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Abstract. In a word, no. In this article we show evidence that three platforms frequently used for
solving Engineering problems have numerical pitfalls. These platforms are Octave, Scilab and Matlab,
running on i386 architecture and three operating systems (Windows, Ubuntu and Mac OS). They were
submitted to two comprehensive tests, namely the data sets and functions provided by NIST (National
Institute of Standards and Technology), and our proposal of a set of matrices and operations on them.
NIST protocol includes the computation of basic univariate statistics (mean, standard deviation and first-
lag correlation), linear regression, and extremes of probability distributions. Our set of operations include
matrix inversion and the computation of the determinant and eigenvalues. The assessment is made com-
paring the results computed by the platforms, and assessing the number of correct digits with respect to
certified values. Serious pitfalls are identified in seemingly easy tasks as, for instance, the first-lag auto-
correlation coefficient. Whenever available, the results are compared with those provided by R, a FLOSS
(Free/Libre Open Source Software), whose excellent numerical abilities have been reported elsewhere.
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1 INTRODUCTION

Numerical computation of both continuous and discrete mathematical problems is at the core
of all scientific and technological activities. At the heart of this approach to solving problems
lies the search for practical approximate solutions within reasonable bounds on errors.

Numerical computing had a dramatic growth with the emergences of libraries as, for in-
stance, IMSL and NAg. Such libraries provide high quality, tested routines for numerical anal-
ysis, allowing researchers to focus on the application rather than on the tool. The rationale for
the existence of such libraries is that certain low level problems are common to many scientific
disciplines as, for instance, computing basic statistics, matrix operations, zeros of polynomials
and integration.

The success of those libraries led to the development of numerical platforms, with languages
of their own that simplified the development of prototypes. These platforms frequently replace
the direct use of C or Fortran numerical libraries.

Little attention has been drawn to systematic testing of such platforms in the diversity of
hardware and operating systems they are offered. Examples of such assessments, but limited
to spreadsheets, have been conducted leading to a vast literature. Most of these studies follow
the same methodology: constasting results with the certified values provided by benchmarks.
Among the last, the datasets provided by the National Institute of Standards and Technology
are widely employed. We use some of those datasets, and propose tests that employ operations
on matrices.

Three numerical platforms were tested here: Octave 3.2.3, Scilab 5.2.2 and Matlab 7.9.0.529
(R2009b). Whenever available, they were checked in three operating systems: Windows XP
Professional SP 2, Linux Ubuntu 10.4 and Mac OS X Leopard 10.5.6. In all cases, i386 archi-
tecture hardware was employed, and double precision computation was enforced.

The paper unfolds as follows. Section 2 discusses briefly how accuracy is measured in the
remainder of the work. Section 3 presents the results obtained assessing basic statistics (Sec-
tion 3.1), probability distribution functions (Section 3.2), linear regression (Section 3.3) and
operations on matrices (Section 3.4). Section 4 concludes the paper.

2 MEASURING ACCURACY

Three sources of numerical errors can be introduced in the solution of a problem, namely
(i) round-off, (ii) truncation and discretization, and (iii) numerical instability.

The availability to implementation details is limited in most commercial software and, even
if the algorithms were available, other factors have impact on the sofware accuracy (imple-
mentation details, hardware, compiler, operational system etc.). Due to such limitations, we
followed the strategy adopted by many authors (c.f. Knüsel, 2005; Kruck, 2006; McCullough
and Heiser, 2008, for instance), which consists of adopting a user viewpoint: datasets with
known properties are used as input, and the results provided by the software under assessment
is contrasted with that known to be correct.

Two measures of accuracy will be employed. The first is the base-10 logarithm of the abso-
lute value of the relative error:

LRE(x, c) =

{
− log10

|x−c|
|c| if c 6= 0,

− log10 |x| otherwise,
(1)

where x is the value computed by the software and c is the certified value. LRE (Log-Relative
Error) relates to the number of significant digits that were correctly computed. We will adopt the
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convention of reporting one decimal place whenever LRE(x, c) ≥ 1, zero if 0 ≤ LRE(x, c) < 1
and “–” otherwise; there is no worse situation than “–”. An exact match is reported as ‘Inf’,
and ‘NA’ denotes that the platform returned an error (segmentation fault or similar). The LRE
is computed R (http://www.r-project.org/), whose excellent numerical properties were checked
by Almiron et al. (2009).

The second measure of accuracy will be employed in Section 3.4, where it is known that
certain values are equal to zero. In such cases, the result of the logical comparison of the
computed value and zero in the platform under assessment is the measure of accuracy. The
rationale behind this choice is that the interest in such cases is not the value itself, but when it
is zero it indicates situations of interest.

In all cases double precision was employed.

3 RESULTS

3.1 Basic Statistics

Almiron et al. (2010) showed that simple descriptive statistics pose difficulties for widely
used spreadsheets. The authors considered the sample mean, the sample standard deviation
and the sample first lag correlation computed on nine datasets from the Statistical Reference
Datasets from the (American) National Institute of Standards and Technology (NIST). These
datasets are classified in three levels of numerical difficulty: low, average and high. The certi-
fied values were calculated using multiple precision arithmetic to obtain 500 digits answers.

The datasets with low difficulty are Lew, Lottery, Mavro, Michelso, NumAcc1 and
PiDigits. NumAcc2 and NumAcc3 are average difficulty datasets and NumAcc4 is the only
high difficulty dataset for univariate summary statistics.

The mean is produced in all platforms by the commands mean. The standard deviation
in Octave and MatLab is computed with the command std, whereas the SciLab command
is st_deviation. Only SciLab provides a native function for computing the correlation,
namely correl; in the other two platforms it has to be computed. For the sake of compatibility
of the results, the command Correl(v(1:n-1), v(2:n)) in Octave and the command
corr(v(1:n-1), v(2:n)) in Matlab are used to compute the the first lag correlation of
the vector v of size n ≥ 2, respectively. Note that the use of spectral methods is precluded in
this case.

Table 1 presents the accuracy of the three programming ambients under assessment running
(whenever available) under Windows (‘Win’), Linux (‘Lin’) and Mac OS (‘Mac’).

3.2 Statistical Functions

Statistical functions play a central role in data analysis procedures. Many of them employ
special functions and integration algorithms.

One of the most complete numerical assessments of such procedures was performed by Yalta
(2008), but limited to Microsoft’s Excel c©. In the following, we present the numerical accuracy
of the routines provided by Octave, SciLab and MatLab in those cases that were identified as
problematic in that work. Those results obtained with the Mathematica 5.2 software by Yalta
(2008), which are certified to be accurate to six significant digits for all the distribution functions
here assessed.

The distributions herein assessed are the binomial (Table 2), Poisson (Tables 3 and 4), gamma
(Table 5), normal (Table 6), χ2 (Table 7), beta (Table 8), t-Student (Table 9) and F (Table 10).

Scilab provides the commands cdfbin, cdfpoi, cdfgam, cdfnor, cdfbet, cdft and
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cdff to compute the binomial, Poisson, gamma, normal, beta, t-Student and F , respectively.
Matlab and Octave use the same commands to compute all the distributions except for beta.
The commands are binocdf for binomial, poisscdf for Poisson, gamcdf for gamma,
norminv for normal, tinv for t-Student and finv for F . The beta distribution is computed
in Octave with the command beta_cdf and Matlab provides the command betainv.

The computed quantities are probabilities, cumulative distribution functions, and quantiles.

3.3 Linear Regression

The eleven datasets employed in this section span cases of low (Norris and Pontius),
average (Noint1 and Noint2) and high numerical difficulty (the other seven datasets). Each
dataset is used to perform a linear regression with a specified number of coefficients. Table 11
presents the smalles LRE of each regression coefficient, and the LRE of the residual standard
deviation (RSD) of each fit.

Octave does not provide an explicit function for performing linear regression. Rather than
that, linear regression is computed solving a least squares problem, and the data requires prior
preparation for that. Scilab provides the function reglin to obtain the β coefficients and RSD.

3.4 Decisions based on Matrices

The first assessment of matrix computing we propose is the simplest one: computing the
determinant of a 2× 2 matrix. Consider the matrix

M =

(
b bε
s/ε s

)
,

which cleary has null determinant |M | = 0. We force the numerical computation of the de-
terminant |̃M | with buint-in functions, ensuring that the intermediate values (bε) and (s/ε)
are evaluated. In order to check the accuracy of the platforms, the values herein assessed are
b = 10j and s = 10−j , with j ∈ 0, 1, . . . , 15, and ε = 0. 9 · · · 9︸ ︷︷ ︸

k times

, k ∈ {1, . . . , 15}.

Determinants were computed using the det command, which is common to all platforms.
Our assessment is based on the decision the user is led by the result, rather than on the result
itself. This is due to the fact that more often than not what users are interested upon is a decision,
and not a numerical value.

The number of correct results of comparing |̃M | with zero were 150 for Matlab, 6 for Octave
in Windows and Linux, 138 for Octave in Mac OS, 146 for SciLab in Windows and in Mac OS,
and 5 for SciLab in Linux.

Among the many other possible assessments of matrix computations, we chose to work with
spectral graph theory. This line of research within the field of graph theory deals with the
properties of the Laplacian matrix, a graph representation different from the usual adjacency
matrix. The Laplacian matrix is directly related to deep properties of the graph as, for instance,
connectivity (Bollobas, 1998).

The advantage using spectral graph analysis is twofold. Firstly, the matrices used for the
assessment are formed by values which are not prone to numerical problems, c.f., equations (2).
Secondly, the rule for defining these matrices is simple to implement. The second eigenvalue
of the Laplacian of a graph with n vertices is a relevant measures which is frequently computed
for large values of n.

Consider the non-directed finite graph without loops G = (V,E) defined by the set of ver-
tices V = {w1, w2, . . . , wn} and edges E. The degree of vertex wi, denoted deg(wi), is the
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Table 2: Accuracy computing binomial cumulative distribution functions, n = 1030 and p = 1/2

Pr(X ≤ k) Matlab Octave SciLab

k Certified Windows Win Lin Mac Win Lin Mac

1 8.96114E-308 3.0 0 0 0 Inf Inf Inf
2 4.61499E-305 2.7 0 0 0 6.0 6.0 6.0

100 1.39413E-169 1.0 0 0 0 5.5 5.5 5.5
300 2.91621E-42 0.4 0 0 0 6.4 6.4 6.4
400 3.89735E-13 0.2 0 3.9 3.9 6.2 6.2 6.2
410 3.19438E-11 0.2 6.2 6.2 6.2 5.8 5.8 5.8

Table 3: Accuracy computing Poisson probabilities, λ = 200

Pr(X = k) Matlab Octave SciLab

k Certified Windows Win Lin Mac Win Lin Mac

0 1.38390E-87 5.6 5.6 5.6 5.6 5.6 5.6 5.6
103 1.41720E-14 1.4 1.4 1.4 1.4 1.4 0 0
315 1.41948E-14 0 0 0 0 2.9 0 0
400 5.58069E-36 6.4 6.4 6.4 6.4 0 0 0
900 1.73230E-286 6.0 6.0 6.0 6.0 0 0 0

Table 4: Accuracy computing Poisson cumulative distribution functions, λ = 200

Pr(X ≤ k) Matlab Octave SciLab

k λ Certified Windows Win Lin Mac Win Lin Mac

1E+05 1E+05 0.500841 1.3 0 0 – 7.1 7.1 7.1
1E+07 1E+07 0.500084 7.1 0 0 – 6.7 6.7 6.7
1E+09 1E+09 0.500008 6.7 0 0 – 6.1 6.1 6.1

Table 5: Accuracy computing gamma cumulative distribution functions, β = 1

Pr(X ≤ x) Matlab Octave SciLab

x α Certified Windows Win Lin Mac Win Lin Mac

0.1 0.1 0.827552 6.5 6.5 6.5 6.5 6.5 6.5 6.5
0.2 0.1 0.879420 6.4 6.4 6.4 6.4 6.4 6.4 6.4
0.2 0.2 0.764435 6.3 6.3 6.3 6.3 6.3 6.3 6.3
0.4 0.3 0.776381 6.3 6.3 6.3 6.3 6.3 6.3 6.3
0.5 0.4 0.748019 6.2 6.2 6.2 6.2 6.2 6.2 6.2
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Table 6: Accuracy computing normal quantiles, µ = 0 and σ = 1

Matlab Octave SciLab

p Certified zp Windows Win Lin Mac Win Lin Mac

5E-1 0 Inf Inf Inf Inf 16.2 16.2 16.2
1E-198 -30.0529 6.3 Inf Inf Inf 6.3 6.3 6.3
1E-300 -37.0471 7.0 Inf Inf Inf 7.0 7.0 7.0

Table 7: Accuracy computing the χ2 distribution

Pr(X > x) = p Matlab Octave SciLab

p n Certified x Windows Win Lin Mac Win Lin Mac

2E-1 1 1.64237 5.6 5.6 5.6 5.6 5.6 5.6 5.6
1E-7 1 28.3740 6.4 6.4 6.4 6.4 6.4 6.4 6.4
1E-7 5 40.8630 6.3 6.3 6.3 6.3 6.3 6.3 6.3

1E-12 1 50.8441 6.7 7.1 7.1 7.1 6.3 6.3 6.3
0.48 778 779.312 6.2 4.3 6.2 6.2 6.2 6.2 6.2
0.52 782 779.353 6.3 6.3 6.3 6.3 6.3 6.3 6.3

Table 8: Accuracy computing beta quantiles, α = 5 and β = 2

Matlab Octave SciLab

p Certified Windows Win Lin Mac Win Lin Mac

1E-2 2.94314E-01 6.0 6.0 6.0 6.0 6.0 6.0 6.0
1E-3 1.81386E-01 6.1 6.1 6.1 6.1 6.1 6.1 6.1
1E-4 1.12969E-01 5.4 5.4 5.4 5.4 5.4 5.4 5.4
1E-5 7.07371E-02 6.2 6.2 6.2 6.2 6.2 6.2 6.2
1E-6 4.44270E-02 6.0 6.0 6.0 6.0 6.0 6.0 6.0
1E-7 2.79523E-02 5.9 5.9 5.9 5.9 5.9 5.9 5.9
1E-8 1.76057E-02 6.3 6.3 6.3 6.3 6.3 6.3 6.3
1E-9 1.10963E-02 5.5 5.5 5.5 5.5 5.5 5.5 5.5

1E-10 6.99645E-03 6.7 6.7 6.7 6.7 6.7 6.7 6.7
1E-11 4.41255E-03 6.7 6.7 6.7 6.7 6.7 6.7 6.7
1E-12 2.78337E-03 5.9 5.9 5.9 5.9 5.9 5.9 5.9
1E-13 1.75589E-03 6.1 6.1 6.1 6.1 6.1 6.1 6.1

1E-100 6.98827E-21 6.8 0 0 0 6.8 6.8 6.8
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number of vertices that have wi as an extreme. The degree matrix is the diagonal matrix with
entries deg(wi); denote it D. The adjacency matrix A is the n × n matrix with elements aij
which take value 1 if there is an edge between wi and wj . The Laplacian of G, denoted L(G),
is the difference between D and A, i.e., L(G) = D − A.

As noted by Fiedler (1973), among the many remarkable properties of L(G), one should
mention the following:

• Denote λ1, . . . , λn the eigenvalues of L(G), then 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

• The number of zero eigenvalues is the number of connected components in the graph,
then

• the second smallest eigenvalue λ2 is called algebraic connectivity, and G is connected if
and only if λ2 > 0.

The traditional notion of connectedness is binary, i.e., a graph is either connected or not.
Algebraic connectivity depends on the number of vertices and on the way they are connected.

This approach is a standard tool in the analysis of complex networks, and connectivity is
probably the first property which is verified. It is therefore relevant to check the numerical
adequacy of routines that compute eigenvalues and, in particular, how dependable is the second
smallest eigenvalue of the Laplacian of a graph.

Fiedler (1973) derived the algebraic connectivity of some important connected graphs.
Consider the class of complete bipartite graphs. In such graphs there are two subsets of

vertices, say V1 and V2. The connectivity is such that there are no connections between vertices
belonging to the same subset, and each vertex in subset Vi is connected to every vertex in Vj ,
i 6= j. Denote such graphs Km,n, where m,n are the cardinality of V1, V2, respectively; their
Laplacian has the following form:

L(Km,n) =



n 0 · · · 0 −1 · · · −1
0 n · · · 0 −1 · · · −1
... . . . ...

...
...

0 · · · 0 n −1 · · · −1
−1 · · · −1 −1 m · · · 0

... . . . ...
...

...
−1 · · · −1 −1 0 · · · m


. (2)

Figure 1 presents theK5,3 complete bipartite graph. Bollobas (1998) shows that the eigenvalues
of the Laplacian of a Km,n graph are λ1 = 0, m (with multiplicity n − 1), n (with multiplicity
m−1) and λm+n = m+n. The delicate issue of computing the pseudo-inverse of this Laplacian
has been studied by Ho and Van Dooren (2005).

We use these results about the eigenvalues of L(Km,n) for testing the accuracy of matrix
operations. Consider two special cases of complete bipartite graphs, namely the ones with
almost perfect balance Km,m+1 and those with almost worst balance K2,2m−1, testing m ∈
{9, 99, 999}. These values span three sizes of graphs: smal, medium and big. The assessment is
based upon the observation of seven quantities: (i) the LRE of the smallest eigenvalue (λ1 = 0)
denoted `1, (ii) the LRE of the biggest eigenvalue (λm+n = m+n) denoted `m+n, (iii) the LRE
of the sum of the eigenvalues (

∑m+n
i λi = 2mn) denoted `S , (iv) the minimum LRE of those

eigenvalues that should take value n (there are m − 1 of them) denoted `n, (v) the minimum
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Table 9: Accuracy computing the t-Student distribution, n = 1

Pr(X > x) = p Matlab Octave SciLab

p Certified x Windows Win Lin Mac Win Lin Mac

1E-8 3.18310E+07 – 0 0 0 6.4 6.4 6.4
1E-11 3.18310E+10 – 0 0 0 6.4 6.4 6.4
1E-12 3.18310E+11 – 0 0 0 6.4 6.4 6.4
1E-13 3.18310E+12 – 0 0 0 6.4 6.4 6.4

1E-100 3.18310E+99 – 0 – – 6.4 6.4 6.4

Table 10: Accuracy computing the F distribution, n1 = n2 = 1

Pr(X > x) = p Matlab Octave SciLab

p Certified x Windows Win Lin Mac Win Lin Mac

1E-5 4.05285E+09 6.2 0 0 0 6.2 6.2 6.2
1E-6 4.05285E+11 6.2 0 0 0 6.2 6.2 6.2

1E-12 4.05285E+23 4.4 0 0 0 6.2 6.2 6.2
1E-13 4.05285E+25 3.2 0 0 0 6.2 6.2 6.2

1E-100 4.05285E+199 – 0 – – 6.2 0 6.2

w8

w5w4

w7w6

w1w3w2

Figure 1: Complete bipartite graph K5,3
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LRE of those eigenvalues that should take value m (there are n − 1 of them) denoted `m, and
(vi,vii) the percentage of eigenvalues which test equal to m and to n (being the correct answers
n− 1 and m− 1, respectively) denoted `N and `M . Those results are presented in tables 12 (for
Matlab), 13 (for Octave) and 14 (for SciLab).

4 CONCLUSIONS

Regarding the computation of basic statistics, Table 1 shows that the mean poses little dif-
ficulty for the platforms, with the exception of Octave for Linux, which presented the smallest
number of LRE in five of the nine datasets. Surprisingly, these five datasets offer low numerical
difficulty. The same platform performs the worst also when computing the standard deviation,
but only in five out of nine cases, while SciLab and Matlab presented an unacceptable low accu-
racy in a single dataset each. As in other studies, c.f., Almiron et al. (2010), the first-lag sample
autocorrelation is a challenging quantity to compute. The three best results, which are still un-
acceptable, were computed by Matlab (PiDigits) and Octave under Windows (PiDigits
and Michelson). Though SciLab had the overall worst performance, none of the platforms
performed well.

SciLab presented the best performance when dealing with the binomial, t-Student and F
distributions, and also when computing the cumulative distribution function of the Poisson law.
Octave fails to produce acceptable values when dealing with the binomial, t-Student and F
distributions, and also when computing the cumulative distribution function of the Poisson law,
but it is the best one dealing with the normal distribution and pairs the other platforms with the
gamma law.

Matlab failed at computing the t-Student distribution; in every assessed case, it returned an
error message. This is a serious issue due to the widely spread use of this distribution in basic
statistical tests.

Though a single platform among the ones here assessed is unable to provide consistently
good answers, SciLab is the one that presented the best overall performance.

Six out of eleven linear regression datasets were not dealt with any of the considered plat-
forms in an adequate manner. Only Matlab provided acceptable results for Filip and for
Wampler1. Wampler1 and Wampler2 were acceptably treated by Matlab, Octave under
Windows and SciLab, while only Octave under Linux returned useful values for Pontius.
Again, no single platform can be advised as safe for the linear regression problems here consid-
ered.

The best results were provided by Matlab, SciLab under Windows and under Mac OS, and by
Octave under Mac OS when making decisions about the determinant of ill-conditioned matrices.
Octave under Windows and Linux, and SciLab under Linux provided an unacceptable number
of erroneous results. Users are advised to be very careful when testing equality between a value
of interest and a numerical computation involving determinats in these platforms.

The assessment based on spectral graph analysis presented a very consistent behavior with
respect to the problem size (the bigger the graph, the worse the answer), being `M and `N the
most sensitive quantities across all platforms and operating systems, and they can be reported
as good in most cases. The first and last eigenvalues (`1 and `m+n) are always dependable if
computed in doble precision and then tested in single precision, being the latter consistently
more precise than the former. The balance of bipartite connected graphs did not have a strong
impact on the results, except for the percertage of correct eigenvalues.

Extreme care must be taken when making decisions about graphs based on their spectral
properties. As a rule of the thumb, double-precision computation is advised, but the com-
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parison to known values should be made rounding or, at most, using at most floating point
representation.

Regarding the variability among operating systems, SciLab was more consistent than Octave
in most of the situations under assessment.
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Table 12: Accuracy of MatLab computing spectral graph analyses under Windows

m,n `1 `m+n `S `n `m `N `M

9, 10 15.2 Inf 15.8 14.9 14.9 11.1 62.5
99, 100 12.7 14.8 Inf 14.6 13.8 7.1 4.1

999, 1000 10.5 14.5 15.1 13.8 12.6 1.3 2.3

2, 17 15.3 Inf 15.7 Inf 14.7 12.1 100.0
2, 197 14.3 15.8 15.2 inf 11.7 6.1 100.0
2, 1997 13.1 15.9 14.2 15.9 9.6 1.1 0
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