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Abstract. This paper presents a new class of models for continuous giioe process of financial
assets. The dynamics of asset returns traded on spot markebgsed on Jump-Telegraph-Diffusion-
Drift processes (JTDD-process) and also on the Stochasetatilty of Hobson and Rogers. Thus, the
main contribution of this paper is the inclusion of memory oily into the price but also in the volatility
of underlying assets of European and American options. inftamework, the models are formulated
as a differential system. The variational formulationgithespective finite element approximations, as
well as the numerical results via simulations are presented
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1 INTRODUCTION

The model proposed glack and Schole§l973 is the most important landmark research
in financial economics. This is based upon the common assomipiat the proportional price
changes of the asset form a Gaussian process with statiordggendent increments. This
assumption has been the subject of much attention over #rs.yA survey of several papers
in the literature has focused primarily on the most impdrgamameter the volatility. Empirical
analysis of stock volatility has shown that it is not consta¥iot to mention that the prices of
the derivatives that are traded are inconsistent with ataahsgolatility assumption.

For this reason a number of authors have suggested variahis Black-Scholes model, As
Hobson and Roger&l 998 proposes a original class of models for the price procesonf
tinuous time of a financial security with non-constant wtgf and volatility defined in terms
of exponentially weighted moments of historic log-pricehus, the instantaneous volatility is
therefore driven by the same stochastic factors as thea# priocess unlike many other models
of stochastic volatility, it is not necessary to introdueswsources of randomness.

Over the years, several papers argue that have the BlackchateS model cannot describe
option prices dynamics in real markets. This finding is pnésg in Francesco and Pascucci
(2004, this paper presents a complete model with stochasticikyldoy Hobson and Rogers,
in which the price of the options are the solutions to degaeegpartial differential equations
obtained by the inclusion of other variables describingdfage of dependence the past prices
of the underlying asset.

On the other hand;oschi and Pascuc009 presents empirical tests with an option pricing
model assuming the volatility by Hobson and Rogers in thepteta market, where reproduce
the “smile” and observed the expression patterns of implagdtility structure. A calibration
procedure based on ad-hoc numerical schemes for “hyptie HPES” is proposed and used for
guantitative investigation into the performance of theg@nnodel, based on numerical results
of “S& P500 option prices”. Hobson and Rogers considetHabson and RogerEl998 a
volatility function of the form

(D) = min {n\/m, N} :

for some large constaf and positive parametessr then they show that the model can indeed
exhibit smiles and skews of different directions.

Another fact is that recent research in option pricing hlasrianto account some features of
models with memory, they are more realistic for the phenarterdynamic asset in the finan-
cial market. Recent paper Blatanov 2007, 2008, presents a new class of models of financial
markets, these being based Generealized Telegraph Process@fe model in question pre-
sented is free of arbitrage and complete, if directions ofga in asset prices are in a certain
correspondence with the speed and with the behavior ofasteates, i.e. the model can be
complete without adding another asset that is based on the saurces of randomness. The
two articles of N. Ratanov present detailed descriptionthefTelegraph Processeand the
lastRatano\2008 has developed an approach to the problem of European quing with
the derivation of explicit formulas. These recent artidt@®wing the ideas originally in 2002
presented byCrescenzo and Pelleré2002, whereGeometric Telegraph Process initially
proposed as a model to describe the dynamics of the priceskgfassets.

The idea here is that working with the two modeling concegtslbbson and Roger 4999
andCrescenzo and Peller¢®002 resulting in a new class of model that takes into considera-
tion the past of price and volatility of the underlying asset
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1.1 Modeling Financial Assets With Memory

The telegraph process describes a random motion with fieitecity and it is usually pro-
posed as an alternative to classical diffusion models Gadstein(1951) and Kac (1974).
Crescenzo and Peller¢®002 proposed the geometric telegraph process as a model tolesc
the dynamics of the price of risky assets whéfé) replaces the standard Brownian motion
of the original Black-Scholes-Merton model. Converselyhte geometric Brownian motion,
given thatX (¢) is of bounded variation, so is the geometric telegraph m®cé&his seems a
realistic way to model paths of assets in the financial marlatano 2007, 2008 proposed
to model financial markets using a telegraph process withrtemsities\.. and two velocities
V4.

The dynamics of asset returns cannot be adequately desddryogeometric Brownian mo-
tion with constant volatility byBlack and Schole§1973. Here we admit that the model for
dynamics of underlying asset returns given by the stoahdgterential equation (SDE),

dS; = p(DF)Sdt + o(DF) S dWy + 0S;d X+ (t) + S(t—)dJ+(t), (1)

whereo? is the volatility of the price of asseff andy is the expected return of asséb( We
assume that the assets pricing process is continuous tmltte r

The dynamics of underlying asset in Ef)) incorporates a pure Jump procgss= {J1(t) }+>o0
with alternating jumps of sizes, € (—1, c0), a Telegraph process. = { X, ()}~ With ve-
locity v, and a pure Diffusion process (Wiener's processyfor= {W;}:>o. LetrL > 0 be the
riskless interest rate which is in the initial state The riskless asset is given by the exponential

of the process
t
Yi = {Yi}tz(] = {/ TidT} .
0 t>0

In view of such trajectories, the market is set up as a coatisyprocess that evolves with
velocitiesv, or v_, changes the direction of movement fremto v, and exhibits jumps of
sizesh. whenever velocity changes. The different parameters fangpdown movements lead
to a gain/loss asymmetry.

Letv,, ry, hy be real numbers such that > v_, ry > 0 andhy, > —1. Let (2,5, P) be a
complete probability space, and let be positive numbers. We consider two counting Poisson
processesV, = {N,(t)}i>0 and N_ = {N_(t) };>0 with alternating intensities,, A_, A,

-—andX_, A\, \_, - -, respectively, that is, a&t — 0,
P(N,(t + At) =2n + 1|N4(t) = 2n) A AL+ O(AY),
PN, (t+ At) =2n+2|Ny(t) =2n+1) = I_At+ O(A?),
P(N_(t+At) =2n+ 1|N_(t) =2n) = I_At+ O(At),
P(N_(t+At) =2n+2|N_(t) =2n+1) = A At+ O(A?).

wheren =0,1,---.

Denotingg, (1) = (—1)+® andg_(t) = —(—1)"+®, considering all stochastic processes
subscribed by+ or — are adapted to the filtrations generated ¥y and N_, respectively.
Consider the (right continuous) processes.

Defining the Telegraph process with states,(\ ;) and ¢#_, A\_) as

t

¢
X+<t)é/0 Vg, (ndr and X—(t)é/o Vy_(r)dr, 2)
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the pure Jump process with jumps at the Poisson timgs= 1,2, -- - as

t N4 (1) t N_(t)
T (t) é/0 ho (AN (T) = D gy roy and J_(1) é/o hy (dN-(7) = D hy (),

j=1 j=1
3)

the Diffusion process (Wiener's process)
t
We=w(o) = [ & @
0

where¢, is a white noise, where the integral in E4) {s indefinite and symbolically presented
as
th - gtdt

Integrating Eq. 1),

1
S(t) = SQ EXP { (,U — 50'2) t+ O'Wt} Et{Xi(t) + Ji(t)}, (5)
wheresS, = S(0) ande,{-} denote the stochastic exponential. Therefore,

et{Xi(t) + Ji(t)} — MO (4),

N (t)
Kp(t) =[]+ AJ) = J] A+ hyerm)-

Here ther; , 7 > 1, are the jumping times of the Poisson procesges
The Jump-Telegraph process (JT-process) is defingdas\, + J;

ez} = 2020 TT (14 Az(r)e 220,
0<r<t

The Telegraph process without jumps cannot be a martingiales
<Z>cont — <Xi 4 Ji>cont =0
and

e Xet i} = et I (14 Adu(m))e 0

0<r<t

= Xxt el H (1+AJL(r)) =X+ H (1+AJL(7)) .

0<r<t 0<r<t

Therefore Eq.5%) is expressed by

where
N ()
Ka(t) = [T O+ houir ).
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On the other hand, The riskless asset price has the follolonng

t
B(t) = eyi, Yi = / TidT,
0

where the interest rates. > 0 and =+ indicate the initial market state. Here again =
{YL(t)}+>0 is a Telegraph process with velocity values

In Ratanoy 2008 presents the following theorem: Jump-Telegraph-Ditinprocess (JTD-
process) is a martingale if and only if

)\ihi = — V4. (7)
2 EUROPEAN OPTION PRICING MODEL

In Hobson and Roger€l998 introduce a new class of stock-price models. Specify local
volatility in terms of weighted moments of past returns, igpecification of instantaneous
volatility in terms of exponentially weighted moments oéthistoric log-price. This introduces
a feedback effect into the volatility process: presentckson the asset price result in hight
future uncertainty.

We define the discounted log-price processt timet as

Zi =log(e™*'8y) ,

wherer is the (constant) risk-free interest rate, and the offsettion of orderd, denoted by
D", by

+oo d
D =g [ e[zt -zt]'w 0>0 ®)
0

where the parametérdescribes the rate at which past information is discourtesiribes the
weight of historic observations. Stock prices are driverigystochastic differential equation

dZEF = pu(t, Z,, DM*, - D\PHVat + o(t, Z,, DIVE, -+ DI F)aw, (9)

for some smooth functions(-) > 0 andyu(-) areLipschitzfunctions.

In Platania and Rogef2003 say thair(-) can eventually depend df, the model includes
as a subclass the case when the volatility rate is a detesticifiunction of the underlying.
Furthermore the hypotheses preserve completeness, adjdovipreference independent option
pricing. This last feature constitutes an advantage ovér $stiochastic volatility processes,
where arbitrage considerations are not sufficient to ifiehtisk premid uniquely.

In the following, we will assume the instantaneous volgtiis a function of the first order
offset Df = Dg})’i only, since we want to obtain a tractable PDE and to solveth véliable
precision. Hobson and Rogers showed that even in this cassdidlel has the potential to
explain volatility smiles and skews, and our simulatiordg#s seem to suggest that including
higher order offset functions does not improve the resiggsicantly.

We readily decomposB;" as the deviation of the current price from an exponentiadjgh-
ted average of past records

+oo
Df = 7F — / O ZE dv, 6>0. (10)
0

The latter says thdt determines the horizon of thetbving time windotof the integral on
the right. For bigger values of this parametgyr,s more dependent on the recent past, while
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small values almost identify the offset increments witltcerchanges. Obviously in this case a
level dependent volatility assumption would be numencaibre convenient.

We denote by = V (S, D, t) the price at timet” of an European option with maturity/™,
expressed as a function of the state variables: tifhyeasset price $” and deviation ‘D”. We
have(S, D,t) e R x R x [0, 7.

We assume that the asset price is governed by the stochd&tremntial equation (Jump-
Telegraph-Diffusion-Drift process), positive past infation,

dS; = (D) Sydt + o (D)) Sy dWy () + o(D;)Sid X (t) + S(t—)dJ, (1) (11)
and negative past information,
dS; = u(D;)Sidt + o(D; ) Sy dWi(t) + o(D; ) Sed X _(t) + S(t—)dJ_(t). (12)

and the deviation (cf. formula (11) Hobson and Rogerd998) is governed by
dDF = — BUQ(Dti) + epﬂ dt + o (DF) dWy(t) . (13)

We define option pricing with past information from the ialtvalue of the price of high
(positive past information) a& " (S, D, t) and option pricing with past information from the
initial value of the price of down (negative past informafiasV — (S, D,t). Observe that in
Eqg. (L1) or Eqg. (L2) and Eq. L3) the Wiener process have been given subscripts. This isibeca
we are allowing 5" and “D” to be governed by two different random variables, this isa-t
factor model. Thus, althoughi";” and “dWW,” are both draw from Normal distributions with
zero mean and variancelt”, they are not necessarily the same random variable. They ar
however, correlated by[dWW,dW,] = pdt with —1 < p(S, D,t) < 1. The “p" is equall by
definition of “D”. Then, e[dW;dW,] = 1dt. We can still think of Eq. 11) or Eq. (L2) and
Eq. (13) as formulas for generating random walks fo"‘and “D”, but now at each time-step
we must draw two random numbers.

In order to manipulat®& (S, D, ¢) or V—(S, D, t) we need to know Itd’s Lemma applies to
functions of two random variables. As might be expected,ut@al Taylor series expansion
together with a few rules of thumb results in the correct egpion for small change in any
function of both S” and “D”. These rules of thumb are

AW2=dt, dW2=dt and dW,dW, = pdt = dt.

Applying Taylor’s formula to the positive past informatidrii™ (S + dS, D + dD, t + dt) we
find that

vt oVt eyt | PV g2y+
dvt — di d dp+ 29V e dSdD
v or Ut g5+ G P T 3555 W+ ggap P+
| PV

+

S D+t v—(s+h+5,p,t)—v+<S,D,t)]dJ+,

where
ds? = o*(Df) S2dWi(t) = o*(Df) S?dt
dD* = o*(DF) dWi(t) = o*(Df) dt ,
dSdD = o(Df) S, dW, o(DF) dW, = o*(Df) Sydt .
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Thus, 1t6’s Lemma for the two random variables governed by(Ef) and Eqg. {3) becomes

vt eVt gt 1 PPV o2V
+ 1 2,1+ Q2 20+
AVt = Sedt+ SdS + S dD + 0™ (D)) S22t + (D)) S dt +
1, . OV . .\
+ 0D Syt + [v (S+hyS,D,t)—V (S,D,t)]dJ+. (14)

Let us construct a portfolibl ™ consisting of one option with maturifg,, —A; option with
maturity datel, and—A7] of the underlying asset, i.€I" = V" — AJV," — AT S. Considering
that the increasing in the value of the portfolio in a spawet keeping the\| andA; rates,
is given

dlt = dV" — AydV," — AfdS. (15)

Using Eqg. (4) in Eq. (L5) it can be shown that

+ +q 217+ 217+ 21+
- {Wl ar e L p g {avl —Na%}w%w)s{am

ot 2ot 2 052 27982 0S0D
21/+ 27/+ VAV s +
AL 1%02(0;) Pvl _NaV?HdH{W A

2 950D D2 2 9D2 S
+ + +
— A;aa‘g } ds + {83‘;1) — A;%‘% } dD + { [VI‘(S +hyS,D,t)—

- ‘/1+(57D7t):| - A;_ |:‘/2_<S+ h-i-Svat) - ‘/2+(57D7t)} }dJ+

Fixing A andAj according to

. _OVit/oD
> 9V, /oD

oVt
Af=—L A
and A] 55 5

vy OV 9V /oD oV,
as ~ 9S 9V, joD 08’

the risk from the portfolio is removed. Then,

dIT* vyt avit/aDavy 1,
= _ - D+ 2
dt { o " ovyjop ot a0 (DO {

62‘/1+ B a‘/lJr/aD 82‘/2+

952 0V, /D 052

82Vﬁ avlJr/aD 32‘/; 1 ) N 82‘/1+
- + + 50 (Dt )

0SoD 9V, /0D 0S0D 2 0D?

+ o*(D;f) S, {

oV /oD 9*V,+ _
- 6\/1+;8D D> H i {[Vl (S +hy S, D, 1) = Vi (S, D, 1) -
2
av,* /OD dJy
dt

oV, JoD

[V;(S 4y S, D,t) — V;H (S, D, t)} } (16)

We remark that holds the following

Ny (1)
dJ, d
W { 2 hgm)} = At (17)

7=1
Considering the arbitrage arguments we can state the rettine portfolio

dIT* oVt /oD

ov;t
TR S TV > ;

oS

OVt /OD oV,
oV, /oD 9S

Vit —r St 4, S (18)
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Replacing Eqg.18) and Eqg. 17) in Eq. (16), we have

aV;* /oD oVt OV jaD av,t AVt oVt /oD avyt
+ 1 + 1 1 2 _ 1 1 2
N “ravFon > o as Vo GuFap a5 ~ ot avijoD ot
1, 2Vt OV /oD PV, o2Vt VoD PV,
~5%(Df) S2 1 1 2 2+ IS 2
T o (D) S [652 v /oD asz | T P0) S| 558D T vy oD 950D

1, . [V AV /oD vy . N
oV /oD, N
- W[Vg (S+hiS, Dit) =V, (S,D,t)} At

Gathering together allV;” terms on the left-hand side and all5” terms on the right-hand
side, we find that

oV, 1 02V o2Vt 1 o2V
{ o+ 57 DD Siter + (D) Sigagp + 50 (D) G5 — T+
oVt - oVt
+ rsSh+ [ <S+h+s,D,t>—v1+<8,D,t>]A+}/ 5 =
— aVQ 1 + 282‘/ 2+ 82‘/; 1 o+ 82\/;
- { o a7 (D) Sizggr + o (D) Sigeps + 57 (D) Gpa -

+ av;r

[V;(S RS, D t) — Vi (S, D,t)})\+} /55

av,
— V,h S—=—
r‘i’ 2 + T+ aS
The last equation presents two unknowns. However, thébaitd side is a function ofr,”
and the right-hand side is a function dfy”. The only way for this to be possible is for both
sides to be independent of the maturity date. Thus, drogpmgubscript fromV”,

GVt 1, LBVE L @V 1, @RV N
{W + 50 (D) Sigr +0° (D) Siggps + 507 (D) G eV
vt o N vt
+ T+S 98 [V (S+h+SaDat)_V (SaDat)i|)\+}/ oD =A (S7D7t)a

for some functionA* (S, D, t). In view of later development it is convenient to write
1
AR(S.D,8) = (D7) 77(5,D.0) + | 3o(D) + 0 | (19)

In Generah™ (S, D, t) is the market price of risk. Here in this work we assume thdts, D, ¢)
is equal to zero. Thus EqL9) reduces to

AT(S,D,t) = %a%Dﬁ) +6D;. (20)
We have
vt 1 LRV PVt 1, PV N
o T 37 (PN Siggr +o (D) Sigean + 50 (D) G — eV
A T ) S.D.1) ~ V*(S.D.0)|As = | 50%(D}) + 607 o
LSS 88 ++ ) ; ) + — 2 aDa
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we find the equation for thgositive past information with stochastic volatility of Hobson and
Rogers

O L @V ov+ i [ ov
+ & 2(D+)82V+—[ + A ]v+—A V(S + h,S, D.t) (1)
20 t ) op2 T+ + + +0, ;1)

Similarly to the case of positive past information, the daling equation for thaegative
past information can be deduced

ov- 1 , oV -
RAERT. D;)+6D;
or 2 (D) + } -
1

2 2 _
(Dy) S trS5g +o (D) Sigean |3 oD

L 952 a8 H(D;
0?V~
oD?
Thus, Eq. 21) and Eq. 22) define the differential system given by

PV- ov— 0PV- [1

+ Zo(Dy) - [r, + A,] Voo AVH(S +h S, D,t). (22)

2

(

OV+ /ot + Lo?(Dit) S? :62V+ /852} + r+s[av+ /as] +
+o2(D) S, [a?v+ /asap} - [502(1):) n epﬂ [av+ /aD} +
+10%(D}) [a2v+/ap2: - [m n )\4 VA V(S +hiS, D,t)

23
OV ot + Lo*(Dy) S :a2v— /052} + r,s[av— /as] + >
+o?(Dy) S, [a?vf /asap} - [502(1);) n QD;} [avf /aD} +
303 (D;) |2V OD?| = |r- A |VT = A V(S +h 8, D,1)

\
2.1 Formulation of the Problems

The mathematical modeling associated with memory in assetvalatility for pri-
cing options is defined in an unbounded domdh, = [0, 0] x [—o0,00]. To construct
the approximate solution, it is necessary to trundate obtaining a bounded domain =
0, S™ax] x [D™n D™mer] whereS™ is the maximum value the underlying asset!*” is the
maximum deviation and™" is the minimum deviation.

Usually Dirichlet boundary conditions are assumed in a bedrset?

pE(0,D,t) = Ee=T"Y and p*(Syee, D,t) =0, (24)

resulting from classical theory. In the case of a call opttbe boundary conditions of Dirichlet
type inQ2 come frome(0, D, t) = 0, the parity formula with the boundary condition for the put
optionslimg ., ¢(S, D, t) = limg . ¢ (S, D, t) = S for S = S,,,. large enough, resulting

E(0,D,t) =0 and ¢*(Spaz, D,t) = Spaz — Be T (25)

The problem for European put option pricing is formulatedcdisws
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PROBLEM EPHR: Fort ¢ [0, 7], we findp(S, D, t) = [p+(s, D,t) +p (S, D, t)] /2, such
that

opt /0t + So*(D}) S [0Pp+/05%] + 1.8 [op* 0S|+
+o?(DF) S, [a2p+/asaD] - [%&(DJ) +9D;L] [ap+ /aD]+
+10%(Dy) [02p+ JoD?| = [m + >\+] Pt = Ap (S + hiS, D,t)
_ (26)
p~ )0t + Lo*(Dy) S2[0%p- /852] + r_s[ap* /as} +
+o?(D;) S, [8219_ /asaD] - [%JQ(D;) +eD;] [ap— /aD]+
| +o%(D7) [an*/aDQ_ - [r_ + )\_]p’ Apt(S+h_S,D,t)
with Payoff condition,

p*(S,D,T) = (E—S)* and p~(S,D,T) = (E - 8)*,

boundary condition,
p (0,D,t) = Ee ™+ pT(S, 00, D, 1) =0,

p(0,D,t) = Ee T4 and p~(Spmaz, D,t) = 0.
And the problem of European call option pricing as

PROBLEM ECHR: Fort € [0, 7], we find¢(S, D, t) = [c+(S,D,t) + c*(S,D,t)] /2, such
that

dc* |0t + Lo?(Df) S2[ 02t /852} .S [ac+ /as} +

+o?(D) S, [a2c+ /asap} - [502@;) n epﬂ {aﬁ /aD] +

+102(D}) [a2c+ 10D?] = [m n )\4 ¢t — A (S + hyS, D, 1)

_ (27)

dc [0t + LoX(Dy) S0P /05%| +r_S[oc [0S+
+o?2(D;) S, [a%f /asap} - [502(1);) n QD;} [36’ /aD] +
+30°(Dy) [820_/8D2: = [r, + )\,} ¢ —Ac"(S+h_S,D,t)
with Payoff condition,

\

ct(S,D,T)=(S—E)" and ¢ (S,D,T)=(S—-E)",
boundary condition,
ct0,D,t) =0 , " (Spmaes Dyt) = Sppae — Ee =+t

¢ (0,D,t) =0 and ¢ (Spmaz, D,t) = Sprag — Be 171,

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecanica Computacional Vol XXIX, pags. 2623-2646 (2010) 2633
2.2 Variational Formulation

In order to get an initial value problem we need to considettansformation in the time
variabler = T —t. The following problem for the European put option pricisghen deduced

PROBLEM IEPHR: For all 7 € [0, 7], we findp(S, D, 7) = [p+(5, D,7)+p (S, D, 7| /2,
such that

op*)or — Lo*(Df) S? [82p+/352] — T+S[8p+/35] —

—a*(D}) S |0*p* /050D + |1o*(D;) + oD | |op* /0D -
—?%an%wmfraﬂu+x4w+AwwS+m&D¢)

28
op~/or — Lo*(D;) S} [an’/aSQ] — T_S[ap’/aS] — -
~0*(D;) 5,0 /0S0D| + [ S0*(D;) + ;| |op™ joD|
—16%(D5) [32])_ /8D2] — [r, + A,] P+ Apt(S + h_S, D,t)

\

with initial condition,

pt(S,D,0)=(F—-S)" and p (S,D,0)=(E—S)",
boundary condition,

p (0,D, T —7)=Ee ™M p¥(Sp0e, D, T —7) =0,

p_(07 D,T — T) = E€_T7[T} and p_<Smaa:7 Du T — T) =0.

The variabler is the time remaining to the maturity of the option. While t&ys Eq. £8)
does not require the conditian < 7', the model assumes that the prices computed to the
limittime 7. We define the set of functions,

W = {pe L0, T: H(Q) | 9p/0r € 13() ae.in[0,T]; p(0, D,7) = Be ™,
P(Spass D, 7) = 0, a.e.[D™", Dmar] x [o,:r]},

and the variations space
Wo = {v € H&(Q)} .

Defining the following inner product in the*(Q),
(u,v) = / u(x)v(x) dr,
Q

the system Eq.28) can be written in vector form

op 1 ,O0°p op p op 1 p
— — —Volt5"—— — RS— — VoltS b — — —Volt— +Ap=F 29
or 2 0" 592 a5~ VoS goop t®5p ~ o Voltgpe TAP=F, (29
where
p* o*(DF) 0 T+ 0
p — 3 VOlt - s R =
P 0 o?(D;) 0 r_
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10%(DF) +6D; 0
d —
0 s0%(D;) + 60D,

Ty +)\+ 0 F+ )\+p*(5+h+S,D,T)
P -
0 r_ 4+ A F_ A pt(S+h_S,D,T)

multiplying the Eq. 29) by a test functiorv and integrating irf2, we obtain

ap 28 ap aQP
— — It It
(af’v> ( VoltS 5 ge ) (RSaS ) (V Sasop” ) *
op o*p B
+ <<I>8—D v) — ( VoltaDz, ) + (Ap,v) = <F,V) , (30)

Vv € Wy(R2). Considering that

A:

0*p 0 op op
—VoltS? = —Volt— { 52 It 1
V 5 552 V 83 {S as} VoltS5s - (1)
as also o 10 5 5 5
—Voltw =535 {VoltaD} - {Volt}aD (32)
and finally
Pp 0 op Jop
Volt Volt—{ S—— % — Volt— . 33
oS 55ap = Voltgs {Sap} aD (33)

So substituting Eq.31), Eq. 32) and Eq. 83) in Eq. (30), we get
Jp 0 »Op 0 op
10 op Jp
_ (QaD{V ltaD} ) ([R Volt]SaS )+<Ap,v)+

+ ([¢+Volt+ a%{V 1t}] gg ) - (Fv) (34)

Using the integration by parts in the second, third and fotetms of the Eq.34) andv €
Wh(€2), we obtain

op 8p 8 8p ov

op Ov op
+ < VOlt@D aD)—([R—Volt]S%,V)—l—

0 op B
+ <[¢+Volt+a—D{V ltHaD >+(Ap,v)_<F,v).
Thus, the problem of put options pricing can be formulatefbhgws

PROBLEM |EPHRV: For all~ € [0, 7], we findp(S, D, 7) = [p+(5, D,7)+p (S, D, 7)} /2,
such that

Ip
(E’V) +a(p,v) = <F,v> . Yv EW,,
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satisfying the initial condition

<p+(0), v+>

<p(0),v> = ., Yv EW,,
<p*(0), v’)
with the bilinear form given by
dp

B ov op Ov op Ov
alp,v) = < VoltS e, Sas) <VoltSaD as) < Volt 2. 8D)+<Ap,v>

_ <[R Vlt]sgs ) ([<I>+Volt+a%{V 1t}]§g ) (35)

On existence and uniqueness of this kind of parabolic variat equality see, for example,
Brézis(1984.

Next we present a finite element approximatio®®OBLEM IEPHRMn the space domain
combined with an implicit finite difference approximationthe time domain.

2.3 Finite Element Approximation
For the construction of an approximation through finite edats, we define
W;lf = {Vh S CO(Q);Vh|k S Pk(K)} ,

Wi = {pu € L0, T;W5) | 99 /0r € L3(Q) ae. inl0,T) ; pu(0,D,7) = Ee ™™,
P1(Suar: D7) = D@, inf0, 7], VD € [0, 0] },

so thatVF C W, is the space of element’s of degree> 1, in each elemenk’ of triangulation
Ty, whereP,(K) is the polynomial set of degree less or equal defineld in

By using the Galerkin method iIRROBLEM IEPHRYwe obtain the semi-discrete approxi-
mation or the continuous approximation in time.

The fully discrete problem is now defined using theler Implicit methodn the discretisa-
tion in time. We split[0, 7] in sub-intervalgz, 1, 7,,], wherer,, = nAt,n = 1,--- | N, with
70 = 0 andry = T, and we use the notatiop&* = p*(7,),

+1,+ ,E
nt pn _ pn

At
The fully discrete approximation is considered in the failog functional space

O-p

WAT,h - {pz: n = 17 .. '7N7 pz € W}lf7 ph(oaDaTn) - EG_TTna
Pr(Smas, D, 1) = 0,n = 1,.... N, VD € [D™", D™e] }

The fully discrete approximation in then computed usingfttiewing variational problem:
PROBLEM IEPHRhm: Givenn =1, --- , N, we findp} € Wa; such that

(an;;,vh) Fa(pit,vy) = <Fh, vh), Vi € WE N HY(Q) (36)

satisfying the initial condition

<p?pvh> = <p(0),vh>, v, EWEN H ().
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3 AMERICAN OPTION PRICING MODEL

Was previously presented a formulation of the problem ofblaan option. Now will be a
formulation of American options pricing as free boundargipems. Following the same idea
presented bWilmott et al. (2000 to the case in standard Black and Scholes modeling.

If at any timet* < T the price of the underlying asset & < E(1 — e "(T=%)), the
put option must be exercised immediately, because the iadogenerated by the premature
exercise satisfies

L=(E—5%>E( ) > p*(S*,1),

wherep*(S*, t) is the price of put European option with the exercise pficand maturity in
T — t* years. Like any portfolio income i6F — S)* int = T and this has the same value
that the European option, we have no portfolio is a betterméitive to the exercise premature.
Noting that in this case the pride(S*, ¢*) should have the valuE — S* not to have arbitrage.
In particular, we have fo6* = 0, P(0,¢*) = E using the arbitrage argument, we can see
that
P(S,D,t)>(E—-S)"=0, VS>FE.

It appears that price timethat lead to the premature exercise of forming a rangg.df |,
whose upper limit is called theptimal point of exercise

The pointS/, divides the dominion in a segment where the option is eged;iand the other
in which it should exercise it later. Thus, the American ppti@ns pricing problem may be
seen adree boundary problems where the free boundary is given By = S(¢).

We can formulate théree boundary problemsin two well defined regions for “positive
past information”, one where we must exercise the option,

P*(S,,D,t) = (E — 8)*

oP* 1 S2( D+ , 02 P+ 8P+ o OPPT L, L oP*
o T a7 D) Siggr TS e + 0N (D) Sipaan — |5 (D) +0D7| Hp
1 0?pPt N
+ 3OUDN) G5 — [+ A PSP (S +hi 8D
0<S<Sy.
another where is not optimal the exercise of the option
P*(S,D,t) > (E—9)",
oP* 1 2D+ ,0? P+ 8P+ o OPPT 1 . L oP*
o T a7 D) Sigar TS5 + 0N (D) Sigaan — |50 (D) +0D7| G5+
1 0?pPt _
+ 50-2(D:_)W — |:T+ +)\+:| P+ = —>\+P (S+h+S,D,t) ,

The conditions of the interface between two regions of thmala in pointsS;, given by

PHSp D) = (B =Sy, ~-P*(5(1), D.1) = 1.
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Besides the condition of final time, payoff function, whish i

P*(S,D,T) = (E - S)*,
and the boundary conditioy (€ 092.),
PH(S=0,D,t) = Ee T | Jim P~(S,D,t) =0
Similarly calculated for “negative past information”, owbere we must exercise the option,

P(S,,D,t) = (E—S)*

oP~ 1 ;2 2 PP~ oP~ 0?P~ 1 2 oP~
ai 27 (D0) Sigar + 1S5 T (D) Sigean = |37 (D) + 000 Hp+
1, 0°P
- - - - < +
+ 50055 [T_H_]P < A_P(S+h_S,D,t),
0<S<Sy.
another where is not optimal the exercise of the option
P~ (S,D,t) > (E—9)",
oP~ 1 2 2 PP~ oP~ 0?P~ 1 2 oP~
g T o P SiGg - SYg (D) Sigagn — |37 (PO +0DF | G+
1, 0°P _ .
+ 50‘ (‘Dt )W — |:T_ +)\_:|P =-)\_P (S+h_S,D,t) s

The conditions of the interface between two regions of thmala in pointsSy, given by

P~ (S;,D,t)=(F—S;)})", %P(Sf(t),D,t) = —1.

Besides the condition of final time, payoff function, whish i
P~ (S,D,T)=(E - 8)*,
and the boundary conditioy (€ 02.),

P~ (S=0,D,t)=Fe-TY  lim P~(S,D,t) =0

S—o00

3.1 Formulation of the Problem

The problem of American put option pricing as
PROBLEM APHR: For 7 € [0,7T], we find P(S,D, 1) = [P*(S,D,T) + P~ (S,D,7)|/2,
such that
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o FOrP+(S,D,7) = (E— 8)*, P~(S,D,7) = (E — S)* and0 < S < S,

;

oP* /ot + 1o?(Dit) S2 :62P+ /352] 7.8 [ap+ /as} +
+o?(D;) S, {a2p+ /asaD] - [%JZ(D;“) + epj] [ap+ /aD] +
+102(Dy) [a2p+ /8D2: < [u n )\+] Pt — AP (S + 1S, D.1)
_ (37)
OP" /0t + 3a*(D;) S2|* P~ /052] + r,s[ap— /as} +
+o2(D;) S, {32}7* /asaD] - [%az(Dt_) + QD;] [apf /aD] +
+Lo?(Dp) [(9213— /8D2: < [r, + A,] P~ —A_P*(S+h_8,D,t)

\

e ForPH(S,D,t) > (E -85, P (S,D,t) > (E—S5)TandS; < S < oo,

(

ap* /ot + Lo (Dit) S2 |02y /352] + 7.8 [ap+ /as} +
+o?(D;) S, [a2p+ /asaD] - [502@;) n epj] [ap+ /aD] +
+30%(Df) [82p+/8D2_ = [7"+ + )\+]p+ = Ap (S + i S, D, t)
_ (38)
op~ /0t + L0* (D7) 83|02 1057 +r_S[ow /05| +
+o2(D;) S, [an* /asaD] - [502(1);) n QD;] [ap* /aD] +
+302(Dy) [82p_/8D2_ = [?L + )\,]p_ — A p"(S+h_S,D,t)

\

The conditions of the interface between two regions

PH(SE D) = (B = Si0N) . PRS0, D)= 1,

and

P(SpD.0) = (B = S0, 5P (8;(0),D,6) = -1

Y

with payoff condition,
PT(S,D,T)=(E-S)" and P (S,D,T)=(E—-S)",
boundary condition,
PT(0,D,t) = BEe T " P¥(S, 00, D,t) =0,
P=(0,D,t) = Ee"-""Y and P~ (Spas, D,t) = 0.

3.2 Variational Formulation
Defining the subset of functions bounded below;ioy)

K={PeW(Q); P(S,D,7)> ¢S} (39)

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecanica Computacional Vol XXIX, pags. 2623-2646 (2010) 2639
whereg(S) is the payoff value which, in the case of put option is giveryby) = (E — S)*
andg(S) = (S — E)* for call option.
As the system37) can be rewritten as

op ,0’p op o*p op 1 0*p

P 1yos2?P _rsP _von ®o— Vol oos + Ap > F (40

oy g Voltd 5o — RSG5 55500 T ®ap apz TP (40)
and the systenf3g) as

Jp o’p op 9*p op 1 o*p

———V 1tS?— — RS— — VoltS L _ SvoitLP L Ap=TF 41

or 2 55?2 s 950D " Cop 3 Voltgpe TAP=F. (1)

multiplying (40) and @1) by v, wherev is a test function inV,, and integrating if2 we get
oP ,0*P aP P
opP P
n ( et ) ( Volt s v >+ (AP,V) > (Fv)
Taking into account Eq3(1), Eq. 32) and Eq. 83), we establish
oP 0 ,OP 0 oP

_ (éai) {V ltgg} ) ([R Volt}Sgg v) v (A P,v) +

0 oP
— >
+ <[<I>+Volt+ 5 {VoltH 5 ) (Fv) (42)
which leads
op 8P 8v 8P 8v

oP oOv oP
+ < Volt . aD) <[R Volt]SaS ) +
0 oP
> .
+ <[<I>+Volt+aD{V ltH D ) v (AP,V) > (Fv)
Thus, the problem of American put options pricing can be idated as follows

PROBLEM IAPHRV: Forr € [0, T we findP € K, P(S, D, 7) = [P+(S, D, 7)+P~(S,D, r)] /2,
satisfying the variational inequality

(a;: >+a(Pv) (Fv) Vv e W,

and the initial condition

(P(O),v) - . YvEW,,
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with the bilinear form given by

oP _oOv OoP ov OP oOv
a(P,v) = ( VoltS . SaS> (VoltSaD as) (VoltaD aD)+(AP,V)—

_ ([R Volt]sgl;’ ) ([@+Volt+a%{\folt}}§g ) (43)

On existence and unigueness of this kind of parabolic variatinequality see, for example,
Brézis(1984.

Next we present a finite element approximatio®R®OBLEM IAPHRViIn the space domain
combined with an implicit finite difference approximationthe time domain.

3.3 Finite Element Approximation
For the construction of a fully discrete approximation wigoduce the set
Wﬁt,h - {PZ € WAt,h ; PZ(‘Sv Dan) > g<S)}

We should point out that the inequality arising in the prergidefinition will be considered only
in nodal points of the triangular mesh.
Thus the fully discrete problem f@ut american options given by

PROBLEM APHRhm: Forn = 0,1,2, - - -, we find P} = [Pﬁ* +P,’f”} /2 € W4, , such that

1
( {P"+1 P;;},vh _ PZ“) +a(PrH v, — P > (Fh, vh), Vi € Wy N HL(Q)

AT
(44)
with initial condition

(pg,vh) = (p(O),vh) ., Yvi, EWLN H&(Q) )
4 SOLUTION OF THE ALGEBRAIC PROBLEMS

The numerical results were obtained with the Picard’s Atpar with the method of Suc-
cessive Over-Relaxation - SQR(for European option pricing. This last method was replaced
by method of Successive Over-Relaxation SORfith projection on the convex set when the
American option pricing problem is solved.

4.1 Iterative Method of Successive Over-Relaxation- SORJ)

In iterative methods for solution of linear systeris = b is generally evaluated the norm of
the residue of #* = b — Axz” of the approximated solution. The process stop when thidues
satisfies a stopping criterion.

In the numerical approximation of the European option pgaive use the method of Suc-
cessive Over-Relaxation which leads, in each time stepségaence of approximationsf,,

ph ), which uses a combination pﬁ andph ,l.e,
k k
phz( o =(1- w)phz( : +thz( .
leading to
k+1 (k+1) n,(k
ph,z( ) = (1- )phz (b - Zal}phj Z @ijph,g(' )> :
j=i+1
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For the American option pricing, in the numerical computatof an approximation for
the solution of the systemit{), we use the iterative method of Successive Over-Relaxatio
SOR(v) with projection on convex set at each instant of time, i.e.,

i—1 n
n,(k+1) n,(k) w n,(k+1) n,(k)
By =(l-w)F;" + — |bi — aij By - Z aij By
" j=1 j=i+1

n,(k . —n,(k
Ph,j( ) = min [Ph,j( ), g(S)}

wherea;; are the coefficients of the matrix of the system of inequati@4) resulting from
the piecewise linear approximation. In the case of put ogtigS) = (F — S)* andg(S) =
(S — E)* for call option.

The iterative method converges@o< w < 2. Forw = 1 would be the equivalent to the
Gauss-Seidel method, < 1 has been under-relaxation and> 1 has been over-relaxation.

4.2 Picard’s Algorithm
In all time steps is performed such procedures.

1. Forn=1,....,N:

I - Resets the force vectors, = 0andf, =0;
ii - Loop to adjust the force vector. Fasnst =1, ..., 10 :
A . Solve the equation for positive past informatidf; (S, D, 7,,).
B . Solve the equation for negative past information,(S, D, 7,,).
C . Adjust the force vector positive and negative, = At A\_ V"
Fo=AT A VT

J(1+hy)”

7

jan) and

5 NUMERICAL RESULTS

The aim of the this section is to illustrate some importapeass concerning the application
of numerical methods in the financial market, more precjsbb/use of finite element methods
for numerical solution of equations and inequations reladeEuropean and American pricing
of options with memory in assets and volatility.

The code of implementation for the finite element method igter in Matlab in the spirit
of the seriekAlberty et al. (1999 2002; Cartensen and Klos@002 and moreBecker et al.
(298]

We remark that the purpose of the simulations is to provideaasier overview of the theo-
retical results presented in this paper.

5.1 Example: Recovering the Standard Black and Scholes Motle

The economics parameters of modeling a$86.00 is o initial price of underlying asset,
exercise price i840, interest rate i8% /year, Here in this example the volatility is constan (
de 30%/year and the time of maturity of the option is one year. The memaemameters are
zeros.

In the implementation of the Finite Element Method we haweatdition of the following
parameters51 is the number of step of time arid is the number of € numero de underlying
asset (space).
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Figure 1: European option without memory, assumptions a€EBand Scholes

Verified by the figure, Figl, that we recover the Black and Scholes model, ie has the ncether
value found by the Finite Element Method is equal to the Blao# Scholes formula. Detailed
study of the convergence of Numerical Solution for Blackk@es formula is presented in the
master’s thesi¥homaz(2009. In the next figure, Fig2, we see the option value over time of

maturation.
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Figure 2: Over time
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5.2 Example: Memory in Assets and Stochastic Volatility of kWbson and Rogers

In this example, we present an European put option. The Eomsgarameters ar&36.00
is o initial price of underlying asset, exercise pric&i®, interest rate i20%/year. Here in
this example the volatility{( D)) is not constant being a function &f, i.e. volatility function
of Hobson and Rogers. The time of maturity of the option is yeer.

The parameter is said to be the minimal level of implied volatility and isuiad in the
volatility functiono (D). We shall use) = 0.4. Furthermore we havwe= 5, a scaling parameter
for the influence of the initial offset in the volatility fution o(D), # = 1, the rate that past
information gets discounted in the offset functioh.= 0.1 is discontinuity parameter of the
underlying asset.

The method numerical parameters afeis the number of step of timé, is the number of
€ numero de underlying asset (space) &ahds the number of step of Deviation. To generate
numerical solution we have plane ov€rx D. This example we us® € [-2;2] andS €
[0; 122.14].

We found that over time the behavior of the solution curve hatope greater due to the
parameters of the memory, both in the price as in the vdiatili

Price of European Option (FEM, D = 0.1)

Option Price

X ““““‘“
Sestigusicyaticgntfiet!
Y

AN o
S
S OSSOSO S SOSS
S

Time to Maturity

Assets Price

Figure 3: Option pricing in over time

American put option with the same parameters.
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Figure 4: Option pricing in over time

If we usen = 0.35 with ¢ = 5, almost no influence of the initial offset in the volatility
functiono(D), § = 1, the rate that past information gets discounted in the bffsection.
A = 0.1 is discontinuity parameter of the underlying asset. ThenBoucs parameters are,
$36.00 is o initial price of underlying asset, exercise prices#), interest rate i90% /year.
The time of maturity of the option is one year. We find Europpanoption pricing inD = 0.1

Option Price

Price of European Option (FEM, D = 0.1)

“O““ SSSOS
R

Time to Maturity

Assets Price

Figure 5: Option pricing in over time

European put option pricing with the same parameters i 0.5 and D = 1.0,
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Price of European Option (FEM, D = 0.5) Price of European Option (FEM, D = 1.0)
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Figure 6: Option pricing in over time§ = 0.5) Figure 7: Option pricing in over time/§ = 1.0)

We observed that for higher valuesiofwe have a increase in the value of the volatility function
which results in one greater displacement of the optiorepsiave over time.

6 CONCLUSIONS

In this paper a new model for the evolution of option pricingem memory price and vo-
latility underlying asset are considered. We combine nmoudiere certain memory effect is
presented in the price of the underlying asset du€rescenzo and Pellerg2002 and de-
veloped later byrRatanov(2007), with the original class of models of non-constant voiitil
developedHobson and Rogerd.999.

The use of Jump-Telegraph-Diffusion-Drift processes ([DTocess) for underlying asset
models leads to an increasing of the difficulties in the miodgbrocess. In fact, such JTDD
process induces a system of equations involving the oppoiegg into different assets pri-
cing: system 25) for put European options; syster@d] for call European options; system of
differential inequalities%7) for put American options.

The solution of the previous systems of PDEs were approxdasing a combination be-
tween Galerkin method and Implicit Euler's method. Theyfwiscrete problem was numeri-
cally solved using the Picard’s algorithm.

A direct extension for this work would be to consider the Baxtic interest rate where a
three-factor model will obtained. Empirical studies irstbase have crucial importance, mainly
for the calibration of volatility function, similar t&oschi and Pascuc009 which was done
for models with memory in asset pricing.
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