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Abstract. In this work, we describe a spectrum of the three-dimensional Laplace Transform Nodal
method {T'Sy) in order to solve the transport problem in a parallelepiped domain with two energy
groups.

We present thd.T'Sy nodal method to generate an analytical solution for discrete ordindigs (
problems in three-dimensional cartesian geometry and two energy groups. We first transverse integrate
the Sy equations and then we apply the Laplace transform. The essence of this method is the diagonali-
zation of theLLT 'Sy transport matrices and the spectral analysis garantees this, because the eigenvalues
can have multiplicity greater than one and corresponding linearly independent eigenvectors.

The transverse leakage terms that appear in the transverse integjkatmgliations are represented
by exponential functions with decay constants that depend on the characteristics of the material of the
medium of the patrticles leave behind. We use continuity conditions across the region interfaces, in order
to obtain the approximated problem solution. The only approximation we use in the derivation of the
present method is the exponential approximation for the transverse leakage terms.

Copyright © 2010 Asociacién Argentina de Mecénica Computacional http://www.amcaonline.org.ar



2386 E. HAUSER

1 INTRODUCTION

The linear Boltzmann equation is an integro-differential equation wich describes the angu-
lar, energy and spatial variations of the neutral particle transport. The complexity of the math-
ematical models associated with transport problems, mainly in multidimensional geometries,
is always an important issue of investigations and developments, taking into account the wide
range of applications for these problems. The discrete ordinate meth9ds(a technique used
for solving the linear Boltzmann equation (Lewis and Miller, 1991). The present research work
present the Laplace transform nodal method' 6y ), (Panta and Vilhena, 1999; Hauser et al.,
2009), to generate an analytical solution for discrete ordinates problems in three-dimensional
cartesian geometry and two energy groups. We first transverse integrate the SN equations and
then we apply the Laplace transform.

The LTSy nodal method is based on three transverse integrations across the three coordinate
planes within a homogeneous region of the domain of solution. These transverse integrations
lead to three one-dimensional equations coupled by the leakage terms, that we approximate by
exponential functions and solve the resulting equations analytically by the Laplace transform
technique in space The presdiit'Sy nodal method is based on the the spectral nodal meth-
ods for discrete ordinates problems (Barros and Larsen, 1990), wherein the only approximation
involved is the approximation for the transverse leakage terms. we approximate the transverse
leakage terms by exponential functions, that are chosen based on the physics of shielding prob-
lems, where the neutron flux attenuates exponentially with increasing distance from the source.

The essence of this method is the diagonalizability of the LTSN transport matrices and we
developed the spectral analysis for to garant this, in a way that is very similar that was performed
for the spectral Green’s Function method by Barros and Larsen (1992).

An outline of the remainder of this paper follows. In Section 2 we describe the three-
Dimensional two-Groud.7'Sy nodal method. Finally, we present spectral analysis and and
we list some numerical results in Section 3.

2 THE TWO-GROUP LTSNy NODAL METHOD IN X —Y — Z GEOMETRY

We consider the two-group energly, equations with linearly isotropic scattering in a
homogeneous — y — z geometry

d d d
,Um%\ljm,g(a% Yy 2) + N Vg (2, 9y, 2) + Smimm,g(xa Y, 2) + 01g(2,y, 2) U g(2,y, 2) =

dy
1 M M
g Os,1,9 Z wn\lfnvl(l‘7 Y, Z) + 0s,2,9 Z wn\Ian(x? Y, Z) + Qm,g(x’ Y, Z) )
n=1 n=1

(1)
where, forg = 1,2, we have defined,, ,(z,y,2) = U, (2, Y, 2, ttm, Tm, Em) @S theg™ group
angular flux in the discrete directiof,,, m,&m) , m = 1+ M, M = N(N + 2), w,, the
angular quadrature weightsz,y,z) € [0,a] x [0,b] x [0,c]|, 014, 051,4, 0524 are the cross
section, and),, ,(z, y) is the isotropic interior source.

By transverse-integrating E@d) with respect ta; — 2 plane, we obtain
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Figure 1:S, andSg Discrete Directions with Level Simetric

AV iz g 1
MWT(I‘) + Ut,g\pmx,g(x -5 |f[9 1,9 Z wn n, 1 + 052,49 nz:l wn nr 2(55) (2)
= Sm:]c,g(x> )

where the mean angular flux in the in the discrete directign= (1, 7m, Em) 1S

1 c rb
\Dmx,g(x) = %/0 /0 qlmvg(m,y,z)dydz (3)

The source temfo’m,g(m) includes the external source and the transverse leakage terms.

Sa(®) = gor [@uale) = [ Wiy (0.8,2) = Wo0,0,2)] 2| =
o @

~ben [5’"/0 (Vo g(x,y,¢) — Y o(z,y,0)] dy]
Quglt) = [ [ Qo9 )iz )

The transverse integrated)y equations for they and z spatial directions are obtained in a
similar fashion.

Equation®) forms a system at M linear ordinary differential equations in tBé/ unknown
functions¥,, ,(x) in D. Form = 1: M , we write Eq.R) in the following explicit form

d 1
%\Dmaz,l(x) + Z:qjme(x) - 8,U7m [08 1,1 Z wn n, 1 + 0521 RX:lwn ne 2(1’)‘|
_ sz,1<m>

Hom,

(6)

d 1
%\Dme(l’) + Zi’j\ymxﬁ(gf) - 8//07 l0312 Z wn nxl _'_ 0322 ;wn nx 2($)‘|

. Sm:L‘,Q(x)
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We apply the Laplace transform with respedb Eq.6). Forg = 1,2 we denote

£{ Gmag(1)} = Gmag(5), £{ Wiz g(2)} = Wina g(s)

and

£ {d\I’mx,g (a:)} = 5V, 4(8) — Uy 4 (0) .

dz

Form = 1: M, we obtain two algebric systems 2#/ equations

$Tpen (8) + 210001 (8) — 2280 ST 40, T, 1 (5) — 2221 fj W o (3)
mx,1 — ¥maz,l - n * nz,l - n ¥ nx,2
uﬁ 8Nm n=1 8Mm n=1
Sma1 (S
= U,,.1(0) + ﬁ
Hm
(7)
M M
— 0¢2 = 05,22 - 0s5,1,2 =
S\I}mx,2(3) + 7’\Ijmx,2(8) - = wnanx,Q(S) - — wn\Ijnx,l (5>
Hom Aptm n; A 521
Sz 2(s
0, (0) + Tme2l®)
Hm
We can be writte Eq4) in matrix form as
me,l(s) qjm:c,1<0) 1 gmx,l (S)
[sI—-A] | = +— (8)
\Isz,Z(S) \Ijmx,Z(O) Hm Smm,2(5>
wherel is identity matrix and we have defined th&/ x 2M matrix A .
Ax,ll Ax,12
Ax = (9)
Ax,21 Ax,22
which is composed of th&/ x M submatrice\x g ¢, ¢, 9 = 1, 2.
In matrix (9) we have definedd submatrices
_80t,1 — 0s,1,1W1 O0s,1,1W2 O0s,1,1WM
8111 81 8pu1
0s,1,1W1 _ 80t,1 — 05,1,1W2 O0s,1,1WM
8o I 8tz
Ay = , (10)
0s,1,1W1 0s,1,1W2 B 80t,1 — 0s51,1WM
Y, Siinr 8
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80t,2 — 0s,2,2W1 05,2,2W2 O0s,2,2WM
811 8111 81
05s,2,2W1 80t,2 — 05,2,2W2 05,220 M
8o 82 812
Ax,22 = (11)
052,201 052,202 8012 — Os22WM

and forg’, g = 1,2, which is composed of th&/ x A submatrices\ g,

O0s,1,2W1  Os1,2W2 Os,1,2WM
8pu1 8111 811
O0s1,2W1  0Og1,2W2 Os,1,2WM
8tz 8tz 812
Ax,21 = (12)
O0s,1,2W1 051,202 Os,1,2WM
8tin 8finm St
0s21W1  0O0521W2 0s,2,1WM
8pi1 811 8111
0s5,21W1  Os,21W2 0s,2,1WM
812 ) )
Ax,12 = (13)
0s5,21W1  Og21W2 0s,2,1WM
Bun 48w 8finm

In addition, we have defined the -dimensional vector functions

Tiog(5) = [ Trag(s) Taug(s) -+ Tarag(s) | - (14)

Wi g(0) = [ Wi g(0) Wapg(0) -+ Wape (0) 1", (15)
and .

Smag(s) = | Siag(s) Sarg(s) - Saragls) | - (16)
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The solution of the algebric sistel8)(is

@mx,l(s) ] ( gmx,l(s) ] )
B = [sI—- A" B (17)
\I/mLQ(S) \I’ng(O) Smx72(3>

In order to determine the angular flux we apply the inverse transform Laplat&)in (

\I]m:p,1<0) 1

+7
Fm

\I]m:p,l(x) { ( \I!mm,l(o) 1 Smx,1<5) ] ) }
= [sT- AT 1 _ (18)
\Pm$72($) \Ilmx,Q(O) Him Smx?(s)
Then,
U1 () U,02.1(0)
:.,E_l{[sI—Ax]*l} ]
U,0(2) U,0.2(0)
(19)
gm:p,l (.T)
+i £_1{[SI—AX]71}* ]
Hm gmxg(l')

wherex denote the convolution operation.
Furthermore, in order to determice ! { [sT— Ay } we assume the diagonalizability of
matrix A, A, = V, D, V, !, to write

£ [sT- A ) = f)‘l{ [s V.V, —VXDXVxl}_l}
(20)
_ ! { [VX(SI—DX)Vx—l]l}: Vo £ {[sT— D] ' 1V,

whereD, is anM — order diagonal matrix of the eigenvaluesAdf andV, is the matrix whose
columns areV/ eigenvectors ofA,.
We apply the inverse Laplace transform

£ (sT=Dy) '} =P (21)
Substituing EqZ1)in Eq.(20), we obtain

£7H(sT = A,) 7} = VPVt (22)

As a result, the analytical solution for the two-groig equations with linearly isotropic
scattering/l).
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\I/ma:,l(x) \I/mx,l(())
= [VyePr v,
\Ifng(.]?) \Dmx’g(O)
(23)
gmac,l(w)
+i {V eD"mfol} *
Hm gmz,Q(a?)

We proceed in a similar form with th€y nodal equations transversally in the— y and
x — z planes and we obtain the following analytical solutions

W () [ Y
= [VyePrrv,
Winy,2(y) Winy,2(0)
(24)
1 gmy,l(y)
+— [VeDnyx_l} £
fm Smy,Q(y)
\I}mz,l(z) \Ijmz,l(o)
= [V, PV, |
\Ijmz,Q(Z) \IijQ(O)
(25)
sz 1(2)
1
—l-? [V eDszz_l} * ]
m sz,2<z>
Now, we denote the mean angular flux as
M
U,g(@) = AV e = VeeP Ay, (26)
=1
whereA, = [A1,, As g, - Anrgl”,
M
W, 4(y) = Z By yVy e = VyeDyyBg’ (27)
=1
whereBg = [By 4, Bayg, -+, By’ €
M
2) =Y CrgVye" = V,ePCy, (28)
=1

whereCg = [C1 4, Ca g, -+, Carg)”
Now, based on the physics of shielding problems, we assume that:
(1) the neutron flux attenuates exponentially with increasing distance from the source along the
edges of each region inside the domain;
(2).the attenuation ¢ %Qn%a X, depends upan. ! the nuclear data of the region the neutrons leave
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behind as they stream across the system.
We can choose the attenuation constant as the macroscopic absorption cross section of the
region the neutrons leave behind. With this heuristic approximation, we claim that for diffusive
regions, where the macroscopic absorption cross sections are relatively small, the attenuation of
the transverse leakage terms alongglaend: directions is smoother than for highly absorbing
regions, where the absorption event dominates.

Then, we define the transverse leakage terms as

/0 \Ilm,g(x, O, Z)dz = Dm,g e—sign(/j,m))\z ’ (29)

A \Ijm’g(x, b, Z)dZ — Em7g efs’ign(,um))\;p 7 (30)
b .

/0 \Ilng(x7 y? O)dy - Fm,g 6*8Zgn(um)Ax7 (31)
b .

/0 Uy (2,9, )y = Gy g €597 10, @)

/0 V,,4(0,y,2)dz = H,,, e~ sign(m)Xy. 33)
/0 ‘ljmyg(aa Y, Z)dz = Im,g B_Sign(n”b))\y’ (34)

/0 U, o(x,y, c)de = K, g e~ signm)Xy. 36)
b .

/0 \Ijmvg(()? y7 Z)dy == Lm,g eiSZgn(ﬁm))\z’ (37)
b .

/0 \I/my(a’ Y, Z)dy = Om,g eiSlgn(fm))\z’ (38)

/0 qjm)g(f, 0, Z)dx = Pm,g e—sign(ﬁm))\z’ (39)

/0 U, g(z,b,2)de =R,y o sign(Em)Az (40)

Finally analytical solution is completely determined if to find 8t/ unknowns present
in the expressions Eq26)to Eq.(40). Thus, it is a system solves linear compatible3of/
equations, derived from the definitions of the mean angular flux incteea , y = bez = ¢,
and the application of the boundary conditions.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 2385-2397 (2010) 2393

3 SPECTRAL ANALYSIS OF THE TWO-GROUP Sy EQUATIONS WITH ISOTROPIC
SCATTERING

The main purpose this section is to proof the diagonalizability of mairixin order to
determine£ ! [sT— Ax]_lé = V,eP**V, 7l For this reason , we perform a spectral
analysis of the two-group slab-geomeffy equations with isotropic scattering in a way that is
very similar that was performed for the spectral Green’s Function method by Barros and Larsen,
).

We need to obtain a linearly independent set of any vectors, the eigenvectors of the
matrix A.

To do this, we consider the homogeneous equations associated to the two-group slab-geometry
S equations with isotropic Scattering E2).(

AV s g 1 M M
dl’ (.73) + O-t\ljmz,g(x) - g Us,l,g Z wnanm,l(x) + 03,2,9 Z wn\I/na?Q(x) - 07 (41)
n=1

n=1

Hm
We supose that , fan = 1 : M andg = 1, 2, the solution of Eq41) is
U og(X) = Qi g(v)e™” . (42)

Substituing Eq42) into Eq.41) leads to

V Qi g (V)€™ + 01 g g (V)e™" =

(43)
1 M M
3 [Os,l,g Z Wy 1 (Ve + 050, anang(l/)e”] .
n=1 n=1
and we obtain the eigenvalue problem
1 M M
(V o, + Ot g ) Qi g(V) = 3 [0571,9 Z Wn oy 1 (V) + 0524 Z wnamz(y)} ) (44)
n=1 n=1

In Eq.{44) we need to determine the eigenvalweand then' components the eigenvectors.
We have

1 M M
m == s nUn s nn 45
A1 (V) S 0 F o0 [a 11 n;lw an1 (V) + 0521 nglw « 72(1/)] (45)
and 1 M M
m - s ntn s ntn . 46
A a(V) S 0 Foa) [a 12 nz::lw n1 (V) + 0522 nz::lw o ’z(u)] (46)

Now, for g = 1, 2 we denote the normalization as

M
F,(v) = anamg(l/) , 47)

where,F,(v) = 0or Fy(v) # 0.
First, forg = 1,2, we consider that

M
Fy(v) = anan,g<’/) # 0. (48)
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and substituting into EqgLE) and @6), we obtain

1
OémJ(V) = 8 (l/lum T 0’t71) [0'51171 Fl(V) + 0'37271 FQ(V))] s (49)

and
1

8 (Vi +0v2)

Now, we multiply both Eqs49) and 60) by w,, and summing the resulting equations over
allm=1: M, we have

[0'371’2 Fl(l/) + 05,22 FQ(V) ] . (50)

Qpo(V) =

M M
m Ym, s F s F , 51
3 wmanav) = 3 gt s Fi) + o B)] (6D)
and
M M w
m m = m P F s E ) 52
mzz:lw Amal) n; 8 (Vptm +012) o512 F1(V) + 0520 F2(v) | (52)

Then appear the following homogeneous system of two equations in the two unkfpwins
andFy(v) :

4 (v) = Gi(v) o511 F1(v) + 0521 F2(V))] (53)
4F5(v) = Go(v) [osp2 Fi(v) + 0502 F2(v) ], (54)
represented in matricial form

G1<l/) 0s1,1 — 8 Gl(V> 0s,2,1 Fl(V) 0
= . (55)

GQ(V) 0s5,1,2 GQ(V) 05,22 — 8 FQ(V) 0

In Egs.63), (54) and 6£5) we have defined the functions
M Wm

o) = X T , (56)

There is non-trivial solution for system line&5) if the determinant formed by the coeffi-
cients of F1(v) and F»(v) is different of zero . Then

(Gi(¥) o511 —8) (Ga(V) 0522 —8) — (G1(V) 0521) (Ga(v) 0s12) = 0, (57)

is thespectral characteristic equationa polynomial of degre2N and the rootst v, , k=1 :
2N are the eigenvalues for two-group equations'Bq.Due to the symmetry of the Gaussian
quadrature set in E&T) it has even powers of . As aresult, all roots-v, .,k = 1: M appear
in pairs and, they are all simple, but some of that are very near.

In. Fig.2 we represent the graffically the characteristic equationS5Bgfor S, quadrature,
with media parameterst;; = 1 002 = 1, 0,11 = 0.99, 0,22 = 0.98, 0512 = 0.008
and0’57271 = 0.005.

In order to determine the N the eigenvectors associated to eigenvalues obtained of the
Eq.57), we observe that the set the eigenvectors of a linear operator is not unique in the sense
that their normalization is arbitg%%hyggoﬂeed a se? bfeigenvectors. Therefore we can chose
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infinity

Figure 2:A typicaly distribuition of eingenvalues fd§, quadrature

M
Fi(v) = anan,l(y) =1, (58)
n=1
and substituting Ec@)into the Eq/63), we solve forF;(v), result

4 — 037171 Gl(l/)
Gl(V) 05,21

Substituting this assumption and Exg)into Eq.49) and Eq.60), for ¥k = 1 : 2N and
m = 1: M, we obtain the eigenvectors whose components(vy) anda,, (1) are

Fy(v) = (59)

1 [ 8 — Ogs1.1 Gl(V)
m == S S — 9 60
Q1 (V) 8 (U fim + 001 ) _U 1,1 T O0s21 Cr(v) 0o (60)
and i )
1 8 — Os1.1U1\V
m = 51,2 T O = . 61
«Q ,Q(Vk) 8 (1 fim + Ut,2) _U 1,2 05,2,2 G (v) oot ] (61)
Now, to obtain the otherdM — 2N eigenvalues we consider that, fpe= 1,2,
M
F,(v) = anan’g(y) =0, (62)
n=1
and substituting in Eq#1€) and 60), we obtain
A1 (V) (Vg +0e1) =0 (63)
and
Ama(V) (Vi +02) = 0. (64)
Then, form =1: M andg = 1,2, if we do
y =Tt (65)

)
Copyright © 2010 Asociacion Argentina de Mecanica Computacional http/www.amcaonline.org.ar
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then we can choose,, ,(v) # 0, to be valuated Eqsi6P), (63) e (64). The eigenvaluet)
can have multiplicity> 1 and the components,,(s), param = 1 : M, are the corresponding
linearly independent eigenvectors.

In Table 1 we summarize the multiplicities of positive eigenvalues. Due to the symmetry
of the angular quadrature of the symmetry level that we use these multiplicities repeated for
eigenvalues negative.

Table 1:Number of the Positives Eigenvalues

Characteristic Number of the Positives

Otg | Tty | Otg | Tty | Ttg | Oty | Tty | Otg Equation Eingenvalues
H1 H2 3 4 s He 7 s

N Eql56 (V) (M = N(N+2))

2 6 - - - - - - - 2 8

4 6 14 - - - - - - 4 24

6 6 14 | 22 - - - - - 6 48

8 6 14 | 22 | 30 - - - - 8 80

10| 6 14 | 22 | 30 | 38 - - - 10 120

12| 6 14 | 22 | 30 | 38 | 46 - - 12 168

14| 6 14 | 22 | 30 | 38 | 46 | 52 - 14 224

16| 6 14 | 22 | 30 | 38 | 46 | 52 | 60 16 288

4 CONCLUDING REMARKS

An analytical approach was used to derive a close form solution for the one dimensional
integrated equations derived from a three dimensional neutron transport problem, that we refer
to as theL T'Sy3D — Exp method for two-groups of the energy. In this method, the only appro-
ximation involved is in the transverse leakage terms of the transverse-integrataguations.

The scattering source terms are treated analytically. Based on the physics of radiation shielding
problems, where the neutron flux attenuates exponentially with increasing distance from the
source, we approximate the transverse leakage terms by exponential functions with prescribed
attenuation constants.

Thus far, we have restricted ourselvesStp with two energy problems. This is the reason
why the resulting spectrum conta&d/ eigenvalues and)M eigenvectors. In general, though,
the Sy problem is allowed to have an arbitrary numléeiof energy groups. In this case we
shall perform a spectral analysis following the same steps explained in Section 3, except that
instead of two equations for each direction we shall havex equations for each direction.
Therefore, the resulting spectrum will be contéin 2M eigenvalues and’ x 2M eigenvec-
tors.A set ofG x 2M eigenvectors linearly independent, corresponding o2/ eigenvalues,
forms a basis for thé’ x 2/ —dimensional space solution.
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