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Abstract. The sound has been extensively used in active and passive detection of ships and 
submarines, seismic studies, communications and acoustic tomography. The high sensitivity to the 
propagation of acoustic signals with frequencies between 1 Hz and 20 kHz is one of the most 
important properties of the oceans and unlike all types of electromagnetic radiation, can gather a 
significant amount of information on large-and small-scale marine. The main objective of the 
underwater acoustic models is to simulate the propagation of acoustic wave, for a wide variety of 
cases, thus providing the most important features of this phenomenon. When it comes to the 
environment of "shallow water", which limits some models, the acoustic propagation becomes 
extremely complex due to several mechanisms to mitigate present and the intense interaction of the 
acoustic signal at the top and bottom. This paper aims to present a model of acoustic propagation in 
shallow water, and the simulation using a Toolbox from MatLab software of a particular case of 
propagation. 
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1 INTRODUCTION 

The ocean acoustics is the science of sound in the sea and covers not only the study of 
sound propagation, but also its masking by the phenomena of acoustic interference (Maia, 
2010). 

One of the most important properties of the oceans lies in their high sensitivity to the 
propagation of acoustic signals with frequencies in the range of 1Hz to 20kHz that, different 
types of electromagnetic radiation, bring together a significant amount of information on the 
marine environment (Rodríguez, 1995). Another reason for the practical interest in acoustic 
propagation in the ocean is the distance the sound can spread, reaching several hundred 
kilometers. 

Some properties of the seabed, such as the propagation speed and compressional 
attenuation, density, among others, contribute to the spread in shallow waters significantly, 
making it interesting to perform a quantitative estimation of their values. 

The underwater acoustic models are designed to simulate critical in a variety of cases, the 
acoustic wave propagation, thus enabling the prediction of the characteristics of this 
phenomenon. A number of limitations are inherent in these models and may have to do with 
the description the medium in question (depth variation, means of two or three dimensions, 
etc.). As to the description of the dispersion, which can be caused by various reasons (surface 
irregularities, presence of substances derived from natural or artificial, and so on). 

2 THEORY OF WAVE PROPAGATION 

2.1 The Wave Equation 

The wave equation can be deduced from the principles of the mechanics of using the state 
equations of continuity and motion (Kinsler, et al., 1982). For fluid media, the equation of 
state relates physical quantities that describe the thermodynamic behavior of the fluid  

( )
0

0
0 ρ

ρρβ −
=− PP  (1) 

where  P  is the instantaneous pressure at a point,  0P is the equilibrium pressure in the fluid, 

β  is the adiabatic modulus (coefficient of thermal expansion of fluid), ρ  is the density 

instantaneously at one point and  0ρ  is the density of the fluid balance. 

In terms of sound pressure p and condensation s, the Eq. (1) can be expressed as 

sp  β≈  (2) 

where  0PPp −= is the sound pressure and 
0

0

ρ
ρρ −

=s  is a condensation point. 

The restriction is essential for the condensation s must be very small, 1<<s  (Kinsler, et 

al., 1982). 
To relate the motion of fluid with its compression or expansion, we need a function that 

relates the velocity u
r

of the fluid particle with its instantaneous density ρ . 
It is considered an infinitesimal element of fluid volume, fixed in space. The continuity 

equation relates the growth rate of mass in that volume element with the mass flow through 
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the closed surface surrounding that volume. Since the flow must be equal to the rate of 
growth, we obtain the continuity equation. 

0=∇+
∂
∂

u
t

s r

 
(3) 

The equation of motion relates the acoustic pressure p with the velocity u
r

 instantaneous 
particle, for a viscous fluid and not adiabatic, ie the effects of viscosity of a fluid despised. 
That way lies the Euler equation (force equation) for small-amplitude acoustic phenomena.  
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From the above equations, rearranging the terms gives the linear wave equation:  
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This equation is the starting point for developing the physical theory of sound propagation 
from the implementation of methods with which the sound pressure is calculated if the initial 
distribution thereof, in the middle is set and if conditions are imposed contour, determined by 
the geometry of the environment (surface and bottom of the sea and obstacles). The initial 
conditions are essential in all problems, refer to specific disorders that cause the soud 
propagation. 

2.2 Harmonics Waves  

Wave whose time variation is harmonic function (sine, cosine or linear combinations) are 
produced by many sound sources. Thus, the solution of Eq. (5) can be represented as follows: 

,tiPep ω=
 

(6) 

where ω  is the angular frequency of the source.  
Substituting this expression in (5), we obtain: 
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Replacing ω2/c2  for K2 , K  being the wave number, and simplifying this equation, we 
obtain the Helmholtz equation, or of the acoustic wave equation in frequency domain: 
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For convenience, in order to keep the same symbols used until now, this equation is written 
as: 
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2.3 Physical and Chemical Properties 

The underwater acoustics is influenced by physical and chemical properties of the ocean, 
primarily by temperature, salinity and density. 

The greatness that is more important, with respect to the propagation of sound at sea is the 
temperature, which influences the density field and their stratification in the distribution of 
nutrients and biological mass. 

The salinity expresses the amount of dissolved salts in the water, affecting the 
compressibility and hence the propagation speed of sound, refractive index, freezing point and 
the temperature of maximum density. 

The density of sea water is responsible for the hydrostatic stability of the oceans. It is 
important to study the dynamics of the oceans, as small horizontal variations can produce very 
strong currents. 

Related to this property is the compressibility, which expresses the changes in volume, 
depending on the variations of pressure. Through it, determine accurately the density and the 
propagation speed of sound, which is given by the following equation (Etter, 2002): 

µρ
τ=c

 
(10) 

where c is the speed of sound, µ is the coefficient of compressibility, τ the specific heat of 
water and the density ρ. 

2.4 Speed of sound 

The main quantity considered in sound propagation is the speed of sound, depending on the 
compressibility and density of the medium. Therefore, it varies at each point of the ocean, 
every instant of time, because the dynamics of the marine environment. It is obtained by 
empirical models that describe a function of the parameters of temperature, salinity and 
pressure (depth). The stratification of these parameters leads to stratification of speed, which 
entails the existence of typical profiles. One of the formulations applied in science is 
developed by (Mackenzie, 1981): 
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(11) 

where c is the speed of sound (m/s), T temperature (°C), salinity S (psu) and D the depth (m). 
According to expression (11), we observe that the speed of sound increases with the 

increase of any of the three parameters, and temperature, the determining factor. Because the 
operation of sonar equipment to give, usually in "shallow water", the effect of pressure 
variation is very small. As for salinity, due to variations in the open ocean are small, the 
influence of this parameter is also small, except for areas near river mouths, where the salinity 
becomes a factor. 

The distribution of velocity profiles varies from ocean to ocean and for different seasons. 
Basically, a sound speed profile (Figure 1-b) is extremely dependent on temperature profile 
(Figure 1-a), which can be divided into three arbitrary tiers, each with distinct characteristics. 

Just below the surface lies the mixed layer, approximately isothermal region, where the 
speed is influenced by variations in surface heating and sea by the wind and the base is called 
the depth of the mixed layer. As this layer is characterized by a temperature profile 
approximately constant, the velocity increases with depth due to increased pressure. The 
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second layer is called the main thermocline. In this region the temperature decreases rapidly 
with depth, causing a strong negative gradient. Finally, below the thermocline and extending 
to the bottom, lies the deep layer, characterized by the constancy of temperature and increase 
the speed of sound due to the increase of pressure. In this layer, the velocity profile is nearly 
linear with a positive slope. 

 
Figure 1 (a e b) – Relationship between the profiles of temperature and speed of sound for deep water. 

2.5 The Surface and the Deep Blue Sea 

The surface of the sea, in addition to being reflective, it is also spread from one interface 
sound, because as the surface roughness (specified in terms of wave height) is increasing with 
the wind, the reverberation and reflection losses, the attenuation bubbles and the turbulence 
and the generation of high-frequency noise due to sea conditions begin to influence the 
acoustic propagation (Etter, 2002). 

If the ripples on the surface are very small, this interface is flat and behave as a free surface 
(pressure release), responding as an ideal or perfect reflector (Xavier, 2005). 

Similarly to the surface, the interaction of sound with the background affects the 
propagation and reverberation due to losses in reflection, the attenuation due to the porosity of 
the sediment and the generation of low frequency noise due to seismic activity. 

These effects, however, are more complicated to be calculated due to varying composition 
and laminated to the bottom, which ranges from hard rock to soft mud. They are also included 
abrupt changes in density and speed of sound (Etter, 2002). 

The bottom topography can also be very variable and rugged, which in certain cases, blocks 
the sound propagation, causing the appearance of shadow areas. In general, the higher the 
frequency, greater sensitivity to the roughness of the signal. 

The modeling of the interaction of sound with the background depends on the availability 
of techniques to estimate the geoacoustic profile, which can be characterized by the effective 
depth of penetration of sound and its speed, density and the coefficients of compressional and 
shear attenuation for each of these layers. These geophysical parameters can be obtained 
precisely by means of inversion techniques based on the propagation losses obtained by 
acoustic propagation models (Etter, 2002). 

In practice, due to high costs of experimental tests and lack of environmental data acquired 
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in a controlled manner, proceeds to the calibration of numerical models, which consists of 
estimated values of the parameters of the fund by comparing the signal intensity measured at 
direct path and the result obtained computationally through the numerical model. 

3 SHALLOW WATER 

The ocean environment limited by the surface and lower the seabed is known by the term 
"shallow". An important feature of this configuration is to allow the trapping of sound energy 
between these two interfaces and also enables the propagation of sound over long distances. 

The existing criteria for defining the regions of "shallow" is based not only on the 
properties of sound propagation in the medium, but mainly in the frequency of the sound 
source and the interactions of sound with the background, resulting in a ratio linking the 
wavelength with the dimensions of the waveguide. 

Second (Katsnelson, 2002) under the acoustic point of view, a region can be classified as 
being shallow if the ratio below is met: 

,
2

2

λ
H

r >>
 

(12) 

where r is the distance between the source and receiver, H the depth of the channel and λ the 
wavelength. If the relation (12) is not met, the region is said to be "deep water". 

This relationship comes from comparing the number of modes present in an ideal 

waveguide, which is given by  
λ
H

M
2≈ , provided by the Theory of Normal Modes and the 

maximum number of rays to the same channel  
H

r
M

2
'= , given by the Theory of Rays. If the 

relation (12) is confirmed, the number of rays exceeds the number of modes and the energy 
associated with each mode exceeds the energy of each beam. This condition occurs in regions 
of shallow waters of the ocean to sound signals with frequencies lower than 500Hz. 

Moreover, according to the hypsometric criterion (Etter 2002), related to the depths, we 
define "shallow" as the waters of the continental shelf. Due to the depth of the platform along 
the slope, to be approximately 200m, the regions of "shallow" are defined as having depths 
less than 200m. 

Moreover, ocean areas beyond the continental shelf can be considered "shallow" when the 
propagation of a signal with very low frequencies is given by numerous interactions with the 
surface of the signal and background. 

In practical terms, for a given frequency, are considered "shallow" regions in which the 
boundaries and reflective paver great influence on the propagation and the energy is 
distributed in the form of a cylindrical divergence, getting trapped between the surface and 
bottom. It is valid the relation: r > 10H. 

3.1 Sound Propagation in Shallow Water 

The main characteristic of sound propagation in "shallow" is the profile setting the speed of 
sound, which usually has a negative gradient or approximately constant along the depth. This 
means that the spread over long distances due almost exclusively to the interactions of sound 
with the bottom and surface. 

Because each reflection at the bottom there is a large attenuation, spread over long 
distances is associated with large losses of acoustic energy (Etter, 2002). 

The emission frequency of the source is also an important parameter. As in most regions of 
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the ocean bottom is made of acoustic energy absorbing material, this will become more 
transparent to the energy in waves of low frequencies, which reduces the energy trapped in the 
waveguide. Thus, the lower the frequency, greater penetration of sound in the background and 
therefore, the greater the dependence of propagation in relation to the geoacoustics 
parameters. At high frequencies (> 1kHz), sensitivity to the roughness of the interfaces and 
the marine life is greater, resulting in a greater spread, a lower penetration of the bottom and a 
larger volume attenuation (Xavier, 2005). 

So, spread over long distances occurs in the range of intermediate frequencies (100 Hz to 
about 1 kHz) and is strongly dependent on the depth and the mechanisms of attenuation. 
Figure 2 shows the attenuation of sound absorption in seawater as a function of frequency. 
According to (Etter, 2002), the dependence with frequency can be categorized into four major 
regions, in increasing order of frequency: absorption in the background, the boric acid 
relaxation, relaxation of magnesium sulfate and viscosity.  

 
Figure 2 – Absorption Coefficients for sea water (Etter, 2002). 

4 ACOUSTICS MODELS  

The development of modeling techniques in underwater acoustics began in the 40s as a 
way to achieve the improvement of sonar systems and their evaluations, during the Second 
World War, in support of naval operations. 

According to (Etter, 2002), an acoustic model is called physical or analytical when it 
represents the theoretical conceptualization of the physical phenomena that occur in the ocean. 
The mathematical models include both empirical models, those based on experimental 
observations, the numerical models, those built from the mathematical representation of 
physical ruler. It also defines a third type, called the reduced models (analog models), defined 
as controlled trials acoustic test tank with the use of appropriate scale factors. 

The acoustic models can be classified into three broad categories: Environmental Models, 
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Acoustic Models Core, Sonar Performance Models. This paper focuses on case study of a 
Basic Acoustic Model: The Method of Normal Modes. 

4.1 The Method of Normal Modes  

The study of the Normal Modes Method begins by applying the concept of vibrations in an 
idealized ocean model, where the medium is homogeneous, bounded above by a surface free 
(pressure release) and below by a perfectly flat disk, where the reflections are specular, the 
propagation speed of sound is constant and sound waves are considered flat. Figure 3.2 shows 
an excerpt of this model and the propagation of only one pulse of sound. In it, the red wave 
front, high pressure, it focuses on the free surface, reflects and reverses the phase, returning as 
a front of low pressure (green line) on the environment. The reflectance at the surface is then   
-1. At the bottom hard, because this resist compression, the wavefront incident reflects 
without reversing the phase, if the wave front cover as high pressure, as it reflects a high 
pressure front. The reflectance of this interface is 1. The direction of propagation defined by 
the sound beam is normal to the wavefront and the apparent horizontal velocity is given by c 
sinθ, c being the speed of sound propagation and the incidence angle θ, measured between the 
normal to the interfaces and the radius sound 

 
Figure 3 – Reflection of plane waves in an ideal waveguide 

The pressure field is confined between the free surface and rigid bottom and its 
establishment is the depth of the channel conditions allow for adequate reflection of the rays 
with incident angles items related to the frequency of the excitation source. Figure 4 presents 
four waveguides with different depths, which satisfy the conditions for confinement in 
discrete ways. All other parameters such as speed of sound, the frequency of the source, the 
density of water and the surface characteristics and background are constant and equal for all 
channels. Highlights are shown variations of the amplitude of sinusoidal pressure with depth. 
The nodal points, pressure points are located in the zero crossing of the pressure curve with 
the axis of depth (z) and antinodes correspond to those points where pressure is high or low. 

 
Figure 4 – Trapping modes for waveguides of variable depth, excited by a harmonic source. The graphs show the 

highlighted horizontal pressures due to depth (Xavier, 2005). 
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Each normal mode of vibration is formed only for a given frequency at a particular angle of 
incidence. For the analysis of Figure 5 can be seen that the angle of incidence, θ, is given by   
θ = arccos (λ/4h) for the first mode and 

,...3,2,1,
2

1

2
arccos =















 −= mm
hm

λθ
 

(13) 

for other modes. 

 
Figure 5 – Geometry to obtain the relationship between the incidence angleθ, the. Wavelength λ and depth h for 

the mode number (Xavier, 2005). 

It is important to note that due to the orientation of wave fronts in relation to the borders of 
the channel, the speed of propagation of the interference pattern of pressure for each mode, 
known as group velocity (apparent) will be given by the expression: 

,mm sincu θ=  
(14) 

known as dispersion relation, where c is the speed of sound propagation or phase velocity. 
If θm tend to 90º, the wave fronts will have a virtually vertical alignment and be propagated 

to the next phase velocity, c. This only happens when the frequency of excitation is very high. 
On the other hand, if the excitation frequency drop dramatically, so that the depth of the 
channel is approximately λ/4, θm tend to 0° and the wave fronts will have an alignment almost 
horizontally forming standing waves that are reflected continuously in the background and 
surface. The group velocity in this case is void. This frequency is known as the cutoff 
frequency for the nth mode, because for a frequency below it, the mode ceases to exist. For 
frequencies above the cutoff frequency, the propagation occurs for a specific angle of 
incidence (θm) and their respective group velocity, (um). 

How many ways are spreading, each with its group velocity, the pressure field will consist 
of the superposition of the sound pressure due to each mode. It is worth mentioning that the 
source depth also plays an important role in establishing the magnitude of the pressure field 
and even in existence in certain ways, because if the source is positioned at a nodal point, the 
way they have this point will not exist. To obtain an excitation maximum for a particular 
mode, the source must be placed in one of the antinodes. The dispersive character of the 
spread can be determined experimentally by analysis of the sound produced by an explosive 
source, which contains a very broad spectral band (20 Hz to 2 kHz). In the vicinity of the 
detonation, the sound heard is quite serious. In regions distant from the sound you hear is a 
sine pulse duration of about 1s, initially acute, with a frequency of 2 kHz and serious at the 
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end, often a few hundred Hz This is because at high frequencies, the group velocities of the 
modes are grouped near the phase velocity, while the low frequencies sustain fewer c modes 
and group velocities for c decrease. Thus, the high frequency components will arrive before 
the low frequency components. 

4.2 Mathematical model for a True Channel 

In the theoretical model of Pekeris, representing features often found in nature, composed 
of sedimentary layers laminated, roughly parallel, the interfaces are considered flat and 
parallel and act as a reflection horizons. 

4.3 Characteristic Equation in Stratified Media 

Initially, it presents the characteristic equation for a generic stratified media for later 
presentation of the characteristic equation applied to the theoretical model of Pekeris. 

Represents a stratified media is so generic, for a physical model consisting of a 
homogeneous fluid layer, bounded above by a horizontally stratified medium with a 
coefficient of reflection sℜ  and bounded below by a half, also horizontally stratified, with the 
coefficient reflection fℜ , as shown in Figure 6. 

 
 

Figure 6 – Stratified generic media  

Knowing that the solution of wave equation consists of the product of two factors, one 
dependent only on the depth and horizontal distance from the other, the first factor can be 
described as resulting from the interference of two plane waves, one propagating upward and 
the other down according to the equation below: 

zizi BeAezS γγ −+=)( , 
(15) 

where A and B are constants to be determined by boundary conditions and initial. 
Umpiring is the positive direction of z axis down, the first term of the right corresponds to 

a wave propagating upward and the second term a wave propagating down. 
As the reflection coefficient at the surface sℜ  is defined as the ratio between the incident and 
reflected waves on the surface (z = 0), it is expressed by: 
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Similarly, at the bottom (z = h), fℜ is given by: 
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Relating Eq. (16) and (17) gives: 
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In the case of an ideal channel, we have that 1−=ℜs  and 1=ℜ f . Substituting these values 

in Eq. (18) arrives in the expression: 

01 2 =+ hie γ
. (19) 

Transforming the exponential in its trigonometric form, Eq. (19) becomes: 

1)2()2cos( −=−+− hisinh γγ . (20) 

By the equality of complex numbers, we have that: 

 0)2(and1)2cos( =−−=− hisinh γγ . (21) 

From Eq. (21) gives: 
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πγ . (22) 

4.4  Pekeris’ Model  

Once defined the characteristic equation for general stratified media, the same applies to 
the physical model of Pekeris, composed of a homogeneous liquid overlying an 
unconsolidated sediment layer (absorber) and stratified, with flat and parallel interfaces. 
Knowledge of the solution to this model, illustrated in Figure 7, is the basis for modeling 
more complex environments.  

 
Figure 7 – Physical Model of Pekeris 

In this model, the final equation for the pressure field is then given by the following 
equation (Xavier, 2005): 
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where m is the total number of modes, k is the horizontal wave number, Sm are the eigen 
functions, qm is the rate of excitation modes and δm is the term attenuation estimated by 
calibration with experimental data.  

5 NUMERICAL SIMULATION AND RESULTS 

The propagation model based on the theory of normal mode functions used in this work 
was the KRAKEN program, which is part of the Toolbox AcTUP v2.2 lα - Acoustic Toolbox  
User-interface & Post-processor to Matlab R2006a – Mathworks, from Centre for Marine 
Science & Technology, University of Technology Curtin, in Australia, developed by Michael 
B. Porter (Maggi, 2006). In this Toolbox, the computational techniques are divided into 
various methods of acoustic propagation. Among these methods can be highlighted: 
BOUNCE & BELLHOP, KRAKEN, RAM, RAMGEO. 

The program calculates the Transmission Loss (TL) due to discrete modes, those that 
propagate only by undergoing total reflection. 

The ocean is modeled as taking a fluid layer, with a sound velocity profile on an arbitrary 
infinite half-plane uniform. In this simulation, we have Waveguides with Flat Bottom and 
Parallel and two propagation modes. 

This model consists of a layer of water 23 feet deep, with constant velocity, superimposed 
on an infinite half-plane sedimentary also considered fluid, with speed of propagation of 
sound and density constant. The emitting source is punctual and continuous unitary amplitude. 

The model has the following characteristics: 
- Layer net: c1=1508 m/s, ρ1= 1033g/m3 and width = 23 m; 
- Sedimentary layer: c2=1689 m/s, ρ2=2066g/m3; 
- Source: 147.8 Hz, located 10 m from the surface; 
- Receiver: positioned 20 m at the surface; 

The following figure shows the transmission loss as a function of horizontal distance from 
the model described above. This first simulation was performed using the program KRAKEN. 

 
Figure 8 – TL curves for distance, obtained by the KRAKEN model. 

Other tests were performed using the other programs in the package ACTUP. They use the 
method of parabolic equations (PE), from the development of the Padé approximation, whose 
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accuracy increases with the number of terms in the series. The next figures show the results 
obtained with the BELLHOP method, simulated in this work, and the results obtained by 
(Xavier, 2005) using the RAM method. 

 
Figure 9 – TL curves for distance, obtained by the BELHOP model. 

 
Figure 10 – TL curves for distance, obtained by the RAM model for (Xavier, 2005). 

The results obtained with the KRAKEN and BELLHOP methods are very close and follow 
a pattern of transmission loss in accordance with the horizontal distance. The KRAKEN 
method uses the method of normal modes, while the BELLHOP method uses the boundary 
element method to obtain the transmission loss. Despite different methods, the results follow a 
similar pattern. The RAM method, used in (Xavier, 2005), is based on the approximation of 
parabolic equations (PE) and uses the approach by the terms of the Padé series. For this 
method the scale of the figure was increased to evaluate the behavior of transmission loss up 
to a distance of 4 km. It is observed that the findings of this study are close to those results 
obtained in the literature.  

6 CONCLUSIONS 

This paper presented a review on the modeling of acoustic propagation in shallow water, 
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using the Normal Mode Method, applied to the model Pekeris. Besides this method, we used 
the method based on Boundary Elements and the results were compared with those obtained 
by the literature. 

It appears that the results of transmission loss increases with the horizontal distance of 
propagation. There was analyzed the transmission loss with depth in this work. 

The simulation results are very close to the results obtained by (Xavier, 2005) and and with 
that, we have that the methods are valid and can be applied to other cases. 

From these results, we can expand the application of the methods to other problems such as 
underwater acoustic propagation, sloping bottom, three layers, among others. 

All methods used in this study are suitable for seawater. As future work, we propose the 
modification of parameters in these methods so that they can be used for simulation of 
acoustic propagation in rivers. This is the subject of my doctoral program, which is being 
developed at the (Universidade Federal de Minas Gerais). 
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