The traction corresponding to the radial Trefftz
function of Eq. (L4) on a plane of normah is

S L[(9 X\ (0, or\ 20r( oo
b = 27 or r *om E@xk r Oxy F Ox1, On
dx Or Or Or % oYy Ox x\ Or
2= - = 2| |=-=-=])=—1. 17
r Oy Oxj, On T (E% ) ((97" ar r) Oxy (17
The radial Trefftz function of Eq.14) has been found effective to represent the solution of sev-
eral problems considering simple-connected domaanélas and Sensa2010. However,
a theorem showing the completeness of the representatiBg.qP) has not been stated yet.

By reason of the large numerical experience accumulatedstrykars using the scalar BKM
for Helmholtz problems, it should be of main importance tover that the representation of
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Eg. Q) is complete whenever the representation used by the BKMcfalas Helmholtz prob-
lems is. Unfortunately, the techniqgue employed @Gagelas and Sensa2010 to derive the
radial Trefftz function of Eq.14) does not provide for a direct way to prove that.

The object of this section is to obtain a radial Trefftz fuoctcapable to represent an ap-
proximation of the solution of a viscoelasticity problenoyiding that the scalar BKM repre-
sentation is complete for a scalar Helmholtz problem withgame domain. This radial Trefftz
function is obtained here by means of the Cauchy-Kovale8skiigliana solution of the dis-
placements. The completeness of the Cauchy-Kovalevskighama solution in the case of
harmonic problems and for zero body forces is stated in thetheorem.

Theorem Letu be a clasgC¢ solution of Eq(5) in the open domaif that is also continuous
in 2. Then, there exist a clags! vector fieldg such that the following equations hold:

e (w)VV - g(z,w) — ep(w)V x V x g(r,w) + wg(r,w) = u(z,w), (18)
(C3(w)V -V +w?)(ch(w)V - V + w?)g(z,w) = 0. (19)

Proof: See Gurtin, 1972 for a demonstration of the previous theorem in the more ggne
framework of non-harmonic elastodynamics.

Let u be the solution of the problem defined by EB) in the open domaifi2, and certain
boundary conditions o0af2. Assuming that the solution of this problem is regular erigubge
previous theorem ensures that there exist a vector fieldfgat Eq. (9) that provides the
displacement fielah by means of Eq.19).

Leth be the vector field defined @ by:

h(z,w) = (¢p(w)V - V +w?)g(z,w). (20)
From Eq. 19), the vector fielch satisfies the following equation:
(2 (w)V -V +w)h(z,w) = 0. (21)

It is worth mentioning that the Cauchy-Kovalevski-Somighasolution of the displacement
field is not unique. In fact, there exist infinite solutiogsf Egs. (8)-(19). For the same
reason the vector fieltl is not unique. However, any solutidnderived from Eq. 20) is a
solution of 1) and, as Eq.41) decouples in three scalar Helmholtz equations, the véietiadr
h can be approximated using the scalar BKM approd&@m( et al, 1999 Chen and Tanaka
2002. That is, choosingV sources on the boundary 8f an approximatiorhy for h can be
represented by:

N
hy(z,w) =Y gz, z),w)ay . (22)

In the two-dimensional problem, tiex 2 matrix field g = ¢sI, wherel is the identity
matrix andypg is the radial Trefftz function of the scalar BKMbs(, x, w) = Jo(ksr).

To obtain an approximate solution fgrwe observe that it is a solution of the non-homoge-
neous problem defined by EQQ). Thus, the idea proposed here to construct the approximate
solution forg is the following. As an approximation of the particular dada of the Eq. 20) we
take an exact particular solution for the approximated Hodyesh . Then, we add the general
representation of the BKM approximation of the homogenealigtisn obtained considering
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the same sources as thg,. A direct differentiation shows that an exact particuldugon g4,
for the approximated body forcésy is

N
gﬁ,(:c,w) = Z(kIQD - k%’)ilqoS(Iv SL’j,w)ij : (23)

j=1

Redefining the parametees; taking into account the constant factéf, — k%), and adding
the homogeneous solution, the BKM approximationgas

N
gN(x>w) = ¢S($7xj>w)aj_'_ZQAOP(xamjaw)/@j' (24)

1 j=1

WE

<
Il

wherep, = ¢pl, andpp(z, z;,w) = Jo(kpr).
Coming back to the displacements, Efg)(gives the following approximation:

N N
uy(z,w) = Z ugs(x,xj,w)oy + Zﬁp(ﬂf, rj,w)B;, (25)
j=1

j=1

where the functionag andup can be expressed, to within multiplicative constants, by(E4),
where in this casé andy must be defined as

Y(r) =r2 [—k:STJl(kST) - kigTQJO(k‘Sr)} , (26)

x(r) =r? [—Zkgrjl(kgr) + k’%TﬁJO(ks’f’)} , 27)
for ug and

(r) =172 [kprJi(kpr)] (28)

x(r) =72 [2kprJi(kpr) — kprJo(kpr)] | (29)

for up. The surface tractions associateditpandug are given by Eq.X7), using their respec-
tive expressions af andy.

From Egs. 15)-(16) and @6)-(29), it can be observed thé@t = ug + up, SO that the radial
Trefftz functionu proposed in Canelas and Sensa010 is a sum ofag, a motion of wave
numberks (hence a pure isochoric motion), angd, a motion of wave numbérr (hence a pure
irrotational motion). In addition, this last equality shewhat any function of the form given by
Eg. ©) can easily be expressed in the form of E2p)( Figurel shows a graphic representation
of the displacements corresponding to the first columagéndup.

A BKM approach similar than the proposed iGanelas and Sensa010 can be imple-
mented using the expansion of E5). The main difference is that the number of collocation
points must double the number of source points, since fon saarce point four unknown
parameters are defined.

5 EXAMPLES

We present numerical results obtained for two simple problean example considering
a circle domain and an example of a square domain. For botmm@ga a broad range of
frequencies was considered in the performance evaluafitmedBKM. The results obtained
are compared to the exact solution. The frequency respoadalos and the condition number
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Figure 1: Diagrams showing the displacements correspgriditthe first column of the radial Trefftz functions.
Left: Isochoric displacemertits. Right: Irrotational displacemetitp. Central red pluses: Location of the sources.

of the linear systems are plotted versus the angular frexyugrich is normalized by the first
natural frequency, of the pure elastic problem. The exact solutions as well asitst natural
frequencies are given in Appendix

In all the figures of this section, the BKM approach proposgianelas and Sensak010
(based on the expressions of E@, (14) and (L5)-(16)) is referenced by BKM-O. The BKM
approach proposed here (based on the expressions oPEjig14) and 6)-(29)) is referenced
by BKM-N.

The implementations of the BKM-O and BKM-N use a double precisioating-point rep-
resentation of real numbers (machine precision0~'°). A standard solver based on Gaussian
elimination was used to solve the systems of linear equstidhus, large numerical errors in
the solution of linear systems are expected for conditianimers higher tham(.

5.1 Circle

In this example, we consider a circle of radits= 6.0 m. The material properties are
G =1.0x10°Pa,y =0.25, E =2(1 — v)G, 8 = 0.05andp = 100.0 kg/m?.

In the first case, the circle is subject to boundary displasgexmatching the displacements
of the radial Trefftz functionsis andup, for a source located at the rightmost point of the circle
and for four different values of the angular frequengcy The purpose of this example is to
verify that the BKM approach proposed i@#¢nelas and Sensal010 is capable to represent
accurately each of the functions of the expansion of 2§), (at least for the case of a circle
domain (the converse is obviously true in view of the equalit= ug + up).

Figures2-3 show the displacements along the horizontal diameter ofiticke obtained by
the BKM-O compared with the exact solutiary. Figures4-5 show the same for the exact
solutionup. Figures2- 5 show that the expansion of the BKM-O can represent the fumstio
g andup for this circle domain problem. Using a mesh of 16 nodes, thé/B® obtained
accurate results for the three lowest frequencies testeldjging a mesh of 32 nodes it obtained
accurate results even for the highest frequency.

In the second case, a uniform radial displacement of the deryrnof valueU = 1.0 m is
considered. The frequency response modulus at a point obdinedary is given in Fig6.
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Figure 2: Horizontal displacements along the horizontahdter of the circle obtained by the BKM-O compared
with the exact solution corresponding to the first colummagf Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.
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Figure 3: Vertical displacements along the horizontal diten of the circle obtained by the BKM-O compared
with the exact solution corresponding to the second columinso Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 2111-2124 (2010) 2119

0.2 wL/Re(c,) =0.2 1

wL/Re(c,) =5

Displacement (m)

x (m)

Figure 4: Horizontal displacements along the horizontairditer of the circle obtained by the BKM-O compared

with the exact solution corresponding to the first colummpf Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.
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Figure 5: Vertical displacements along the horizontal diten of the circle obtained by the BKM-O compared

with the exact solution corresponding to the second columino Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.
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Figure 6: Circle example - Frequency response modulus.Exalct solution, BKM-N1: results of the BKM-N for

a mesh of 16 collocation nodes, BKM-N2: results of the BKMéY & mesh of 32 collocation nodes, BKM-O1:
results of the BKM-O for a mesh of 16 collocation nodes, BKN:Qesults of the BKM-O for a mesh of 32
collocation nodes.

Figure7 shows the condition number of the linear systems. The figsiies/ that the BKM-N
and the BKM-O obtain results of similar accuracy. For a meshéafiodes both method obtain
accurate results for frequencies below that of the secoall pethe frequency response. For
a mesh of 32 nodes, both methods obtain accurate resultsibvee fourth peak. Figure
shows that the linear systems built by the BKM-O are betteditmmed that the systems built
by the BKM-N.

52 Square

The domain of this example consists of a square of gide 6.0 m with mixed boundary
conditions: on the bottom side the vertical component ofdisplacement and the horizontal
component of the traction are zero, on the lateral sides ¢hiedntal component of the dis-
placement and the vertical component of the traction anenasd zero, and in the top side there
is a uniform normal traction of valu® = 100.0 Pa. The same material properties as in the
Example5.1 are considered. The closer sources to the corners are dogdedistance of one
fourth of the mean distance between subsequent sourcedrefuency response modulus at
the middle point of the top side and the condition number eflthear systems are shown in
Figs.8 and9, respectively.

As in the previous example, the BKM-N and the BKM-O obtain resaf similar accuracy.
For a mesh of 16 nodes both method obtain accurate resultsetprencies below that of the
third peak of the frequency response. For a mesh of 32 nodés,nbethods obtain accurate
results for the entire range of tested frequencies. Figwtgows that, as in the example above,
the linear systems built by the BKM-O are better conditionleal the systems built by the
BKM-N.
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Figure 7: Circle example - Condition number of the lineatsys BKM-N1: mesh of 16 collocation nodes, BKM-
N2: mesh of 32 collocation nodes. BKM-O1: mesh of 16 collmahodes, BKM-O2: mesh of 32 collocation
nodes.

Sol

Displacement (m)

Figure 8: Square example - Frequency response modulusESatt solution, BKM-N1: results of the BKM-N
for a mesh of 16 collocation nodes, BKM-N2: results of the B#Mor a mesh of 32 collocation nodes, BKM-
O1: results of the BKM-O for a mesh of 16 collocation nodesMBK2: results of the BKM-O for a mesh of 32
collocation nodes.
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Figure 9: Square example - Condition number of the lineatesysBKM-1: mesh of 12 nodes, BKM-2: mesh of
20 nodes.

6 CONCLUSIONS

A new radial Trefftz function for the BKM representation oetlolution was obtained by
means of the Cauchy-Kovalevski-Somigliana solution of tispldcements. The new basis can
represent exactly any solution obtained by the BKM using théasis. In addition, assuming
that the scalar BKM can represent any solution of the scalanhigtz problem, the new basis
should be able to represent any solution of the viscoelgspooblem for the same domain.

Some examples were considered to compare the performartbe &KM using the old
an the new set of radial Trefftz functions. For the circle damproblem, it was observed
that the old basis could represent the elements of the neis, lsmsvalidating the approach
presented inCanelas and Sensa010. The new basis has the extra difficulty of setting more
collocation points than source points. In addition, it whserved that the new basis leads
to worse conditioned linear systems. Thus, for practicgliegtions the basis presented in
(Canelas and Sensalk010 is recommended.
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A EXACT SOLUTIONS

The exact solutions for the circle and square problems asepted in Tablé. The scalar
constantu, must be obtained according to the boundary conditions.
For the circle problem and for an imposed radial displacdrobvalueU:

§=kpR. (31)
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For an imposed radial traction of valuite

uy = V2 PE? [[pw? R(V2EJo(€) — J1(€))], with: (32)
v =cp/(V2es), (33)
£ =kpR. (34)

For the square problem and for an imposed vertical displacéof valuel on the top face:

up = U/sin(€), with: (35)
§=kpL. (36)

For an imposed vertical traction of valu&
ug = P&/ (pw’Lcos(€)). (37)

The analysis of the exact solutions provides the naturglLieacies of the modes excited by the
loads considered. They are given in terms of the dimensisrgarametef in Tables2 and3.

| Example|  Solution |
Circle upJr(kpr)e,
Square | ugsin(kpy)e,

Table 1: Exact solution.

| Example \ Natural frequencié® |
Circle Dirichlet w=cpé/R, Ji(§) =0
Circle Neumann | w = ¢p&/R, v2€Jy(€) — J1(€) =0
Square Dirichlet w=cp/L, sin(§) =0
Square Neumann w=cp&/L, cos(§) =0

(a) Consider the positive solutions of the equations.

Table 2: Natural frequencies.

’ Example ‘ &1 ‘ 3 ‘ &3 ‘
Circle Dirichlet | 3.8317 | 7.0156 | 10.173
Circle Neumanf | 2.0694 | 5.3957 | 8.5758
Square Dirichlet T 27 3
Square Neumann /2 3n/2 | 5mw/2
(a) Fory = 1.2247.

Table 3: First three natural frequencies.
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