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Abstract. The conversion of energy between seismic and electromiagmave fields involves relative
movement of ions at the rock-fluid contact surfaces in the gpace, described by Biot’s equations of
motion in poroviscoelastic media coupled with Maxwell’'suatjons. The numerical simulation of seis-
moelectrograms allows to analyze full-waveform coupledraeelectromagnetic wave propagation in
fluid-saturated porous media. It is possible to observe tifferdnt responses: the coseismic response
with the same waveform as a seismic wave and the interfapemes that occurs when a seismic wave
encounters a contrast in electrical or mechanical matergglerties. The proposed algorithm calculates
the electromagnetic field from seismic displacements,jquéarly fluid displacements, using the finite
element method employing a parallelizable non-overlappiomain decomposition technique, which is
required due to the high computational cost of the problehe Jeismoelectric method allows the pos-
sibility of detecting very thin impermeable layers, perledractures and interfaces between different
formations due to changes in permeability or saturant fluitie 2D implementation of the procedure il-
lustrates identification of subsurface heterogeneitiesnvapplied to different targets and source-receiver
configurations.
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1 INTRODUCTION

Seismic waves propagating through near-surface layetedtarth may induce electromag-
netic disturbances that can be measured at the surface(sdectric effect)Pride and Haartsen
1996 Mikhailov et al, 1997, 2000. Also, recent tests suggest that the reciprocal process,
surface measurable acoustic disturbances induced byategnetic fields (electroseismic ef-
fect), is also possibleThompson2005 Hornbostel and Thompsp&A007).

In order to explain these phenomena, Thompson and Gistripson and Gisi993 and Pride
(Pride 1994 suggested that they are generated by an electrokinetptingumechanism which
can be shortly explained as follonBlock and Harris2006 Haines and Pride200§. Within

a fluid saturated porous medium there exists a nanometkersggaration of electric charge in
which a bound charge existing on the surface of the solidimm@tormally of negative sign) is
balanced by adsorbed positive ions of the surrounding fiatting an immobile layer. Further
from the surface there exists a distribution of mobile ceurdns, forming the so called diffuse
layer. The effective thickness of this double layer is of @0 nm. When an electric field is
applied to this system, the ions in the diffuse layer movagdmng the pore fluid along with
it because of the viscous traction. This is known as eleasimosis and is responsible for the
electroseismic phenomena. On the other hand, the recimibeation arises when an applied
pressure gradient creates fluid flow and hence, an ionic ctiovecurrent, which in turn pro-
duces an electric field. This is known as electrofiltratiod @&responsible for the so-called
seismoelectric phenomena.

Using a volume averaging approach, Pri@eide 1994 derived a set of equations describing
both electroseismic and seismoelectric effects in elbtresaturated porous media. In these
equations the coupling mechanism acts through the (gépnéeduency dependent) electroki-
netic coupling coefficieni.(w). When this coefficient is set to zero, Pride’s set of equation
turns to the uncoupled Maxwell’s and Biot’s equations, destg the latter mechanical wave
propagation in a fluid saturated porous medi®®ift, 19560).

There exist already some works implementing different micaé methods to solve the set
of equations modeling both mentioned processes. HaartsgérPade Haartsen and Prige
1997, Han and WangHan and Wang2001), Pain et. al Pain et al. 2005, Haines and Pride
(Haines and Prid006 and White (White, 2005 and White and Zhou#/hite and Zhou2006
have proposed several different approaches to numerstaitly these phenomena.

The objective of this paper is to define a finite element prooedstated in the space-frequency
domain, for the approximate solution of Maxwell's and Bsauations of motion in an isotropic
bounded domain, with absorbing boundary conditions at ttigcé&al boundaries. The case an-
alyzed is that of compressional and vertically polarizedrag waves coupled with the trans-
verse magnetic polarization (PSVTM-mode). The vectortatetield and the scalar magnetic
field are computed using the rotated Raviart-Thomas-Nedplaces of zero ordeRéviart and Thomas
977. Nedeleg 1980. Also, the nonconforming space defined Mogglas Jr. et al.1999 is
used to approximate each component of the displacemerniniacthe solid phase, while the
displacement in the fluid phase is approximated using theow@art of the Raviart-Thomas-
Nedelec mixed finite element space of zero order.

2 THE DIFFERENTIAL MODEL

Consider a 2D-rectangular domdn= (2, U €2, where(2, and(2, are associated with the
air and subsurface poroviscoelastic (disjoint) part§ pfespectively. We will assume that (in
cartesian coordinatés, z-, x3)) all physical quantities describing our domafasand(2, are
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independent of the,-direction (i.e.,z, is the symmetry axis) and consider a seismic line source
in thex,-direction. Including the air region allows us to includenmplicit fashion the boundary
conditions for the electromagnetic fields at the air-paset interface.

Let the Fourier transform in the time variable of a given fum f (¢) be defined as usual by

flo)= [ s
Let us denote byF(w), H(w) to the electric and magnetic fields o, respectively, and by
u®(w), u’ (w) to the solid and relative fluid displacement vector§lin(the™ is omitted in all
variables for notational convenience).

Under the above symmetry asumption, this source term irsdeleetric and magnetic fields
of the form(E; (xy, x3,1),0, Es(xy, 23,1)), (0, Ha(z1, x3,1),0), respectively, and solid and rel-
ative fluid displacements of the fornt = (u§ (x4, 23,t),0, ui(z1, 23, ¢)) and
u! = (uf(x1,25,1),0,ul (21, 25,1)), respectively. Consequently only compressional and-verti
cally polarized shear seismic waves (PSV-waves) are geterdhis is a 2D model known as
a PSVTM-mode.

Let us identify the 3D vector6E (z1, x5, 1), 0, E5(z1, 23, t)) and (0, Hy(z1, x5, 1)), 0) with
the 2D vecton E(xq, x3,t) = (E1 (21, x3,t), E3(x1, x3,t)) and the scalaf (x4, x3,t), respec-
tively. Then recall that
. aEl 8E3

urlp = — — —=

3 1

Oy’ Ony

Also, let us identify our 3D-rectangular domdwith the 2D-rectangular domainn {y =
0}, so that2 is the union of the disjoint rectangular subdoméinsand(2,. LetI" denote the
boundary ofQ and letl',, = Q, N, denote the free surface. Also [Bf = 0%, \ I,

I, =09, \ I'y, denote the artificial boundaries 9f, and(2,, respectively.

Following Pride (1994); Haines and Prid€2006, for 2D seismoelectric modeling the elec-
tric and magnetic field& and / and the displacement vector$ and«/ satisfy the coupled
electromagnetic-poroelastic equations, stated in theesfraquency domain as follows:

iweE + oE — curl Hy + Logiwuf 0, Q (1)
curl B +iwH, =0, €, ’ (2)
—w?pput —wppuf =V or(u) =F®, Q, 3)
—wpput — wmuf + iw%uf +Vpr=FD (4)
Tim(w) = 2G g1 (u®) + S (/\c V-u'+aKy, V- uf) . G, (5)
pr(u) = =Ky, V- u® — K,V - u’, Q,. (6)

In the equations above = (u®, u/) andr,,(u) is the stress tensor of the bulk material and
ps(u) the fluid pressure, while,,, (v*) denotes the strain tensor of the solid frame.

In order to introduce viscoelasticity, the coefficientshe tonstitutive equation$)and ©)
are considered to be frequency dependent. They can be de¢eras follows. First we consider
the (relaxed) elastic limits of these coefficients, dendigdhe superindex. In this case, the
coefficientG* is equal to the elastic shear modulus of the dry matrix. Also,

Ao=Ko =G, (7)
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with K¥ being the bulk modulus of the saturated material. The coefffis in 6)-(6) can be
obtained from the relation&@assmannl 951, Santos et al.1992

K,, a— ¢ 0] !
“ K, av { K, +Kf} ®
K= K,, +o*K},,

whereK, K,, andK; denote the bulk modulus of the solid grains composing thie seatrix,
the dry matrix and the saturant fluid, respectively. Nexingigshe correspondence principle
stated by M. Biot Biot, 1956a 1962, we replace the (real) relaxed elastic coefficigrts K
and K}, by complex frequency dependent viscoelastic modulus usiedinear viscoelastic
model presented ir_{u et al,, 1976 as follows:

- K o
Rk, (w) — iTg (W)’

B K,
Rk,,(w) — iTk,,(w)

K.(w) (9)

Kap(w)

The frequency dependent coefficient= \.(w) in (5) is defined in terms o .(w) andG(w)
as
Ae = K (w) — G(w). (10)

Also, the frequency dependent functioRs and 7y, s = K., G, K,,, associated with a
continuous spectrum of relaxation times, characterizevibeoelastic behavior and are given
by Liu et al. (1976
1 1+ w?T? 2 L w(Ty —Ty)

- TS - t .
Qs 1+ w2 T2 (@) Qs 11 W T,

Ry(w) =1

The model parameter3,, s, s = K., G, K,,, 11 andT; are taken such that the quality factor

Ts(w)
Ry(w)

Qs(w) =

is approximately equal to the const@pt, ; in the range of frequencies where the equations are
solved, which makes this model convenient for geophysigplieations. Values of),, s range
from Q,,,.s = 10 for highly dissipative materials to abo(,, ; = 1000 for almost elastic ones.

Also, ¢ is the electric permitivityy: the magnetic permeability ardthe conductivity, while
F©), FU) are the external seismic sources. Furthermore,

Py = ¢py + (1 —¢)ps, (11)

wherep, andp; denote the mass densities of the solid grains composingligensatrix and the
saturant fluid. On the other hanglis the fluid viscosityx, the permeability ana. is the mass
coupling coefficient between the solid and fluid phas&8,inThe mass coupling coefficient
can be written in the form

m:aj% (12)

with o, being the formation tortuosity.
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The positive coupling coefficiert, is defined byHaartsen and Pridg.997) as

o= (100 ). @

with ¢ = 0.008 + 0.026log,,(C.) denoting the zeta potential ad¢l being the electrolyte mo-
larity. In (13) ¢, andk; are the vacuum and fluid permitivities and

C*ZV_ Eokif/{?BT
© e222N,

(14)

is the Debye length in meters. it4) e is the electronic chargé;s is the Boltzman constant,
T is the absolute temperature (so that is the thermal energyis the ionic valence andy;.
the ionic concentration in ions per meters cubed.

To solve equationslj-(6) in our 2D domairt2 we need a collection of boundary conditions.
Let I denote the boundary ¢ and letl’,, = Q, N Q, denote the free surface. Also let
Iy =00 \T., I',=00,\TI,, denote the artificial boundaries 0f, and(2,, respectively.
Also, if I'y is either an inner interface € or a part of the boundariésI', orI',, ,,, set

G ) = (- x,pf<u>)t, (150)

SFs(u) = (us'y7us'X7uf'V)t7 (15b)

where! denotes the transpose s the unit outer normal ofi, andy is a unit tangent o,
oriented counterclockwise.

Then, forw > 0 consider the solution oflj-(6) with the absorbing boundary conditions
(Sheen1997 Santos et al.1999

—e'?E.x+H,=0, on T, (16)
—Gr,(u) = DSFP(%), on I, a7)

and the free surface condition
—Gr,(u) =0, on I, (18)

The matrixD in (17) is defined asD = R:S: Rz, whereS = R~:M:R "2 and

o 0 psr Ae+2G" 0 a K},
R={|0 b 0|, M= 0 G* 0 , (29
Pr 0 < « K:v 0 K:v
where (oy)?
b= Pb — L
m

Remark: Note that since., > 1, the matrixR is positive definite. Also, we will requiere that
the following conditions be satisfied by the coefficientsmiafy the matrixM:

G* >0, (20a)
A+ 2G* — ®K, > 0, (20b)
K, > 0. (20c)
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Conditions 20) are necessary and sufficient conditions for the matfixo be positive definite.

In particular, the second condition &f@) imposes that the inverse of the jacketed compressibil-
ity coefficient be strictly positive, se®iot, 1962. As a consequence of the positive definitess
of the matricesk and M, the matrixD is also positive definite.

3 AWEAK FORMULATION

For X Cc R% d = 1,2,3 with boundarydX, let (-,-)x denote the compleX?(X) inner
product for scalar, vector, or matrix valued functions. Al®r s € R, || - ||;,x will denote the
usual norm for the Sobolev spaé& (X). In addition, if X = Q or X = T, the subscriptX
may be omitted such th@t, -) = (-,-)q or (-,-) = (-, -)p. Set

Hcurl, Q) = {1 € (L*(2))* : curkp € L*(Q)},

H(div, Q) = {v € (L*(Q,))" : V-4 € L*()},

HY(div,Q) = {y € (H'(Q))?: V-9 € H(Q)}
provided with the natural norms

¥l oy = (IIIG + leurt13)?,
[¥llam.0p = (1Eg, + IV - ¢l3g,)?,
[l = (IR + 1V - 9l3)2.

Recall the integration by parts formulaSifault and R.1986 Sheen1992

(¥, curlp) — (curle, @) = (Y -x, @), Yo € H(eurl,Q), ¢ec HY(Q), (21)
(V-,9) + (0, Vo) = (0 -v,0), Ve H(div,Q), ¢eH(Q). (22)
To obtain a variational formulation, tes?)(againsty € L*(Q2) and test {) againsty &

H(curl, Q) and use the integration by parts formu) and the boundary conditiori§) to
obtain the equations

(iweEt,Y) + (o E,v¢) — (Hs,curl ) + (iwLOHQuf, w) (23)
0 P
2\ 172 "
+<<;) E~X,1p~x>:O, W € H(curl, ),
(curl B, @) + (iwpH,, ¢) =0, ¢ € L*(Q). (24)

Next, test 8) against® € [H'(€,)]? and @) againstv’ € H(div,(2,) and use the integration
by parts formulaZ2) and the boundary conditiod 7). Setting

_ (Pol2 prla
P = (pf I mb) (25)

wherel, is the identity matrix in?? we get the equation

—(w*Put,v)q, + (iwguft, v1)g, + Alu,v) + (iwDSr,u, Sr,(v))
0

= (F,v)q,, v= (v, v7) € [Hl(Qp)]2 x H(div,,).

(26)

Ty
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In (26) F' = (F*, /) and A(u, v) is the bilinear form defined as

A, 0) =Y (im(u), e1m(v0*))g, — (ps(w), V- 07) = (M E(u),&(v))g, .

u,v € [H'(Q,)]* x H(div,,), (27)

where the complex matri¥I = M,.(w) + iM;(w) in (27) is given by

Ae +2G Ae aK, 0
Ae A +2G a K, O
M=1 (K. aKe Ko 0] (28)
0 0 0 4G

andz(u) = (e11(u?), e22(u), V - u(f),éu(u(s))t.

Note that the matrixP is positive definite. Furthermore, we assume that the redl pa
M, is positive definite since in the elastic limit it is assoethtwith the strain energy den-
sity. On the other hand, the imaginary pa&#f; is assumed to be positive definite because
of the restriction imposed on our system by the First and S&dt@ws of Thermodynamics
(Ravazzoli and Santp2005.

Let

Y = (curl, Q) x L*(Q) x [H*(Q,)]* x H(div,Q,).

Our weak formulation is stated as follows: for> 0, find (E, H,, u*,u’) € Y satisfying @3),
(24) and @6).

The uniqueness of the solution &3), (24) and 6) can be demonstrated with an argument
similar to that given in $antos$2010.

4 AFINITEELEMENT METHOD FOR THE PSVTM-MODE. RECTANGULAR EL-
EMENTS

Let 7"(2) be a nonoverlapping quasiregular partitiontbf= 2, U ), into rectangles;
of diameter bounded by such thatQ = U/_Q;. Denote by¢; and¢;, the midpoints of
I'; = 0Q; NT'"andl'j, = I'y; = 052 N 0Ly, respectively.

To approximate the electromagnetic fields H, we will employ the mixed finite element
space)” x W', defined as followsNedeleg¢ 198Q Monk and Parrqt1994:

Vh = {Q/J € H(Curl, Q) : QMQ] € V]h = P071(Qj) X PLQ(QJ‘)},
Wh = {(P S Lz(Q) : ()0|Q] S th = Po(Qj)}

Here, P, +(£2;) denote the polynomials of degree not greater themr and not greater thanin
z on(;, while P, denote the constants 6. The functions in’" have continuous tangential
components across the internal boundafigs Also, curh* ¢ W .

Following Monk and Parro{1994), the degrees of freedom fo¥* are defined in the follow-
ing way. Let(); be a general element of the partiti@ti(2) and lety) € [H'(2;)]?. Then define
the following moments oifr ;.

Mr, (@) = {@ 7. f)r, s f€PRTw)}. (29)
Note that 9) are curl-conforming and unisolvent for element3’in
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To approximate each component of the solid displacemenibrvae employ the noncon-
forming finite element spac&’C" as in Douglas Jr. et al(1999, while to approximate the
fluid displacement vector we choogé”, the vector part of the Raviart-Thomas-Nedelec space
(Raviart and Thoma®77 Nedele¢ 1980 of zero order. More precisely, set

~ — o~ PN . N "N 5
R=[-112,  NCO(R)=Spar(L,7,7.a(3) — al@s)}, al@) =7 - =7t

with the degrees of freedom being the values at the midpéied.ch edgerfA%. Next, for each
Q; CQ,, letFy, : R — Q; be an invertible affine mapping such thaf, (R) = €2;, and define

NC! = {v:v=T0F', 7€ NC(R)}.
Thus,

NC = {v: Uj = ,U‘Qj € NC?? Uj(gjk) = Uk(fjk) V(7,k)},
M = {w € H(div, ) : w|Q € M" = Py o(Q)) x Po1(Q))}.

To state the approximating properties of the finite elempates defined above we introduce
the following four projection operators.
First, let
[Hp () = {¢: 9| € [H'(Q)},

with [H,i(Qp)]z defined in similar fashion and If;;, , denotes any inner interfadg; in €2, let
A" = {Xh Ny =t (W) € [Ro(Tip)? = Ay, M+ 0 = 0} ;

whereF,(I';; ,) denotes the constant functions defined gp,.
Remark: Note that there are two copies|86(T;x,)]* assigned to each;; ,, one from®; to
2, and another fronf;, to ;.

Then we define the projections

I, : H(curl, Q) N [Hy(Q))* = V" (v =) - x, 1) =0, B=T}; or I';, (30)

P L*(Q) - W (Pyw — w, gp) =0, p € W, (31)

Ry« [H?(,)]” — [NC'? (v — Bp7)(§) = 0, § = & Or (32)
for v° = (v{,v3),

Qn: [H'(2))? = M (v = Q) -1, 1), =0, B=Ty, or I}, (33)

Sy [H?(Q,)]? x H'(div; Q,) — AP (t(v)v — Sp(v), 1)z =0, (34)

Let us define the broken norms

loli2he, = D vlia

Q,CQ,
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The approximation properties of these operators can bedsaatfollows Nedele¢198Q Santos and Sheen
2007):

[ — utllo < Ch[lly, v € [H' ()], (35)
leurl(y) — IT,)]lo < Chllcurl ||y, o € [H'()]?, curkp € H'(Q), (36)
1Pap — ¢llo < Chllolly, Vo e H(Q), (37)

[10* = Ruv*llo, + Allo” = Buo® 2.0, + B2010° = R 3.,

i 1/2
+hz( 3 Hvs—thsHS,an> +h3( T HT(vj)Vj—Shij%,an) (38)

QjCQp QjCQp
< CR (|0° )2, + IV - ' |l10,) , v = (v*,07) € [H*(Q,)]* x H'(div,Q,),
1Qnv” — v loq, < Ch|[V/ |1, v € [H ()%, (39)
IV - (v = Qnv!) o0, < Ch|IV - 0! |10, v/ € H'(div, ). (40)
Note that since curb € W" Ve € V", it follows from (31) that
(Pof — f,eurly) =0, Vi € V" (41)
Also note the orthogonality property for functions AfC":
(v? — g, 1>ij = 0 for all interior interfaced;;,, v® € NC". (42)
Set
An(w) = 3 [Z (1), (), = (s (). V - vf>>m] “
QjCQp lym
= > (M), &v))g, .
Q;CQyp
and
s f s f 8E
C'_')h (<E7 H27u y U )7 (1/}7 SO, v,v )) = (8§7 w> + (O-E“l/}) - (H27 Curl’l/}) (44)

n Ou' e\ "?
+ (LO_ 7w) + (Cur|E7 (p) + (_) E- X?tl/} "X
Ko ot Q, 1%

OH, 0%u noul ou
= - S DS (==
+(p v , ) + (PW ,U)Qp + (HO 50V . + Ap(u,v) + Sp(at),sp(v) .

Let
Y=V x Whx (NCH)? x M*.
The Galerkin procedure is defined as follows: fitfd", £}, u*", u/") € Y" such that
On ((E", HY ,u*" w/"), (1, 0, 0%, v7)) = (F*,v°)q, + (F',v/)q,, (45)
(w’ S07 US? Uf) e yh'

Uniqueness for45) follows with the same argument than f@3j, (24) and £6); existence will
be assumed. The followirapriori error estimate can be demosntrated using the ideas prdsente
in (Santos$2010.
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Theorem 1 Let(E, Hy,u®, u/) € Y be the solution 0{23), (24) and(26) and let(E", H2, u*", u/") €
V" be the solution of(45), respectively. Assume that € [H(Q)]?, curl E, Hy, € H(Q)

u® € [H?(9,))%, v/ € HY(div,Q,). Also assume that the matiM; is positive definite. Then

the following a priori error estimate holds: fay > 0 andh > 0 sufficiently small,

1B — E*|lo + [leurl(E — EM)llo + | Hx — Hyllo + u” = w1 p, + [0 — v/ log,
HIV - (uf = u"M)og, + (B = E") - xXllor + [ = u*"|lor, + I(u” —u"") - vlor,
< C) [h (1Bl + lleurt Ely + | Hall1)
+ R (B + ez, + 1l lig, + 1V - ul]l10,)] -

5 NUMERICAL EXPERIMENTSFOR 2D SEISMOELECTRIC MODELING

Synthetic seismoelectrograms can aid in the understaraidgnterpretation of the signals
generated by electrofiltration. A simple model consiststbimclay aquitard layer (1 m) which
is surrounded by sand (see Fig.

100 m
Air
Surface receivers
o @ @ " @ o o
Source.
o
Sand ®
Down-hole
ereceivers
®
30 m I(‘-:!Ia\ll 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
®
®
Bottom receivers ¢
50 m ° ° ° ° ° °

Figure 1: Geometry for a thin aquitard layer model.

The observation points are located at the surface, at 50 th @@l in a well. The distance
between adjacent receivers is 5 m in the horizontal directiod 1 m downhole. The main
physical parameters chosen are given in Tdbéad are taken frorilaines and Prid€2006 .
The pore fluid is water and their properties grg=1000 Kg/n¥, =10 Kg/(m s) andK ;=2.2
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GPa. The density of the solid grainss=2600 Kg/nf. The water salinity is low,=0.001
mol/l.

| Material | o [SIm] | ¢ | Vp[m/s]| Vs[m/s]| K,[GPa]| ko[m* ]| Lo | Q]
Sand 0.01 | 0.30| 1860 314 35 1071 [ 495108 | 80
Clay 0.05 |0.10| 2300 406 25 10716 | 1.26 109 | 80

Table 1: Material properties.

The calculation used a 1008x504 grid with a grid size=02,=0.13 m and 105 frequency
samples with a frequency step size of 3.81 Hz. The time degexedof the source is given by a
Ricker wavelet with a central frequency equal to 200 Hz. Timukation required about 3 hours
of computation , running on 12 processors of the Steeleal (RICAC, Purdue University).

The coseismic field is generated by the relative fluid-rockiomthat accompanies the seis-
mic P-waves. This field is indicated by “CS” in Fig. Moreover, a portion of the seismic
wave is converted to Biot slow wave at the interfaces thafmsdly attenuated but it creates
another relative fluid-rock motion. This effect is the flaiiriace response labeled by “IR” that
arrives at the same time, independent of offset. Electridgiéor thexz-component collected
by receivers located on surface and in depth are shown oretharid right sides of Fig2,
respectively.

offset(m) offset(m)
0 40 60

time(s)

Figure 2: Synthetic seismoelectrograms.

In a surface seismoelectric measurement, the interfapemss arrives at the same time that
the coseismic energy making it difficult to identify. Howevim the bottom geometry gather
the interface response is arriving before the coseismid.fi@lome clues to distinguish “IR”
from coseismic arrivals and background noise are: (a) treasiarrives without typical seismic
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moveout, (b) the signal is generated from the first Fresneégmf seismic waves centered
below the source, (c) the signal arrives in approximately loaf the time required for a seismic
signal and (d) the signal changes polarity on both sideseoptsition of the source. Different
kinds of filters will be necessary to improve the signal-tose ratio.

50 50

o §

40 40

w

o
w
o

offset(m)
offset(m)

N

o
N
o

10 10

0.01 0.02 0.03 0.01 0.02
time(s) time(s)
Seismoelectric arrivals Seismic arrivals

Figure 3: Comparison of seismoelectrograms and seismagfi@dovn-hole receivers.

Fig. 3 shows a down-hole receiver array for a well located 15 m awam fthe source.
Seismoelectric (electric field) and seismic signals (seismaves) are plotted with horizontal
time axis and vertical depth axis. Coseismic and seismiddiate associated with identical
arrival times. It is also possible to see the coseismic fiélthe reflected P-wave. Besides,
interface response generated at the thin layer propagateselectromagnetic wave and arrives
nearly simultaneously at separated receivers.

6 CONCLUSIONS

In the present paper, a finite element procedure, used toladleersion between mechani-
cal and electromagnetic energy, is defined. The seismice@anerates P and SV waves giving
rise to transverse-magnetic fields (PSVTM-mode).

The equations were solved in space-frequency domain byeeatiite domain decomposed
finite element method for which apriori error estimates carebtablished. The algorith has
been implemented on parallel architectures with MPI as cimensunication protocol.

Qualitative analysis of the results indicates that intezfaesponse can be identify, but in
general, it is necessary enhance signal-to-noise ratidtbysfi It is important to verify that the
continuous events on the recorded data are not a processfagta
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