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Abstract. This work analyzes the influenc of matrices reordering algorithms on solving linear systems
using non-stationary iterative methods GMRES and Conjugate Gradient, both with and without precondi-
tioning. The algorithms referenced most often in the literature for the reordering of matrices are Reverse
Cuthill-McKee (RCM), Gibbs-Poole-Stockmeyer (GPS), Nested Dissection (ND) and Spectral (ES). We
analyze these algorithms and propose some modification comparing their solution qualities (minimi-
zing bandwidth and minimizing envelope) and CPU times. Moreover, the linear systems associated with
sparse matrices are solved via preconditioned Krylov-type iterative methods considering the incomplete
LU factorization preconditioners. For the computational tests, we consider a set of structurally symmetric
matrices that can come from various field of knowledge. We conclude that the reordering of matrices,
in most cases, reduces the number of iterations in the iterative methods, but that reducing the CPU time
depends on the size and conditioning of the matrix.
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1 INTRODUCTION

A significan portion of scientifi problems include the solution of sparse and large linear
systems. In these cases, the minimizing of the bandwidth (Carvalho et al. (2009)) and redu-
cing of the envelope (Barnad et al. (1995)). are ways to simplify the solution of these systems.
These pre-processing methods consist of performing permutations between rows and columns
having nonzero elements of the matrix closest to the main diagonal. In the context of the solu-
tion systems via direct methods, minimizing the bandwidth reduces the fillin that occurs in LU
decomposition. Large linear systems, however, are usually resolved by non-stationary iterative
methods (Saad (2003)) These methods do not change the sparsity of the matrix but require
convergence criteria. Generally, a process to accelerate convergence, called preconditioning, is
necessary. The preconditioners, based on incomplete LU decomposition (Benzi et al. (1999);
Camata et al. (2010)), are widely used to sharply accelerate the convergence rate. Such opera-
tions alter the sparseness of the matrix and consequently the effectiveness of the preconditioners
depends on matrix reordering.

From the 60’s through the 80’s, a great deal of research was conducted into minimizing
bandwidth, with researchers emphasizing RCM and GPS methods. These algorithms are based
on graph search strategies and provide a high quality solution (Cuthill and McKee (1969);
Gibbs et al. (1976)). Following this period, most of the literature is divided mainly into either
proposing improvements to these algorithms or applying new heuristics to the problem. Also
proposed (Martí et al. (2008); Caprara and Salazar (2005)), however, were exact methods of
solving these problems; the tests were conducted, however, on relatively small instance pro-
blems; i.e., dimensions of under 1000. Marti et al. (2001) proposed the use of the Tabu Search
with movements based on the elements most distant from the diagonal. This work was per-
formed to compare this algorithm, the GPS, and an implementation of Simulated Annealing
(SA) proposed by Dueck and Jeffs (1995). The researchers concluded that the Tabu Search
had the highest solution quality; however the computational time was much longer than that
of heuristic GPS (at its longest 50 times as long). The Tabu Search also showed a better so-
lution quality than the SA, with an implementation time of around 20 times less. Using the
same set of matrices in their experiments, Piñana et al. (2004) proposed applying GRASP with
path relinking. Computational results show that GRASP achieved better solution and reduced
computational time compared to the Tabu Search by Marti et al. (2001). Nevertheless, com-
pared to GPS, computational time is thousands of times more.Lim et al. (2006) presented two
new approaches to the problem: a method called node shift, a genetic algorithm. A comparison
of these methods with GPS and GRASP presented in Piñana et al. (2004) was performed by
computational tests using the same set of matrices. Results showed that both approaches, com-
pared to the GPS and GRASP, improved the quality of solution. With respect to processing
time, however, the node shift method runs about three times longer than the genetic algorithm,
making it longer than the heuristic GPS.

A generalization of heuristic GPS was proposed by Wang et al. (2009). Computational tests
showed that the proposal, with only a small increase in processing time, slightly improved the
quality of the solution. In a novel approach,Carvalho et al. (2009) proposed a heuristic that did
not consider the problem represented by graphs; the heuristic can be applied to both symmetrical
and non-symmetrical matrices. Computational tests comparing this heuristic algorithm with the
Cuthill-McKee (CM) show that the heuristic improves the quality of solution, at a processing
time, however, hundreds of times longer than the CM.

Considering studies that use the reordering of matrices to be a preprocessing step to solving
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linear systems, we highlight the work of Benzi et al. (1999). They tested the algorithms for
reordering, RCM and ND, and the algorithms for solving systems, Bi-CGStab, GMRES, and
TFQMR. They found the computational tests for the reordering of the coefficien matrix reduced
the number of iterations of the algorithms. Moreover, some matrices that had not converged be-
fore reordering converged afterwards. Recently, Portugal et al. (2009) used the RCM algorithm,
the preconditioner ILUT(T, p) (Saad (2003))and the GMRES algorithm. They concluded that
the reordering improved the quality of the preconditioning ILUT.

In summary, all the works cited improved the solution quality when compared to the more
classical algorithms and with those used more in the literature (RCM and GPS). None of these
works, however, could improve the quality of solution and at the same time obtain a comparable
computational time to those algorithms. Clearly, much remains to be done to obtain a better
compromise between quality solution and run time.

To compare solution quality and processing time, we implemented four algorithms from the
literature to reorder sparse matrices and their modifie versions proposed in this work. To ana-
lyze the influenc of the reordering algorithms in the solution of systems, we also implemented
two algorithms for solving linear systems and the preconditioner ILU(p).

The paper is organized as follows. The next section summarizes the main mathematical defi
nitions necessary to understand the algorithms implemented. Sections 3, 4 and 5 show,
respectively, methods for reordering and improvements proposed for the algorithms, methods
for solving linear systems, and the preconditioners implemented in this work. Section 6 shows
the details of implementation and Section 7 the computational tests. In the fina section we
offer our main conclusions and proposals for future work.

2 IMPORTANT DEFINITIONS

Let A be a structurally symmetric matrix; i.e., if aij 6= 0 then aji 6= 0, but not necessarily
aij = aji. The bandwidth of A denoted by lb(A) is define as the greatest distance from the firs
nonzero element to the diagonal, considering all lines of matrix and the envelope of A denoted
by env(A), it is the sum of the distances of the firs element non-zero until the diagonal, also
considering all the rows of the matrix (Coleman (1984)). In other words:

bi = (i − j) ∀ aij 6= 0, i = 2, . . . , n

lb(A) = max
i=2,...,n

{bi} (1)

env(A) =
n

∑

i=2

bi (2)

where j is the column index of the firs nonzero element of row i. The problem of minimizing
the bandwidth is NP-complete (Papadimitriou (1976)). Because of this characteristic, findin
an exact solution to the problem in a reasonable computational time is difficult thus justifying
the use of heuristic methods. If we propose a solution to this problem from a Combinatorial
optimization viewpoint, we must reformulate it through graphs: the matrix associated with the
linear system can be directly represented by the adjacency matrix of a graph and its reordering.
This is represented by the problem of reordering the labels of the vertices of graph. To clarify
the problem represented by the graphs, we will summarize the main concepts and properties of
this mathematical structure.

Let G = (V,E), a non-oriented graph consisting of a set of vertices V and a set of edges E.
Two vertices are adjacent if there is an edge between them in G. The edge is incident to a vertex
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if it is one of the ends of the edge. The degree of a vertex is the number of edges incident to it. A
path in G is define as a sequence of edges of E connecting two vertices, called the initial and
fina respectively. A cycleis a path in which the initial vertex coincides with the fina vertex. It
is said that G is connected if there is a path between each pair of vertices of G. Otherwise, G is
said to be disconnected and consists of connected subgraphs, called connected components. A
graph T is a treethat is connected and has no cycles. The vertices of a tree with unit degree are
called leaves.Distance(u, v) is define as the number of edges (length) or the cost associated
with the shortest path between the vertices u and v of V . It define associatednumbere(v) as
the greatest distance of v to all other vertices of G. The associated number e(v) for v ∈ T ,
where T is a tree, corresponds to the length or cost of the path from v to a leaf of the tree.
Diameter(G)is define as the value of the higher associated number of the graph (Narsingh
(1974)). Pseudo-diametercorresponds to a high associated number, but not necessarily the
highest. Peripheral verticesof G are vertices whose associated number is equal to the diameter
of the graph and pseudo-peripheralvertices are those with high associated numbers, but not
necessarily the highest. Structure of levels with root associatedG, SL(G) = {L1, L2 . . . Lk},
consists of a rooted tree with levels. A tree is rooted when it has a vertex that stands out from
another (root). A vertex vi is at level i of a rooted tree if vi is distance i from the root. In this
type of tree, a vertex can not be part of two distinct levels (Menezes (1995)). The bandwidth
of matrix A A lb(A) ≤ 2w − 1, where w level with the greater number of vertices (Gibbs et al.
(1976)).

Other important information for understanding this work is related to spectral graph theory.
Let G be a graph that can be represented by the Laplacian matrix obtained through the operation
L(G) = D(G) − A(G), D(G) is a diagonal matrix and each element of row i corresponds to
the degree of its vertex i and A(G) is the adjacency matrix of G. The spectrum of L(G) is the
set of eigenvalues (λ1, λ2, . . . , λk) obtained by solving det(L − λI) = 0. Considering λ1 ≤
λ2 ≤ . . . ≤ λk, the smallest second eigenvalue define the algebraic connectivitywhere each
component of the associated eigenvector v(λ2) is related to connectivity between the vertices
(Fiedler (1973)).

3 HEURISTIC ALGORITHMS TOMINIMIZE BANDWIDTHANDREDUCE ENVE-
LOPE

What heuristic can solve the problem of minimizing bandwidth and reducing the envelope,
providing good solution quality and low execution time? In the literature, the heuristic most of-
ten referenced for being able to do this is the Cuthill McKee (CM), (Cuthill and McKee (1969)).
This method was designed to reorder the rows and columns of a matrix represented by a graph. It
applies a breadth-firs search procedure to visit all the vertices of the graph in a organized way:
starting from an initial vertex and searching the neighborhood of the vertices in increasing or-
der of degrees, the heuristic visits all vertices of the graph. The order of the vertices visited
corresponds to the permutation of lines an columns to be held in the matrix after the proce-
dure. Shortly after Cuthill and McKee came up with this heuristic, George (1971) observed
that if we reversed the order numbering obtained by CM (lines 15-22 do Algorithm 1) we could
reduce the matrix’s envelope without affecting the bandwidth. Thus the Reverse Cuthill McKee
algorithm was set (RCM). Several years later, Liu and Sherman (1976) mathematically proved
George (1971) conjecture. The good results of RCM algorithms motivated the treatment of
the reordering of matrices problem using graphs, Menezes (1995). Thus, we can say that the
matrix-reordering algorithms generally have, as input, a graph G(V,E) and the set of adjacent
vertices of a vertex x in G (Adj(x)) and as output, a new labeling of the vertices of G. We also
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Algorithm 1: RCM
Find an initial vertex (x)1

SortG (
−−→
Adj(x))2

z = 1,
−→
F =

−−→
Adj(x), i = |

−−→
Adj(x)|, y =

−→
F [z], z=z+13

while (i ≤ |V |) do //Home breadth-first search4

SortG (
−−→
Adj(y))5

for j = 1, . . . , |
−−→
Adj(y)| do6

if
−−→
Adj(y)[j] /∈

−→
F then7

−→
F [i] =

−−→
Adj(y)[j]8

i = i + 19

endif10

endfor11

y=
−→
F [z]12

z = z+113

endw14

m = 1 //Home of the reversed of the numbering15

while (m < i) do16

aux =
−→
F [m]17

−→F [m] =
−→F [i]18

−→F [i] = aux19

i = i − 120

m = m + 121

endw22

defin SortGas a function that orders the vertices of the graph in increasing order of degrees.
In this context, the RCM heuristic is presented in Algorithm 1.

The firs step of the algorithm is to search for an initial vertex. The choice of this vertex
is closely related to the quality of the solution. Some studies indicate that an initial choice of
vertices with high associated numbers results in good solution quality. So the firs approach
taken by Cuthill and McKee (1969) proposed starting the search for the initial vertex by exami-
ning each vertex in with degree D ranging from Dmin ≤ D < Dmin + Dmax

2
, where Dmin is

the lowest degree of the graph and Dmax, the highest. Using this approach makes the RCM
heuristic slow, as many vertices can have their degrees in this interval. George and Liu (1979)
proposed a heuristic based on the level structure of a minimum degree’s vertex. This heuristic
compares values of associated number for each new level structure of the vertices of the last
level. Algorithm 2 describes the computation of pseudo-peripheral vertices. We propose two
modification to Algorithm 1. Our objective, of course, is to improve the quality of the solution
and possibly reduce the processing CPU time. The firs modification (a) to obtain the initial
vertex, consider the Dijkstra algorithm rather than Algorithm 2. This new algorithm will be
called Algorithm RCM-P1. It will not be shown here because it is less than one step and is
identical to Algorithm 1. The second modificatio (b) use the level structure of the vertex

obtained by the heuristic proposed by George and Liu (1979), performing the new labeling of
the vertices from their positions in levels, in increasing order of degrees (Algorithm 3, RCM-
P2).
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Algorithm 2: Choice of pseudo-peripheral vertex
Choice a vertex (x) of minimal degree.1

for j = 1, . . . , n do2

SortG (
−→
Adj(j))3

endfor4

SL(x) = {L1, L2, . . . , Lk}5

while i ≤ |Lk| do6

SortG (Lk)7

y = NLk[i]8

SL(y) = {Ly1, Ly2, . . . , Lyk}9

if e(y) > e(x) andw(y) < w(x) then10

x = y11

Lk = Lyk12

i = 113

else14

endif15

i = i + 116

endw17

x is the pseudo-peripheral vertex.18

Algorithm 3: RCM-P2
Choose a initial vertex (x)1

j = 1, m = 12

SL(x) = {L1, L2, . . . , Lk} //Level structure of the vertex x.3

for i = 1, . . . , k do4

while j ≤ |Li| do5
−→F [m] =Li[j]6

m = m + 17

endw8

endfor9

m = 110

i = |V |11

while (m < i) do12

aux =
−→
F [m]13

−→F [m] =
−→F [i]14

−→F [i] = aux15

i = i − 116

m = m + 117

endw18
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Another algorithm quite often referenced in the literature is the GPS, Gibbs et al. (1976).
Their idea, similar to RCM, uses for its initial vertices two vertices with the distance between
them equal to the pseudo-diameter. The algorithm find the initial vertices and then creates a
level structure for each. The two-level structures are joined by a process define as minimi-
zing the width of level. In the end, it labels the vertices similarly to that of RCM. The main
steps are described in Algorithm 4. We can verify that the same algorithm used to fin the
pseudo-peripheral vertex, described above (Algorithm 2), can also be used to fin the pseudo-
diameter. The main difference between the GPS and RCM algorithms is in Step 2 of Algo-
rithm 4. The minimization of the wide level requires additional processing (details can be
found in Gibbs et al. (1976)). In Step 3 of that algorithm, the difference lies in the fact that
the relabeling was done on the new structure obtained in Step 2. In the algorithm proposed in
Gibbs et al. (1976), a comparison is made between the GPS and RCM algorithm heuristics. The
GPS algorithm obtained a solution quality comparable to that of RCM. Its CPU time, however,
was around ten to twenty times less than RCM’s. Using George and Liu (1979) heuristic to fin
a pseudo-peripheral vertex (Algorithm 2)we fin that the RCM algorithm is faster than the GPS
algorithm.

Algorithm 4: GPS
Find a pseudo-diameter, i.e., the initial vertices x and y.1

Minimize the width of level through joining the structures x and y.2

Renumber the graph similarly to that of RCM.3

Algorithm 5: ND
i = 0, m = 11

repeat2

Partition G3

Get S, Ki, Ki+14

for j = 1, . . . , |Ki| do5
−→
F [m] = Ki[j]6

m = m + 17

endfor8

for j = 1, . . . , |Ki+1| do9
−→
F [m] = Ki+1[j]10

m = m + 111

endfor12

for j = 1, . . . , |S| do13
−→
F [m] = S[j]14

m = m + 115

endfor16

p = p + 117

m = m + 118

until i < p ;19

Between the publication of the RCM and GPS algorithms, another algorithm was introduced
by George (1973) the ND (Nested dissection) algorithm. It is a process of reordering a set of
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columns that divides the matrix into K ≥ two disjointed matrices (Algorithm 5, ND). Note
that findin a set of columns that divides the matrix into K matrices can be interpreted as a
problem of graph partitioning. In this problem, we want to achieve the lowest subset of edges
(cut) that splits the graph into disjointed sets K (K connected components of the original graph
with aproximadament same cardinality). The set S of Algorithm 5 corresponds to the set of
vertices formed by only one end of each edge of this cut (vertex separators). The sets Ki and
Ki+1 are the partitions i and i+1 obtained by partitioning the graph and p is the number of times
you should see the graph partitioned. Due to this characteristic, several versions of the ND algo-
rithm have been proposed and graph partitioning heuristics are widely used. The ND algorithm
implemented in this work uses a heuristic based on the adjacencies of the graph. It performs
a breadth-firs search that introduces each visited vertex into a partition of the graph. When
the value |V |/2 is reached, the search process ends. Moreover, to perform refinemen partitions

Algorithm 6: ES
Calculate λ2 and v(λ2) of (L) // λ2 algebraic connectivity andv(λ2) eigenvector associated.1

Sort v(λ2) in ascending order, generating
−→
F 12

Apply the permutation (
−→
F 1) on L, generating L1.3

Calculate x = env(L1).4

Sort v(λ2) in descending order, generating
−→
F 25

Apply the permutation (
−→
F 2) on L, generating L2.6

Calculate y = env(L2).7

if x < y then8
−→
F =

−→
F 19

else10
−→
F =

−→
F 211

endif12

for all partitions obtained, we use the heuristic Fiduccia Mattheyses (Fiduccia and Mattheyses
(1982)) based on cuts by edges. We propose for the ND algorithm two modifications (a) if
we label the vertices so that the labels of Ki are smaller than the labels of S which in turn are
smaller than the labels Ki+1, we defin a new algorithm called ND-P3; (b) if we re-label the
partitions that consider the set S to consist of all vertices of extreme edges belonging to cut
edges, we defin another algorithm, called in this work, ND-P4.

Finally, the last algorithm implemented was the Spectral (ES), proposed by Barnad et al.
(1995). It is based on the use of eigenvalues and eigenvectors of the Laplacian matrix of graph
G(V,E) (Algorithm 6, ES). The firs step of this algorithm is highly complex. The complexity
can be minimized, however, by an optimized storage form of the Laplacian matrix. Details are
given in Section 6.

4 NON-STATIONARY ITERATIVE METHOD

Iterative methods generate successive approximations at every step, aiming for more accurate
solutions to a linear system. We divide iterative methods into two groups, stationary iterative and
non-stationary iterative methods. Stationary iterative methods are expressed as x(k) = Bx(k−1)+
c, where B and c not depend on the calculation of the iteration k, These methods are the easiest
to implement, but convergence is slower. Non-stationary iterative methods differ in that with
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Algorithm 7: GMRES
Data A, b, lmax, tol, x = 0, k1

ǫ = tol‖b‖22

l = 13

repeat4

i = 1, ui = b − Ax, ei = ‖ui‖, ui =
ui

ei

, ρ = ei5

while (ρ > ǫ)and(i < k) do6

ui+1 = Aui7

for j = 1, . . . , i do8

hji = ut
i+1uj9

ui+1 = ui+1 − hjiuj10

endfor11

hi+1,i = ‖ui+1‖212

ui+1 =
ui+1

hi+1,i13

for j = 1, . . . , i − 1 do14

hji = cjhji + sjhj+1,i15

hj+1,i = −sjhji + cjhj+1,i16

endfor17

r =
√

h2
ii + h2

i+1,i18

ci =
hii

r19

si =
hi+1,i

r20

hii = r (hi+1,i=0)21

ei+1 = −siei22

ei = ciei23

ρ =| ei+1 |24

i = i + 125

for j = i, . . . , 1 do26

yj =

ej −
i

∑

l=j+1

hjlyl

hjj27

endfor28

x =
i

∑

j=1

yjuj

29

l = l + 130

endw31

until (ρ < ǫ)or(l ≥ lmax) ;32

each iteration information varies. Its strategy is to transform the system Ax = b into a problem
of minimizing the residual rk = min{b − Ax} (Barrett et al. (1994)).

This paper presents two non-stationary iterative methods, Conjugate Gradient (CG) and the
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Generalized Minimum Residue (GMRES). Both perform each iteration, an approximation to
the solution of the system xi = x0 + z where z ∈ Ki = span{r0, Ar0, A

2r0, ..., A
i−1r0},

define as the Krylov subspace, i is the dimension of subspace and r0 = b−Ax0 is the residual
of the approximation x0.

The GMRES method is applied to nonsymmetrical and sparse matrices. Its objective is to
minimize the norm of the residual system, to fin an approximate solution that uses a z vector
of the Krylov subspace. The solution of the system x = x0 +z such that ‖b−A(xo +z)‖ should
be minimal. Algorithm 7 describes the GMRES(k) method. The idea is to build in this base an
orthogonal basis of Krylov subspace U . It is built through the Modifie Gram-Schmidt process
(lines 6-13). This process, in addition to generating the orthogonal U basis, generates Matrix
H , known as the Hessemberg matrix. This matrix is almost an upper triangular except for a
diagonal lying below the main diagonal. To eliminate this bias and make the system trivial, a
process define as Givens rotation, lines 14-23, is accomplished by eliminating elements of the
matrix. This process, through back substitution, then resolves the system Hy = e (lines 26-27).
Finally, in line 29 a new approach is calculated by considering the vector y and u obtained by
multiplying the base U . By default, the algorithm GMRES is computationally costly, since for
each iteration i, it should calculate and store the product matrix vector. For this reason, we
implement the GMRES(k), where k is the size of the subspace and consequently the number of
subspace vectors to be stored.

The conjugate gradient method, CG, is named for generating a sequence of vectors with a
descending orthogonal direction. CG is applied when A is symmetric, aij = aji, and define
positive, ∀x ∈ ℜnxtAx > 0 and if x = 0, xtAx = 0. The basic idea of the CG method is that
through the choice of n linearly independent directions, v1, v2, . . . , vn, and through the mini-
mization of the function F (x(j) + αvj) in each direction, we construct a sequence of approxi-

mations that provides the minimal quadratic function F (x) =
1

2
xT Ax − bT x. Algorithm 8

describes the CG method.

Algorithm 8: CG
Data A, b,Nmax, tol, x0 = 01

v0 = r0 = b2

δnovo = ‖r0‖
2
2, δ0 = δnovo, j = 03

while (j < Nmax)and(δnovo > tol2δ0) do4

pj = Avj5

α =
δnovo

vt
jpj6

xj+1 = xj + αvj7

rj+1 = rj − αpj8

δvelho = δnovo9

δnovo = ‖rj+1‖
2
210

β =
δnovo

δvelho
11

vj+1 = rj+1 + βvj12

j = j + 113

endw14
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5 PRECONDITIONING

The convergence of iterative methods depends significantl on the spectrum (set of eigen-
values) of the coefficients matrix. When the eigenvalues approach zero or present different
orders of magnitude, the matrix has a strong tendency for ill-conditioning (Thibes (2002)). To
produce a well-conditioned matrix, a technique called preconditioning can firs be applied to
the system. This technique aims to accelerate the convergence of iterative methods. It replaces
the system Ax = b with the equivalent system M−1Ax = M−1b, where M is called the precon-
ditioner matrix. As we can see in Saad (2003), to fin a good preconditioner to solve a linear
system is often viewed as a combination of art and science.

Algorithm 9: ILU(0)
for i = 2, . . . , n do1

for k = 1, . . . , i − 1 do2

if (i, k) ∈ NZ then3

aik =
aik

akk
4

endif5

for j = k + 1, . . . , n do6

if (i, j) ∈ NZ then7

aij = aij − (aik ∗ akj)8

endif9

endfor10

endfor11

endfor12

Algorithm 10: ILU(p)
for ∀aij 6= 0do1

Levij = 02

endfor3

for i = 2, . . . , n do4

for k = 1, . . . , i − 1 do5

if Levijk then6

aik =
aik

akk
7

endif8

for j = k + 1, . . . , n do9

aij = aij − (aik ∗ akj)10

Levij = min{Levij, Levik + Levkj + 1}11

endfor12

endfor13

if Levij > k then14

Levij = 015

endif16

endfor17

Mecánica Computacional Vol XXIX, págs. 2323-2343 (2010) 2333

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Preconditioners are active during the iterative process. Those for M can be define as good
preconditioners if they are a matrix close to A and satisfy two conditions: (a) M−1A is well
conditioned; (b) the system Mc = b is trivial (Cunha (2000)). Some of the most widely refe-
renced preconditioners in the literature are based on the incomplete LU factorization (ILU).
This is where the LU factorization is performed, but a fil level p is determined, thereby halting
the factorization. Hence, if p = 0 there will be no fills If p = 1 there will be fill up to the firs
level of the LU factorization and so on. In this work, we implement preconditioners based on
the LU decomposition, where two algorithms are define for an ILU(0) and another for ILU(p)
when p 6= 0. To construct this type of preconditioning, we do the usual factorization where
the order of the loops controlled by the indices i (line), j (column) and k (step factoring) are
crucial to the performance of the preconditioner. For example, the algorithm k, i, j is difficul
to implement since in each step k must be modifie for all the remaining lines from k + 1 to
n. The algorithm i, k, j however, is characterized, at every step i by replacing the values of the
elements of row i of the coefficien matrix by triangular factors L and U (Saad (2003)). We can
see in Algorithms 9 and 10 both preconditioners being implemented. In Algorithm 10 Levij

indicates the fil level of each element aij of the matrix assigned Levij = 0 where aij 6= 0 and
Levij = ∞ where aij = 0.

6 COMPUTATIONAL IMPLEMENTATION

All algorithms implemented in this work used a matrix stored in a structure called Compress
Sparse Row(CSR), Saad (2003). To choose the pseudo-peripheral vertex and the pseudo-
diameter, we implemented the RCM and GPS algorithms using the heuristic proposed by
George and Liu (1979). Please note that the RCM implemented in this paper considers the al-
gorithm proposed by Cuthill and McKee (1969), with the reverse described by George (1971).
The GPS algorithm was implemented as described in Gibbs et al. (1976). All the processes of
sorting the algorithms required for RCM, GPS, ES and ND were performed using the QuickSort
algorithm. The sparsity calculation is done as a percentage, i.e., esp(A) = ((n∗n)−nnz)/(n∗
n) ∗ 100, where n is the total number of vertices and nnz is the total number of edges of the
graph. That is, n is the number of lines, and nnz is the number of non-zero elements of Matrix
A. The envelope size and bandwidth are given as a percentage of how much they reduced from
their initial size. To calculate the reduction:

red(env(A)) = 100 − ((env(A)after reordering∗ 100)/env(A)initial ) (3)

where env(A)initial is the size of the original envelope and env(A)after reorderingis the size of
the envelope after the reordering of Matrix A. The same calculation is done to reduce bandwidth
(red(lb(A)) exchanging env env(A) per lb(A).

The matrices used in the computational tests are in the Matrix Market format as described
by Boisvert et al. (1996) and available on the websites http://math.nist.gov/MatrixMarket/ and
http://www.cise.ufl.edu/research/sparse/matrices/ These matrices come from a variety of appli-
cation field such as computational fluid dynamics (CFD), electromagnetism, chemistry, and
so forth. To calculate the eigenvalue and eigenvector associated required in the ES algorithm
some libraries were tested: Clapack, Blopex, Trilinos and Chaco 2.0. The Chaco library was
chosen due to optimized storage matrix and low processing time. We underscore the fact
that, for this purpose, the Chaco implements two algorithms: Lanczos, suitable for small- and
medium-sized matrices and Multilevel Symmlq/RQI used in this work, suitable for large-sized
matrices(Hendrickson and Leland (1995)). This algorithm considers the RQI (Rayleigh Quo-
tient Iteration) iterative method, which solves a linear system using the LQ decomposition in
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each iteration, Barnad and Simon (1993). It is worth noting that the quality of solution obtained
depends strongly on the tolerance considered for the iterative process. We also point out that we
have changed the source code for Chaco. To reduce the processing time we calculate only the
eigenvector associated with the second smallest eigenvalue.

7 COMPUTATIONAL TESTING

In this section we compare the reordering algorithms RCM, RCM-P1, RCM-P2, ND, ND-
P3-P4 ND, GPS and ES (subsection 7.1) and present the action of these algorithms, when
ILU(p) preconditioners , are applied to GMRES and CG iterative methods (subsection 7.2).

Table 1: Characteristics of the chosen set of matrices

Matrix (A) Application Area aij = aji nnz n esp(.)

Na5 Quantum Chemistry Sim 305630 5832 99,10
FEM_3D_t1 Thermal Problem Não 430740 17880 99,87
wathen100 Random 2D/3D Sim 471601 30401 99,95
wathen120 Random 2D/3D Sim 565761 36441 99,96
qa8fm Acoustics Problem Sim 1660579 66127 99,96
Baumann Chemical Problem Não 748331 112211 99,99
FEM_3D_t2 Thermal Problem Não 3489300 147900 99,98
thermomech_dK Thermal Problem Não 2846228 204316 99,99
cage13 DNA electrophoresis Não 7479343 445315 99,99
tmt_sym Electromagnetics Sim 5080961 726713 99,99
atmosmodl CDF Problem Não 10319760 1489752 99,99

The metrics analyzed were the size of the envelope (env(.)), the bandwidth (lb(.)), the pro-
cessing time (CPU), and the number of iterations of iterative methods. Tests were performed
on a computer with an Intel DualCore 2.2GHz, with 3GB of RAM and Ubuntu 9.04 operating
system.

Table 1 shows the main features of the set of matrices chosen to examine the methods im-
plemented. The columns, Matrix (A), Application Area, aij = aji, nnz, n and esp(.) indicate,
respectively, the name of the matrix, the area of application that generated the matrix, if the
non-zero values of the matrix are symmetrical, non-zero number of elements, matrix size and
the sparsity percentage, described in Section 6. We note that all the chosen matrices have a
sparsity greater than 99%.

7.1 Analysis of the algorithms for reordering

Figure 1(a) presents the CPU time (in seconds) of algorithms RCM, RCM-P1, RCM-P2, ND,
ND-P3, ND-P4, GPS and ES for the set of matrices shown in Table 1. Figure 1(b) shows the
reduction in size of the envelope red(env(.)) and Fig. 1(c), the reduction in size of the bandwith
red(lb(.)) for all matrices analyzed. We emphasize that in Figure 1 the negative percentages
indicate that the algorithms have not reduced the (env(.)) and red(lb(.)); in fact they have
increased them.

We can observe from Fig. 1(a)that the processing times of the algorithm RCM-P1 for all ma-
trices tested were greater than those obtained by the RCM. Such a result is caused by the need,
in the RCM-P1, to run Dijkstra’s algorithm for all vertices of the graph associated with the ma-
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trix, increasing its computational complexity from O(nnz ∗ log(n)) to O(n ∗ (nnz ∗ log(n))).
The cases with comparable times occur when the heuristic to fin the initial vertex (step 1 of
Algorithm RCM) is performed at worst case. We further note that in 85% of the tests, the reduc-
tion achieved by algorithm RCM-P1 equaled that of the RCM algorithm for env(.) (Fig. 1(b))

(a) Processing time for reordering (sec)

(b) Reducing the size of envelope Red(env(.))

(c) Reducing the size of the band Red(lb(.))

Figure 1: Processing time and reducing the size of the envelope and the band’s set of matrices analyzed for
algorithms RCM, RCM-P1, RCM-P2, ND, ND-P3, ND-P4, GPS, and ES
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and lb(.) (Fig. 1(c)). This fact occurs because, for most matrices tested, Algorithm 2 find
the vertex of greatest associated number (peripheral). The proposed RCM-P2 algorithm has,
for all tested matrices, a smaller processing time than does the RCM but with a quality of so-
lution similar to it. The reduction in processing time may be explained by no long needing to
execute the breadth-firs search of the RCM algorithm. Since Algorithm 3 is directly applied to
the graph with vertices sorted in increasing order of degrees, making the level structure obtained
equivalent to breadth-firs search of RCM algorithm. The ND algorithm has a processing time,

(a) Original (b) RCM-P2 (c) ND-P4

(d) GPS (e) ES

Figure 2: Matrix configuratio of the FEM-3D-t1 for algorithms RCM-P2, ND-P4, GPS e ES

(a) Original (b) RCM (c) ES

Figure 3: Matrix configuratio of the qa8fm for algorithms RCM e ES

on average, around 50% higher than that of the RCM, showing a slight improvement in qual-
ity of solution. We observed that the processing times of the proposed adaptations (algorithms
ND-P3 and ND-P4) correspond to those of ND, with the ND-P4 being slightly faster. This fact
may be explained by it no longer being necessary to identify all the vertices’ cuts. In this case,
the extreme vertices of all cutting edges were used. A small improvement in solution qual-
ity was also observed. We would also emphasize that the solution quality and the processing
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time of algorithms ND, ND-P3, and ND-P4 were directly related to the graph partitioning algo-
rithm used. The GPS algorithm was much slower than the RCM, with no significan difference
in solution quality. This fact may be explained by the fact that the second step of the GPS
algorithm is computationally more costly and requires more memory usage. For some of the
tested matrices, the ES algorithm has shorter processing times than the RCM (FEM_3D_t1, wa-
then120, qa8fm, FEM_3D_t2) and longer processing times than some of the others (tmt_sym,
atmosmodl). Cases where the ES outperformed the others are characterized by matrices with
less sparsity . In general, we observed that the algorithms based on search strategies in width
(RCM, RCM-P1, RCM-P2, ND, ND-P3, ND-P4 and GPS) were extremely sensitive to the
sparsity of the matrix. This behavior may be explained by the computational complexity of the
breadth-firs search, which is O(n + nnz). For ES, on the other hand, the computational bot-
tleneck is the computation of the eigenvalue and eigenvector. Besides being a costly operation,
the greater the precision required for components of the eigenvector, the greater the calculating
processing time and the better the quality of the solution. The greater the precision, the greater
the possibility that components of the eigenvector are distinct, a fact contributing, due to the
results’ better ordering, to the solution quality’s improvement.

Figure 2(a) shows the original configuratio of the sparse matrix FEM_3D_t1 and Figu-
res 2(b), 2(c), 2(d), 2(e) show, respectively, the configuration obtained by the algorithms
RCM-P2, ND-P4, GPS, and ES. We can observe that all algorithms reduce the bandwidth and
the envelope matrix. In Figures 1(b) and 1(c) however, we fin a group of matrices that,
for all algorithms tested, the quality of the initial solution obtained was worse, such as Ma-
trix qa8fm. For the breadth-firs search-based algorithms, we noticed this actually happens for
graphs with label sequences next to each other. We fin in the ES algorithm no improvement in
quality of solution when the values of eigenvector components are very close to each other. This
behavior comes up when the distances between the vertices are small. Figure 3 shows the ori-
ginal configuratio of Matrix qa8fm and settings for the RCM and ES algorithms. We observe
here that there was no reduction in bandwidth or envelope.

7.2 Analysis of ILU(p) Preconditioners

Figures 4(a), 5(a) and 6(a) show the number of iterations for the GMRES(k) method with-
out preconditioning and with preconditioner ILU(p), p = 0, 1, 2, 3, 4, 5, respectively, without
reordering, with RCM-P2 and ES for a set of nonsymmetrical matrices presented in Table 1.
Figures 4(b), 5(b) and 6(b) show the processing time for the same set of matrices.

When the system is solved without applying a reordering algorithm, Figure 4, we found that
the number of iterations performed in most cases was greater without preconditioning. We must
point out, however, that in applying preconditioning, reducing the number of iterations does not
necessarily imply a faster processing time. The time reduction is significan when there is a big
reduction in number of iterations, as is the case with matrices FEM_3D_t1 and FEM_3D_t2
for the preconditioner ILU(0), The preconditioners with p > 0 and without reordering were
not efficien in terms of processing time. This inefficien y is due to the computational cost of
obtaining M given that lb(A) and env(A) are, most often, higher without the reordering, most
of the time. We also found that Baumann matrices and thermo_dk, start to converge only after
applying preconditioners ILU(3) and ILU(1), respectively.

In Figures 5 and 6, we analyze the RCM-P2 and ES algorithms, respectively. Compared to
the results without reordering (Figure 4), the number of iterations and processing time were,
by and large, reduced. In reordering RCM-P2 (Figure 5) note that the Baumann matrix is con-
verging with the preconditioner ILU(2) and the thermo_dk is beginning to do so with the pre-
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(a) Number of iterations (b) Processing time

Figure 4: Number of iterations and processing time for the GMRES(k) algorithm without reordering

(a) Number of iterations (b) Processing time

Figure 5: Number of iterations and processing time for the GMRES(k) algorithm with reordering RCM-P2

(a) Number of iterations (b) Processing time

Figure 6: Number of iterations and processing time for the algorithm GMRES(k) with reordering ES
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(a) Number of iterations (b) Processing time

Figure 7: Number of iterations and processing time for the CG algorithm without reordering

(a) Number of iterations (b) Processing time

Figure 8: Number of iterations and processing time for the CG algorithm with reordering RCM-P2

(a) Number of iterations (b) Processing time

Figure 9: Number of iterations and processing time for the CG algorithm with reordering ES
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conditioner ILU(0). The matrix FEM_3D_t2 lowers the number of iterations, but increases the
processing time, since the algorithm reduces the RCM-P2 env(A) and lb(A), but finishin the
reordering requires a long processing time. In the ES algorithm for matrix FEM_3D_t2, the
number of iterations and processing time are reduced, since for this matrix the ES reordering is
fast.

Figures 7(a), 8(a) and 9(a) show the number of iterations for the CG method without
preconditioning and with ILU(p), p = 0, 1, 2, 3, 4, 5, respectively, without reordering, with
RCM-P2 and ES for the set of symmetrical matrices presented in Table 1. Figures 7(b), 8(b)
and 9(b) show the processing time for the same set of matrices. We should point out that, to
help with visualization, the number of iterations is on a logarithmic scale; indeed, the values
were far and wide. The results show that when reordering is implemented a slight reduction in
both the number of iterations and processing time results. As was expected, the reduction in the
number of iterations and processing time for the ES algorithm was, because of its reordering,
smaller (80% of tests) than that of the RCM-P2 algorithm. The tmt_sym matrix only converges
to the ILU(1) without reordering but, when ES is considered, converges to ILU(0). This occurs
once the ES is the only algorithm that can reduce the env to that matrix. As for the qa8fm
matrix, there was no reduction in the number of iterations or in the processing time because in
none of the reordering algorithms was there a reduction in the env(A) and lb(A), as noted in
section 7.1

8 CONCLUSIONS AND FUTUREWORK

Having taken from the literature four major matrix-reordering algorithms – RCM, GPS, ND
and ES – this paper compared their solution qualities and processing times. We proposed mod-
ification to the RCM (RCM-P1 and RCM-P2) and the ND (ND-P3 and ND-P4) and, for the
CG and GMRES methods, studied the influenc of reordering algorithms on ILU(p) precon-
ditioners. We carried out computational tests on a set of 11 large-sized sparse matrices with
sparsities over 99%.

Our modificatio to the RCM algorithm, RCM-P2, produced, for all cases tested, the lowest
processing time with a quality of solution identical to that of RCM. Our modificatio to the ND
algorithm, ND-P4, showed the best results of all other ND algorithms, though it was slower
than the RCM. The ES algorithm, only for less sparse matrices, had a solution comparable
to that of RCM and with a better processing time. For all matrices tested, GPS had a faster
processing time than the RCM. This is due to the fact that minimizing the level width (step 2 of
Algorithm 4)is more costly, computationally, than performing a breadth-firs search (lines 4-14
of Algorithm 1). These facts justify the widespread use of the RCM algorithm for reordering
sparse matrices. We also note that the proposed modification presented here showed better
solutions, considering the balance between solution quality and computational time, than those
obtained by standard algorithms.

The ILU(p) preconditioners with p > 1 tend to have computational costs high taking long
processing times and heavy memory consumption. On the other hand, this increases the possibi-
lity of convergence, a fact explained by the proximity of M the A with the increasing of p. We
stress that for well-conditioned matrices, in most cases, the use of preconditioning does not
help reduce processing time, while matrix reordering improves the conditioning of the matrix,
influencin the number of iterations and reducing the processing time.

For future work, we want to investigate the behavior of Minimum Degree and ant colony al-
gorithms and apply these to the problem of matrix reordering. Another study provided concerns
choosing the initial vertex of the RCM algorithm: one can vary the choice of this vertex based on
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the vertices of minimum, maximum, and random degrees and investigate other preconditioners.
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