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Abstract. The Boundary Knot Method (BKM) is a truly meshless, RBF-based method which has been
used to solve many problems in mathematical physics and engineering, like the Helmholtz problem,
plate vibration, Poisson, convection-diffusion, eigenanalysis in Acoustics, etc. In a recent work, the
BKM has been applied to two-dimensional harmonic elasticity and viscoelasticity problems. In this
paper, a new BKM representation is obtained by means of the Cauchy-Kovalevski-Somigliana solution
of the displacements. The completeness of the BKM representations for elasticity and viscoelasticity
problems is studied theoretically and numerically.
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1 INTRODUCTION

Meshfree methods for the solution of partial differential equations have gained large attention
in recent years. These methods avoid the computational effort associated to the mesh generation
in mesh-based methods like FEM or BEM. For high dimensional complex-shaped problems,
the mesh generation process is usually very time consuming,especially for problems where
remeshing is necessary, e.g., for accuracy reasons or when the application requires moving
boundaries, like in dynamic free-boundary problems or in shape optimization.

Radial basis functions (RBF) are a general and powerful tool in multi-variable approximation
(Buhmann, 2003). Using a particular radial solution of the governing equation (from now on
called radial Trefftz function) we can define a specialized RBFmethod that, in conjunction
with the collocation technique, constitutes a truly meshless method, since it only needs a set of
distinct centers in the boundary of the domain to build the solution.

The first studied of such RBF-based methods is the well-known method of fundamental
solutions (MFS) introduced byKupradze(1964). It has been recognized as being highly accu-
rate and fast convergent. However, it requires to set a controversial artificial boundary outside
the physical domain (Alves, 2009; Cisilino and Sensale, 2002). In recent years, some tech-
niques that avoid the use of the artificial boundary were proposed. For instance, the boundary
knot method (BKM), introduced byKang et al.(1999) and byChen and Tanaka(2002). The
BKM has been used to solve many problems in mathematical physics and engineering, like
plate vibration (Kang and Lee, 2001), Poisson (Chen et al., 2005), inhomogeneous Helmholtz
(Jin and Zheng, 2005), etc.

In a recent work, the BKM has been applied to two-dimensional elasticity and viscoelasticity
problems (Canelas and Sensale, 2010). However, a theorem showing the completeness of the
BKM representation for viscoelasticity problems has not been presented yet. With the purpose
to obtain a complete representation, a new basis for the solution is obtained here by means of
the Cauchy-Kovalevski-Somigliana solution of the displacements (Gurtin, 1972). Assuming
that the scalar BKM can represent any solution of the scalar Helmholtz problem, the new basis
should be capable to represent any solution of the viscoelasticity problem for the same domain.

The governing equation of harmonic elasticity and viscoelasticity problems is presented in
Section2. Section3 describes the BKM for the solution of these problems. The new basis is
presented in Section4. The performance of the BKM using the new basis is studied considering
some examples presented in Section5. Finally, the conclusions of this work are presented in
Section6.

2 THE ELASTODYNAMICS EQUATION

The general form of the elastodynamics governing equation for viscoelastic materials in the
time domain is (Christensen, 1982)

c2P (t, ·) ∗ ∇∇ · u(x, ·)− c2S(t, ·) ∗ ∇ ×∇× u(x, ·) + b(x, t) = ü(x, t) , (1)

where ‘*’ denotes the viscoelastic operator:

f(t, ·) ∗ g(·) =
∫ t

τ0

f(t, τ)
∂g

∂τ
(τ) dτ , (2)
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u(x, t) is the displacement field at pointx and timet, b(x, t) is the body force, and, for the
synchronous approximation (Pipkin, 1972; Sensale et al., 2001),

c2P (t, ·)∗ =
1− ν

(1 + ν)(1− 2ν)ρ
RE(t, ·) ∗ and (3)

c2S(t, ·)∗ =
1

2(1 + ν)ρ
RE(t, ·)∗ , (4)

are, respectively, the square of the P-wave velocity and thesquare of the S-wave velocity in the
viscoelastic case,ν is the Poisson ratio,ρ is the density andRE(t, ·) is the relaxation function
of the material (Christensen, 1982).

For time-harmonic problems, a description of the governingequation is achieved by applying
the Fourier transform to the general equation in the time-domain. For zero body forces, the
result may be written as:

c̄2P (ω)∇∇ · ū(x, ω)− c̄2S(ω)∇×∇× ū(x, ω) + ω2ū(x, ω) = 0 , (5)

whereω is the angular frequency, the bar over the displacement vector denotes the transformed
variable and

c̄2P (ω) =
1− ν

(1 + ν)(1− 2ν)ρ
E∗(ω) , (6)

c̄2S(ω) =
1

2(1 + ν)ρ
E∗(ω) , (7)

whereE∗(ω) is the Fourier transform ofRE(t, ·), and is known as the complex modulus (Pipkin,
1972; Sensale et al., 2001). Fractional Boltzmann or Kelvin models can be used to define
E∗(ω), see (Schmidt and Gaul, 2002; Canelas and Sensale, 2010). In this paper, the follow-
ing model is used to define the complex modulus:

E∗(ω) = (1 + 2iβ)E , (8)

whereE is the Young modulus of the material andβ is known as the viscous damping factor.

3 THE BOUNDARY KNOT METHOD

The starting point in any Trefftz approach is the approximation of the variable of interest,
in this case the displacement field, by a superposition of a finite number of functions, each of
them solution of the homogeneous governing equation. For the harmonic viscoelastic problem,
the approximationuN of the displacement field̄u in the proposed method is

uN(x, ω) =
N
∑

j=1

û(x, xj , ω)αj , (9)

wherex is a point in the domainΩ of the problem and theN pointsxj are fixed sources located
in the boundary∂Ω. The Trefftz functionû, that provides a matrix of size2 × 2 in the two-
dimensional problem, has radial symmetry with respect to the sourcexj, i.e., û(x, xj , ω) =
û(r, ω) wherer = ‖x− xj‖. The expression of̂u is described in Section4. The vectorsαj are
the unknowns of the method.
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As well as the radial Trefftz functions,uN satisfies Eq. (5), i.e.,

c̄2P (ω)∇∇ · uN(x, ω)− c̄2S(ω)∇×∇× uN(x, ω) + ω2uN(x, ω) = 0 . (10)

Various alternatives exist for imposing the boundary conditions. In the collocation approach,
we require the satisfaction of the following equations:

uN(xj, ω) = ũ(xj, ω) , ∀ xj ∈ ∂Ωu , (11)

pN(xj, ω) = p̃(xj, ω) , ∀ xj ∈ ∂Ωp , (12)

where the left hand sides of Eqs. (11) and (12) are the approximation of the displacement as
given in Eq. (9) and its associated traction force. The right hand sides of Eqs. (11) and (12)
represent the known boundary conditions. Equations (11) and (12) may be written using Eq. (9)
as:

N
∑

j=1

Kijαj = yi ⇔ Kα = y , (13)

whereαj contains the unknowns coefficients of thejth term of the expansion of Eq. (9), Kij =
û(xi, xj , ω) andyi = ũ(xi, ω) if xi ∈ ∂Ωu, andKij = p̂(xi, xj , ω) andyi = p̃(xi, ω) if
xi ∈ ∂Ωp. The BKM solves the linear system of Eq. (13) to obtain the approximate solution
given by Eq. (9).

4 RADIAL TREFFTZ FUNCTIONS

The expression of the radial Trefftz function proposed byCanelas and Sensale(2010) in
index notation is

ûℓk =
1

2πρc̄2S

[

ψδℓk − χ
∂r

∂xℓ

∂r

∂xk

]

, (14)

where the functionsψ andχ are

ψ(r) = r−2
[

kP rJ1(kP r)− kSrJ1(kSr) + k2Sr
2J0(kSr)

]

, (15)

χ(r) = r−2
[

2kP rJ1(kP r)− k2P r
2J0(kP r)− 2kSrJ1(kSr) + k2Sr

2J0(kSr)
]

, (16)

wherer = ‖x− xj‖, the wave numbers arekP = ω/c̄P (ω), kS = ω/c̄S(ω), andJν denotes the
Bessel function of the first kind and orderν. The traction corresponding to the radial Trefftz
function of Eq. (14) on a plane of normaln is

p̂ℓk =
1

2π

[(

∂ψ

∂r
− χ

r

)(

δℓk
∂r

∂n
+ nℓ

∂r

∂xk

)

− 2χ

r

∂r

∂xℓ

(

nk − 2
∂r

∂xk

∂r

∂n

)

− 2
∂χ

∂r

∂r

∂xℓ

∂r

∂xk

∂r

∂n
+ nk

(

c̄2P
c̄2S

− 2

)(

∂ψ

∂r
− ∂χ

∂r
− χ

r

)

∂r

∂xℓ

]

. (17)

The radial Trefftz function of Eq. (14) has been found effective to represent the solution of sev-
eral problems considering simple-connected domains (Canelas and Sensale, 2010). However,
a theorem showing the completeness of the representation ofEq. (9) has not been stated yet.
By reason of the large numerical experience accumulated in last years using the scalar BKM
for Helmholtz problems, it should be of main importance to prove that the representation of
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Eq. (9) is complete whenever the representation used by the BKM for scalar Helmholtz prob-
lems is. Unfortunately, the technique employed in (Canelas and Sensale, 2010) to derive the
radial Trefftz function of Eq. (14) does not provide for a direct way to prove that.

The object of this section is to obtain a radial Trefftz function capable to represent an ap-
proximation of the solution of a viscoelasticity problem providing that the scalar BKM repre-
sentation is complete for a scalar Helmholtz problem with the same domain. This radial Trefftz
function is obtained here by means of the Cauchy-Kovalevski-Somigliana solution of the dis-
placements. The completeness of the Cauchy-Kovalevski-Somigliana solution in the case of
harmonic problems and for zero body forces is stated in the next theorem.

Theorem Letu be a classC6 solution of Eq.(5) in the open domainΩ that is also continuous
in Ω̄. Then, there exist a classC4 vector fieldg such that the following equations hold:

c̄2S(ω)∇∇ · g(x, ω)− c̄2P (ω)∇×∇× g(x, ω) + ω2g(x, ω) = u(x, ω) , (18)

(c̄2S(ω)∇ · ∇+ ω2)(c̄2P (ω)∇ · ∇+ ω2)g(x, ω) = 0 . (19)

Proof: See (Gurtin, 1972) for a demonstration of the previous theorem in the more general
framework of non-harmonic elastodynamics.

Let u be the solution of the problem defined by Eq. (5) in the open domainΩ, and certain
boundary conditions on∂Ω. Assuming that the solution of this problem is regular enough, the
previous theorem ensures that there exist a vector field satisfying Eq. (19) that provides the
displacement fieldu by means of Eq. (18).

Let h be the vector field defined inΩ by:

h(x, ω) = (c̄2P (ω)∇ · ∇+ ω2)g(x, ω) . (20)

From Eq. (19), the vector fieldh satisfies the following equation:

(c̄2S(ω)∇ · ∇+ ω2)h(x, ω) = 0 . (21)

It is worth mentioning that the Cauchy-Kovalevski-Somigliana solution of the displacement
field is not unique. In fact, there exist infinite solutionsg of Eqs. (18)-(19). For the same
reason the vector fieldh is not unique. However, any solutionh derived from Eq. (20) is a
solution of (21) and, as Eq. (21) decouples in three scalar Helmholtz equations, the vectorfield
h can be approximated using the scalar BKM approach (Kang et al., 1999; Chen and Tanaka,
2002). That is, choosingN sources on the boundary ofΩ, an approximationhN for h can be
represented by:

hN(x, ω) =
N
∑

j=1

ϕ̂S(x, xj, ω)αj . (22)

In the two-dimensional problem, the2 × 2 matrix field ϕ̂S = ϕ̂SI, whereI is the identity
matrix andϕ̂S is the radial Trefftz function of the scalar BKM,̂ϕS(x, xj , ω) = J0(kSr).

To obtain an approximate solution forg we observe that it is a solution of the non-homoge-
neous problem defined by Eq. (20). Thus, the idea proposed here to construct the approximate
solution forg is the following. As an approximation of the particular solution of the Eq. (20) we
take an exact particular solution for the approximated bodyforceshN . Then, we add the general
representation of the BKM approximation of the homogeneous solution obtained considering
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the same sources as forhN . A direct differentiation shows that an exact particular solution g
p
N

for the approximated body forceshN is

g
p
N(x, ω) =

N
∑

j=1

(k2P − k2P )
−1ϕ̂S(x, xj, ω)αj . (23)

Redefining the parametersαj taking into account the constant factor(k2P − k2P )
−1, and adding

the homogeneous solution, the BKM approximation forg is

gN(x, ω) =
N
∑

j=1

ϕ̂S(x, xj , ω)αj +
N
∑

j=1

ϕ̂P (x, xj, ω)βj . (24)

whereϕ̂P = ϕP I, andϕ̂P (x, xj , ω) = J0(kP r).
Coming back to the displacements, Eq. (18) gives the following approximation:

uN(x, ω) =
N
∑

j=1

ûS(x, xj , ω)αj +
N
∑

j=1

ûP (x, xj, ω)βj , (25)

where the functionŝuS andûP can be expressed, to within multiplicative constants, by Eq. (14),
where in this caseψ andχ must be defined as

ψ(r) = r−2
[

−kSrJ1(kSr) + k2Sr
2J0(kSr)

]

, (26)

χ(r) = r−2
[

−2kSrJ1(kSr) + k2Sr
2J0(kSr)

]

, (27)

for ûS and

ψ(r) = r−2 [kP rJ1(kP r)] , (28)

χ(r) = r−2
[

2kP rJ1(kP r)− k2P r
2J0(kP r)

]

, (29)

for ûP . The surface tractions associated toûS andûS are given by Eq. (17), using their respec-
tive expressions ofψ andχ.

From Eqs. (15)-(16) and (26)-(29), it can be observed that̂u = ûS + ûP , so that the radial
Trefftz functionû proposed in (Canelas and Sensale, 2010) is a sum ofûS, a motion of wave
numberkS (hence a pure isochoric motion), andûP , a motion of wave numberkP (hence a pure
irrotational motion). In addition, this last equality shows that any function of the form given by
Eq. (9) can easily be expressed in the form of Eq. (25). Figure1 shows a graphic representation
of the displacements corresponding to the first column ofûS andûP .

A BKM approach similar than the proposed in (Canelas and Sensale, 2010) can be imple-
mented using the expansion of Eq. (25). The main difference is that the number of collocation
points must double the number of source points, since for each source point four unknown
parameters are defined.

5 EXAMPLES

We present numerical results obtained for two simple problems, an example considering
a circle domain and an example of a square domain. For both examples a broad range of
frequencies was considered in the performance evaluation of the BKM. The results obtained
are compared to the exact solution. The frequency response modulus and the condition number
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Figure 1: Diagrams showing the displacements corresponding to the first column of the radial Trefftz functions.
Left: Isochoric displacement̂uS . Right: Irrotational displacement̂uP . Central red pluses: Location of the sources.

of the linear systems are plotted versus the angular frequency, which is normalized by the first
natural frequencyω1 of the pure elastic problem. The exact solutions as well as the first natural
frequencies are given in AppendixA.

In all the figures of this section, the BKM approach proposed in(Canelas and Sensale, 2010)
(based on the expressions of Eqs. (9), (14) and (15)-(16)) is referenced by BKM-O. The BKM
approach proposed here (based on the expressions of Eqs. (25), (14) and (26)-(29)) is referenced
by BKM-N.

The implementations of the BKM-O and BKM-N use a double precision floating-point rep-
resentation of real numbers (machine precision≈ 10−16). A standard solver based on Gaussian
elimination was used to solve the systems of linear equations. Thus, large numerical errors in
the solution of linear systems are expected for condition numbers higher than1016.

5.1 Circle

In this example, we consider a circle of radiusR = 6.0 m. The material properties are
G = 1.0× 106 Pa,ν = 0.25, E = 2(1− ν)G, β = 0.05 andρ = 100.0 kg/m3.

In the first case, the circle is subject to boundary displacements matching the displacements
of the radial Trefftz functionŝuS andûP , for a source located at the rightmost point of the circle
and for four different values of the angular frequencyω. The purpose of this example is to
verify that the BKM approach proposed in (Canelas and Sensale, 2010) is capable to represent
accurately each of the functions of the expansion of Eq. (25), at least for the case of a circle
domain (the converse is obviously true in view of the equality û = ûS + ûP ).

Figures2-3 show the displacements along the horizontal diameter of thecircle obtained by
the BKM-O compared with the exact solution̂uS. Figures4-5 show the same for the exact
solutionûP . Figures2- 5 show that the expansion of the BKM-O can represent the functions
ûS and ûP for this circle domain problem. Using a mesh of 16 nodes, the BKM-O obtained
accurate results for the three lowest frequencies tested, and using a mesh of 32 nodes it obtained
accurate results even for the highest frequency.

In the second case, a uniform radial displacement of the boundary of valueU = 1.0 m is
considered. The frequency response modulus at a point on theboundary is given in Fig.6.
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Figure 2: Horizontal displacements along the horizontal diameter of the circle obtained by the BKM-O compared
with the exact solution corresponding to the first column ofûS . Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.
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Figure 3: Vertical displacements along the horizontal diameter of the circle obtained by the BKM-O compared
with the exact solution corresponding to the second column of ûS . Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.
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Figure 4: Horizontal displacements along the horizontal diameter of the circle obtained by the BKM-O compared
with the exact solution corresponding to the first column ofûP . Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.
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Figure 5: Vertical displacements along the horizontal diameter of the circle obtained by the BKM-O compared
with the exact solution corresponding to the second column of ûP . Circles: Mesh of 16 nodes. Stars: Mesh of 32
nodes. Solid line: exact solution.
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Figure 6: Circle example - Frequency response modulus. Sol:Exact solution, BKM-N1: results of the BKM-N for
a mesh of 16 collocation nodes, BKM-N2: results of the BKM-N for a mesh of 32 collocation nodes, BKM-O1:
results of the BKM-O for a mesh of 16 collocation nodes, BKM-O2: results of the BKM-O for a mesh of 32
collocation nodes.

Figure7 shows the condition number of the linear systems. The figuresshow that the BKM-N
and the BKM-O obtain results of similar accuracy. For a mesh of16 nodes both method obtain
accurate results for frequencies below that of the second peak of the frequency response. For
a mesh of 32 nodes, both methods obtain accurate results eventill the fourth peak. Figure7
shows that the linear systems built by the BKM-O are better conditioned that the systems built
by the BKM-N.

5.2 Square

The domain of this example consists of a square of sideL = 6.0 m with mixed boundary
conditions: on the bottom side the vertical component of thedisplacement and the horizontal
component of the traction are zero, on the lateral sides the horizontal component of the dis-
placement and the vertical component of the traction are assumed zero, and in the top side there
is a uniform normal traction of valueP = 100.0 Pa. The same material properties as in the
Example5.1 are considered. The closer sources to the corners are located at a distance of one
fourth of the mean distance between subsequent sources. Thefrequency response modulus at
the middle point of the top side and the condition number of the linear systems are shown in
Figs.8 and9, respectively.

As in the previous example, the BKM-N and the BKM-O obtain results of similar accuracy.
For a mesh of 16 nodes both method obtain accurate results forfrequencies below that of the
third peak of the frequency response. For a mesh of 32 nodes, both methods obtain accurate
results for the entire range of tested frequencies. Figure9 shows that, as in the example above,
the linear systems built by the BKM-O are better conditioned that the systems built by the
BKM-N.
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Figure 7: Circle example - Condition number of the linear system. BKM-N1: mesh of 16 collocation nodes, BKM-
N2: mesh of 32 collocation nodes. BKM-O1: mesh of 16 collocation nodes, BKM-O2: mesh of 32 collocation
nodes.
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Figure 8: Square example - Frequency response modulus. Sol:Exact solution, BKM-N1: results of the BKM-N
for a mesh of 16 collocation nodes, BKM-N2: results of the BKM-N for a mesh of 32 collocation nodes, BKM-
O1: results of the BKM-O for a mesh of 16 collocation nodes, BKM-O2: results of the BKM-O for a mesh of 32
collocation nodes.
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Figure 9: Square example - Condition number of the linear system. BKM-1: mesh of 12 nodes, BKM-2: mesh of
20 nodes.

6 CONCLUSIONS

A new radial Trefftz function for the BKM representation of the solution was obtained by
means of the Cauchy-Kovalevski-Somigliana solution of the displacements. The new basis can
represent exactly any solution obtained by the BKM using the old basis. In addition, assuming
that the scalar BKM can represent any solution of the scalar Helmholtz problem, the new basis
should be able to represent any solution of the viscoelasticity problem for the same domain.

Some examples were considered to compare the performance ofthe BKM using the old
an the new set of radial Trefftz functions. For the circle domain problem, it was observed
that the old basis could represent the elements of the new basis, so validating the approach
presented in (Canelas and Sensale, 2010). The new basis has the extra difficulty of setting more
collocation points than source points. In addition, it was observed that the new basis leads
to worse conditioned linear systems. Thus, for practical applications the basis presented in
(Canelas and Sensale, 2010) is recommended.
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A EXACT SOLUTIONS

The exact solutions for the circle and square problems are presented in Table1. The scalar
constantu0 must be obtained according to the boundary conditions.

For the circle problem and for an imposed radial displacement of valueU :

u0 = U/J1(ξ) , with: (30)

ξ = kPR . (31)
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For an imposed radial traction of valueP :

u0 = γ2Pξ2/[ρω2R(γ2ξJ0(ξ)− J1(ξ))], with: (32)

γ = c̄P/(
√
2c̄S) , (33)

ξ = kPR . (34)

For the square problem and for an imposed vertical displacement of valueU on the top face:

u0 = U/ sin(ξ), with: (35)

ξ = kPL . (36)

For an imposed vertical traction of valueP :

u0 = Pξ/(ρω2L cos(ξ)) . (37)

The analysis of the exact solutions provides the natural frequencies of the modes excited by the
loads considered. They are given in terms of the dimensionless parameterξ in Tables2 and3.

Example Solution

Circle u0J1(kP r)er
Square u0 sin(kPy)ey

Table 1: Exact solution.

Example Natural frequencies(a)

Circle Dirichlet ω = c̄P ξ/R, J1(ξ) = 0
Circle Neumann ω = c̄P ξ/R, γ2ξJ0(ξ)− J1(ξ) = 0
Square Dirichlet ω = c̄P ξ/L, sin(ξ) = 0
Square Neumann ω = c̄P ξ/L, cos(ξ) = 0

(a) Consider the positive solutions of the equations.

Table 2: Natural frequencies.

Example ξ1 ξ2 ξ3

Circle Dirichlet 3.8317 7.0156 10.173
Circle Neumanna 2.0694 5.3957 8.5758
Square Dirichlet π 2π 3π
Square Neumann π/2 3π/2 5π/2

(a) Forγ ∼= 1.2247.

Table 3: First three natural frequencies.
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