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Abstract. This paper presents a new class of models for continuous timeprice process of financial
assets. The dynamics of asset returns traded on spot marketsare based on Jump-Telegraph-Diffusion-
Drift processes (JTDD-process) and also on the Stochastic Volatility of Hobson and Rogers. Thus, the
main contribution of this paper is the inclusion of memory not only into the price but also in the volatility
of underlying assets of European and American options. In this framework, the models are formulated
as a differential system. The variational formulations, their respective finite element approximations, as
well as the numerical results via simulations are presented.
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1 INTRODUCTION

The model proposed byBlack and Scholes(1973) is the most important landmark research
in financial economics. This is based upon the common assumption that the proportional price
changes of the asset form a Gaussian process with stationaryindependent increments. This
assumption has been the subject of much attention over the years. A survey of several papers
in the literature has focused primarily on the most important parameter the volatility. Empirical
analysis of stock volatility has shown that it is not constant. Not to mention that the prices of
the derivatives that are traded are inconsistent with a constant volatility assumption.

For this reason a number of authors have suggested variants of the Black-Scholes model, As
Hobson and Rogers(1998) proposes a original class of models for the price process ofcon-
tinuous time of a financial security with non-constant volatility, and volatility defined in terms
of exponentially weighted moments of historic log-price. Thus, the instantaneous volatility is
therefore driven by the same stochastic factors as the of price process unlike many other models
of stochastic volatility, it is not necessary to introduce new sources of randomness.

Over the years, several papers argue that have the Black and Scholes model cannot describe
option prices dynamics in real markets. This finding is presented inFrancesco and Pascucci
(2004), this paper presents a complete model with stochastic volatility by Hobson and Rogers,
in which the price of the options are the solutions to degenerate partial differential equations
obtained by the inclusion of other variables describing thestate of dependence the past prices
of the underlying asset.

On the other hand,Foschi and Pascucci(2009) presents empirical tests with an option pricing
model assuming the volatility by Hobson and Rogers in the complete market, where reproduce
the “smile” and observed the expression patterns of impliedvolatility structure. A calibration
procedure based on ad-hoc numerical schemes for “hypoelliptic PDEs” is proposed and used for
quantitative investigation into the performance of the price model, based on numerical results
of “S&P500 option prices”. Hobson and Rogers consider inHobson and Rogers(1998) a
volatility function of the form

σ(D) = min
{

η
√

1 + εD2, N
}

,

for some large constantN and positive parametersε, η then they show that the model can indeed
exhibit smiles and skews of different directions.

Another fact is that recent research in option pricing has taken into account some features of
models with memory, they are more realistic for the phenomena to dynamic asset in the finan-
cial market. Recent paper ofRatanov(2007, 2008), presents a new class of models of financial
markets, these being based onGenerealized Telegraph Processes. The model in question pre-
sented is free of arbitrage and complete, if directions of jumps in asset prices are in a certain
correspondence with the speed and with the behavior of interest rates, i.e. the model can be
complete without adding another asset that is based on the same sources of randomness. The
two articles of N. Ratanov present detailed descriptions ofthe Telegraph Processes, and the
lastRatanov(2008) has developed an approach to the problem of European optionpricing with
the derivation of explicit formulas. These recent articlesfollowing the ideas originally in 2002
presented byCrescenzo and Pellerey(2002), whereGeometric Telegraph Processis initially
proposed as a model to describe the dynamics of the prices of risky assets.

The idea here is that working with the two modeling concepts by Hobson and Rogers(1998)
andCrescenzo and Pellerey(2002) resulting in a new class of model that takes into considera-
tion the past of price and volatility of the underlying asset.
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1.1 Modeling Financial Assets With Memory

The telegraph process describes a random motion with finite velocity and it is usually pro-
posed as an alternative to classical diffusion models (seeGoldstein(1951) andKac (1974)).
Crescenzo and Pellerey(2002) proposed the geometric telegraph process as a model to describe
the dynamics of the price of risky assets whereX(t) replaces the standard Brownian motion
of the original Black-Scholes-Merton model. Conversely tothe geometric Brownian motion,
given thatX(t) is of bounded variation, so is the geometric telegraph process. This seems a
realistic way to model paths of assets in the financial markets. Ratanov(2007, 2008) proposed
to model financial markets using a telegraph process with twointensitiesλ± and two velocities
ν±.

The dynamics of asset returns cannot be adequately described by geometric Brownian mo-
tion with constant volatility byBlack and Scholes(1973). Here we admit that the model for
dynamics of underlying asset returns given by the stochastic differential equation (SDE),

dSt = µ(D±
t )Stdt + σ(D±

t )StdWt + σStdX±(t) + S(t−)dJ±(t), (1)

whereσ2 is the volatility of the price of asset (S) andµ is the expected return of asset (S). We
assume that the assets pricing process is continuous to the right.

The dynamics of underlying asset in Eq. (1) incorporates a pure Jump processJ± = {J±(t)}t≥0

with alternating jumps of sizesh± ∈ (−1,∞), a Telegraph processX± = {X±(t)}t≥0 with ve-
locity ν± and a pure Diffusion process (Wiener’s process) forWt = {Wt}t≥0. Letr± ≥ 0 be the
riskless interest rate which is in the initial state±. The riskless asset is given by the exponential
of the process

Y± = {Y±}t≥0 =

{∫ t

0

r±dτ

}

t≥0

.

In view of such trajectories, the market is set up as a continuous process that evolves with
velocitiesν+ or ν−, changes the direction of movement fromν± to ν∓, and exhibits jumps of
sizesh± whenever velocity changes. The different parameters for upand down movements lead
to a gain/loss asymmetry.

Let ν±, r±, h± be real numbers such thatν+ > ν−, r± ≥ 0 andh± > −1. Let (Ω, F, P) be a
complete probability space, and letλ± be positive numbers. We consider two counting Poisson
processesN+ = {N+(t)}t≥0 andN− = {N−(t)}t≥0 with alternating intensitiesλ+, λ−, λ+,
· · · andλ−, λ+, λ−, · · · , respectively, that is, as∆t → 0,

P(N+(t + ∆t) = 2n + 1|N+(t) = 2n) = λ+∆t + O(∆t),

P(N+(t + ∆t) = 2n + 2|N+(t) = 2n + 1) = λ−∆t + O(∆t),

P(N−(t + ∆t) = 2n + 1|N−(t) = 2n) = λ−∆t + O(∆t),

P(N−(t + ∆t) = 2n + 2|N−(t) = 2n + 1) = λ+∆t + O(∆t).

wheren = 0, 1, · · · .
Denotingg+(t) = (−1)N+(t) andg−(t) = −(−1)N+(t), considering all stochastic processes

subscribed by+ or − are adapted to the filtrations generated byN+ and N−, respectively.
Consider the (right continuous) processes.

Defining the Telegraph process with states (ν+, λ+) and (ν−, λ−) as

X+(t) ,

∫ t

0

νg+(τ)dτ and X−(t) ,

∫ t

0

νg−(τ)dτ, (2)
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the pure Jump process with jumps at the Poisson timesτj , j = 1, 2, · · · as

J+(t) ,

∫ t

0

hg+(τ)dN+(τ) =

N+(t)∑

j=1

hg+(τj−) and J−(t) ,

∫ t

0

hg−(τ)dN−(τ) =

N−(t)∑

j=1

hg−(τj−),

(3)
the Diffusion process (Wiener’s process)

Wt = W (t) =

∫ t

0

ξvdv, (4)

whereξt is a white noise, where the integral in Eq. (4) is indefinite and symbolically presented
as

dWt = ξtdt.

Integrating Eq. (1),

S(t) = S0 EXP

{(
µ − 1

2
σ2

)
t + σWt

}
εt

{
X±(t) + J±(t)

}
, (5)

whereS0 = S(0) andεt{·} denote the stochastic exponential. Therefore,

εt

{
X±(t) + J±(t)

}
= eX±(t)K±(t),

K±(t) =
∏

τ≤t

(1 + ∆J±(t)) =

N±(t)∏

j=1

(1 + hg±(τj−)).

Here theτj , j ≥ 1, are the jumping times of the Poisson processesN±.
The Jump-Telegraph process (JT-process) is defined asZ , X± + J±

εt

{
Z
}

= eZ(t)− 1

2
〈Z〉cont(t)

∏

0<τ≤t

(1 + ∆Z(τ))e−∆Z(τ).

The Telegraph process without jumps cannot be a martingale.Here

〈Z〉cont = 〈X± + J±〉cont = 0

and

εt

{
X± + J±

}
= eX± + J±

∏

0<τ≤t

(1 + ∆J±(τ))e−∆J±(τ) =

= eX± + J±e−J±(t)
∏

0<τ≤t

(1 + ∆J±(τ)) = eX±

∏

0<τ≤t

(1 + ∆J±(τ)) .

Therefore Eq. (5) is expressed by

S(t) = S0 EXP

{(
µ − 1

2
σ2

)
t + σWt + X±(t)

}
K±(t), (6)

where

K±(t) =

N±(t)∏

j=1

(1 + hg±(τj−)).

J. THOMAZ, J. FERREIRA, H. SEBASTIAO2626

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



On the other hand, The riskless asset price has the followingform

B(t) = eY±, Y± =

∫ t

0

r±dτ,

where the interest ratesr± > 0 and± indicate the initial market state. Here againY± =
{Y±(t)}t≥0 is a Telegraph process with velocity valuesr±.

In Ratanov(2008) presents the following theorem: Jump-Telegraph-Diffusion process (JTD-
process) is a martingale if and only if

λ±h± = −ν±. (7)

2 EUROPEAN OPTION PRICING MODEL

In Hobson and Rogers(1998) introduce a new class of stock-price models. Specify local
volatility in terms of weighted moments of past returns, i.e. specification of instantaneous
volatility in terms of exponentially weighted moments of the historic log-price. This introduces
a feedback effect into the volatility process: presents shocks in the asset price result in hight
future uncertainty.

We define the discounted log-price processZt at timet as

Z±
t = log(e−r±tSt) ,

wherer± is the (constant) risk-free interest rate, and the offset function of orderd, denoted by
D

(d),±
t , by

D
(d),±
t = θ

∫ +∞

0

e−θv
[
Z±

t − Z±
t−v

]d
dv, θ > 0, (8)

where the parameterθ describes the rate at which past information is discounted,describes the
weight of historic observations. Stock prices are driven bythe stochastic differential equation

dZ±
t = µ(t, Zt, D

(1),±
t , · · · , D

(d),±
t )dt + σ(t, Zt, D

(1),±
t , · · · , D

(d),±
t )dWt (9)

for some smooth functionsσ(·) > 0 andµ(·) areLipschitzfunctions.
In Platania and Rogers(2003) say thatσ(·) can eventually depend onSt, the model includes

as a subclass the case when the volatility rate is a deterministic function of the underlying.
Furthermore the hypotheses preserve completeness, allowing for preference independent option
pricing. This last feature constitutes an advantage over fully stochastic volatility processes,
where arbitrage considerations are not sufficient to identify “ risk premia” uniquely.

In the following, we will assume the instantaneous volatility is a function of the first order
offsetD±

t = D
(1),±
T only, since we want to obtain a tractable PDE and to solve it with reliable

precision. Hobson and Rogers showed that even in this case the model has the potential to
explain volatility smiles and skews, and our simulation studies seem to suggest that including
higher order offset functions does not improve the results significantly.

We readily decomposeD±
t as the deviation of the current price from an exponentially weigh-

ted average of past records

D±
t = Z±

t −
∫ +∞

0

θe−θv Z±
t−vdv, θ > 0 . (10)

The latter says thatθ determines the horizon of the “moving time window” of the integral on
the right. For bigger values of this parameter,St is more dependent on the recent past, while
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small values almost identify the offset increments with price changes. Obviously in this case a
level dependent volatility assumption would be numerically more convenient.

We denote byV = V (S, D, t) the price at time “t” of an European option with maturity “T ”,
expressed as a function of the state variables: time “t”, asset price “S” and deviation “D”. We
have(S, D, t) ∈ R+ × R × [0, T ].

We assume that the asset price is governed by the stochastic differential equation (Jump-
Telegraph-Diffusion-Drift process), positive past information,

dSt = µ(D+
t )Stdt + σ(D+

t )StdW1(t) + σ(D+
t )StdX+(t) + S(t−)dJ+(t) (11)

and negative past information,

dSt = µ(D−
t )Stdt + σ(D−

t )StdW1(t) + σ(D−
t )StdX−(t) + S(t−)dJ−(t). (12)

and the deviation (cf. formula (11) inHobson and Rogers(1998)) is governed by

dD±
t = −

[
1

2
σ2(D±

t ) + θD±
t

]
dt + σ(D±

t ) dW2(t) . (13)

We define option pricing with past information from the initial value of the price of high
(positive past information) asV +(S, D, t) and option pricing with past information from the
initial value of the price of down (negative past information) asV −(S, D, t). Observe that in
Eq. (11) or Eq. (12) and Eq. (13) the Wiener process have been given subscripts. This is because
we are allowing “S” and “D” to be governed by two different random variables, this is a two-
factor model. Thus, although “dW1” and “dW2” are both draw from Normal distributions with
zero mean and variance “dt”, they are not necessarily the same random variable. They are,
however, correlated byε[dW1dW2] = ρdt with −1 ≤ ρ(S, D, t) ≤ 1. The “ρ” is equal1 by
definition of “D”. Then, ε[dW1dW2] = 1dt. We can still think of Eq. (11) or Eq. (12) and
Eq. (13) as formulas for generating random walks for “S” and “D”, but now at each time-step
we must draw two random numbers.

In order to manipulateV +(S, D, t) or V −(S, D, t) we need to know Itô’s Lemma applies to
functions of two random variables. As might be expected, theusual Taylor series expansion
together with a few rules of thumb results in the correct expression for small change in any
function of both “S” and “D”. These rules of thumb are

dW 2
1 = dt , dW 2

2 = dt and dW1dW2 = ρdt = dt.

Applying Taylor’s formula to the positive past information, V +(S + dS, D + dD, t + dt) we
find that

dV + =
∂V +

∂t
dt +

∂V +

∂S
dS +

∂V +

∂D
dD +

1

2

∂2V +

∂S2
dS2 +

∂2V +

∂S∂D
dSdD +

+
1

2

∂2V +

∂D2
dD2 + · · · +

[
V −(S + h+S, D, t) − V +(S, D, t)

]
dJ+,

where

dS2 = σ2(D±
t ) S2

t dW 2
1 (t) = σ2(D±

t ) S2
t dt ,

dD2 = σ2(D±
t ) dW 2

2 (t) = σ2(D±
t ) dt ,

dSdD = σ(D±
t ) StdW1 σ(D±

t ) dW2 = σ2(D±
t ) Stdt .
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Thus, Itô’s Lemma for the two random variables governed by Eq. (11) and Eq. (13) becomes

dV + =
∂V +

∂t
dt +

∂V +

∂S
dS +

∂V +

∂D
dD +

1

2
σ2(D+

t ) S2
t

∂2V +

∂S2
dt + σ2(D+

t ) St

∂2V +

∂S∂D
dt +

+
1

2
σ2(D+

t )
∂2V +

∂D2
dt +

[
V −(S + h+S, D, t) − V +(S, D, t)

]
dJ+. (14)

Let us construct a portfolioΠ+ consisting of one option with maturityT1, −∆+
2 option with

maturity dateT2 and−∆+
1 of the underlying asset, i.e.Π+ = V +

1 −∆+
2 V +

2 −∆+
1 S. Considering

that the increasing in the value of the portfolio in a space-time, keeping the∆+
1 and∆+

2 rates,
is given

dΠ+ = dV +
1 − ∆+

2 dV +
2 − ∆+

1 dS. (15)

Using Eq. (14) in Eq. (15) it can be shown that

dΠ+ =

{
∂V +

1

∂t
− ∆+

2

∂V +
2

∂t
+

1

2
σ2(D+

t )S2
t

[
∂2V +

1

∂S2
− ∆+

2

∂2V +
2

∂S2

]
+ σ2(D+

t )St

[
∂2V +

1

∂S∂D
−

− ∆+
2

∂2V +
2

∂S∂D

]
+

1

2
σ2(D+

t )

[
∂2V +

1

∂D2
− ∆+

2

∂2V +
2

∂D2

]}
dt +

{
∂V +

1

∂S
− ∆+

1 −

− ∆+
2

∂V +
2

∂S

}
dS +

{
∂V +

1

∂D
− ∆+

2

∂V +
2

∂D

}
dD +

{[
V −

1 (S + h+S, D, t)−

− V +
1 (S, D, t)

]
− ∆+

2

[
V −

2 (S + h+S, D, t) − V +
2 (S, D, t)

]}
dJ+.

Fixing ∆+
1 and∆+

2 according to

∆+
2 =

∂V +
1 /∂D

∂V +
2 /∂D

and ∆+
1 =

∂V +
1

∂S
− ∆+

2

∂V +
2

∂S
=

∂V +
1

∂S
− ∂V +

1 /∂D

∂V +
2 /∂D

∂V +
2

∂S
,

the risk from the portfolio is removed. Then,

dΠ+

dt
=

{
∂V +

1

∂t
− ∂V +

1 /∂D

∂V +
2 /∂D

∂V +
2

∂t
+

1

2
σ2(D+

t )S2
t

[
∂2V +

1

∂S2
− ∂V +

1 /∂D

∂V +
2 /∂D

∂2V +
2

∂S2

]
+

+ σ2(D+
t ) St

[
∂2V +

1

∂S∂D
− ∂V +

1 /∂D

∂V +
2 /∂D

∂2V +
2

∂S∂D

]
+

1

2
σ2(D+

t )

[
∂2V +

1

∂D2
−

− ∂V +
1 /∂D

∂V +
2 /∂D

∂2V +
2

∂D2

]}
+

{[
V −

1 (S + h+S, D, t) − V +
1 (S, D, t)

]
−

− ∂V +
1 /∂D

∂V +
2 /∂D

[
V −

2 (S + h+S, D, t) − V +
2 (S, D, t)

]} dJ+

dt
. (16)

We remark that holds the following

dJ+

dt
=

d

dt





N+(τ)∑

j=1

hg+(τj−)



 = λ+. (17)

Considering the arbitrage arguments we can state the returnof the portfolio

dΠ+

dt
= r+Π+ = r+V +

1 − r+
∂V +

1 /∂D

∂V +
2 /∂D

V +
2 − r+S

∂V +
1

∂S
+ r+S

∂V +
1 /∂D

∂V +
2 /∂D

∂V +
2

∂S
. (18)
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Replacing Eq. (18) and Eq. (17) in Eq. (16), we have

r+V +
1 − r+

∂V +
1 /∂D

∂V +
2 /∂D

V +
2 − r+S

∂V +
1

∂S
+ r+S

∂V +
1 /∂D

∂V +
2 /∂D

∂V +
2

∂S
=

∂V +
1

∂t
− ∂V +

1 /∂D

∂V +
2 /∂D

∂V +
2

∂t
+

+
1

2
σ2(D+

t ) S2
t

[
∂2V +

1

∂S2
− ∂V +

1 /∂D

∂V +
2 /∂D

∂2V +
2

∂S2

]
+ σ2(D+

t ) St

[
∂2V +

1

∂S∂D
− ∂V +

1 /∂D

∂V +
2 /∂D

∂2V +
2

∂S∂D

]
+

+
1

2
σ2(D+

t )

[
∂2V +

1

∂D2
− ∂V +

1 /∂D

∂V +
2 /∂D

∂2V +
2

∂D2

]
+

{[
V −

1 (S + h+S, D, t) − V +
1 (S, D, t)

]
−

− ∂V +
1 /∂D

∂V +
2 /∂D

[
V −

2 (S + h+S, D, t) − V +
2 (S, D, t)

]}
λ+.

Gathering together all “V1” terms on the left-hand side and all “V2” terms on the right-hand
side, we find that

{
∂V +

1

∂t
+

1

2
σ2(D+

t ) S2
t

∂2V +
1

∂S2
+ σ2(D+

t ) St

∂2V +
1

∂S∂D
+

1

2
σ2(D+

t )
∂2V +

1

∂D2
− r+V +

1 +

+ r+S
∂V +

1

∂S
+
[
V −

1 (S + h+S, D, t) − V +
1 (S, D, t)

]
λ+

}/∂V +
1

∂D
=

=

{
∂V +

2

∂t
+

1

2
σ2(D+

t ) S2
t

∂2V +
2

∂S2
+ σ2(D+

t ) St

∂2V +
2

∂S∂D
+

1

2
σ2(D+

t )
∂2V +

2

∂D2
−

− r+V +
2 + r+S

∂V +
2

∂S
+
[
V −

2 (S + h+S, D, t) − V +
2 (S, D, t)

]
λ+

}/∂V +
2

∂D
.

The last equation presents two unknowns. However, the left-hand side is a function of “T1”
and the right-hand side is a function of “T2”. The only way for this to be possible is for both
sides to be independent of the maturity date. Thus, droppingthe subscript from “V ”,

{
∂V +

∂t
+

1

2
σ2(D+

t ) S2
t

∂2V +

∂S2
+ σ2(D+

t ) St

∂2V +

∂S∂D
+

1

2
σ2(D+

t )
∂2V +

∂D2
− r+V + +

+ r+S
∂V +

∂S
+
[
V −(S + h+S, D, t) − V +(S, D, t)

]
λ+

}/∂V +

∂D
= A+(S, D, t),

for some functionA+(S, D, t). In view of later development it is convenient to write

A+(S, D, t) = σ(D+
t ) γ+(S, D, t) +

[
1

2
σ2(D+

t ) + θD+
t

]
. (19)

In Generalγ+(S, D, t) is the market price of risk. Here in this work we assume thatγ+(S, D, t)
is equal to zero. Thus Eq. (19) reduces to

A+(S, D, t) =
1

2
σ2(D+

t ) + θD+
t . (20)

We have

∂V +

∂t
+

1

2
σ2(D+

t ) S2
t

∂2V +

∂S2
+ σ2(D+

t ) St

∂2V +

∂S∂D
+

1

2
σ2(D+

t )
∂2V +

∂D2
− r+V + +

+ r+S
∂V +

∂S
+
[
V −(S + h+S, D, t) − V +(S, D, t)

]
λ+ =

[
1

2
σ2(D+

t ) + θD+
t

]
∂V +

∂D
,
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we find the equation for thepositive past information with stochastic volatility of Hobson and
Rogers

∂V +

∂t
+

1

2
σ2(D+

t ) S2
t

∂2V +

∂S2
+ r+S

∂V +

∂S
+ σ2(D+

t ) St

∂2V +

∂S∂D
−
[
1

2
σ2(D+

t ) + θD+
t

]
∂V +

∂D
+

+
1

2
σ2(D+

t )
∂2V +

∂D2
=
[
r+ + λ+

]
V + − λ+V −(S + h+S, D, t). (21)

Similarly to the case of positive past information, the following equation for thenegative
past information can be deduced

∂V −

∂t
+

1

2
σ2(D−

t ) S2
t

∂2V −

∂S2
+ r−S

∂V −

∂S
+ σ2(D−

t ) St

∂2V −

∂S∂D
−
[
1

2
σ2(D−

t ) + θD−
t

]
∂V −

∂D
+

+
1

2
σ2(D−

t )
∂2V −

∂D2
=
[
r− + λ−

]
V − − λ−V +(S + h−S, D, t). (22)

Thus, Eq. (21) and Eq. (22) define the differential system given by





∂V +/∂t + 1
2
σ2(D+

t ) S2
t

[
∂2V +/∂S2

]
+ r+S

[
∂V +/∂S

]
+

+σ2(D+
t ) St

[
∂2V +/∂S∂D

]
−
[

1
2
σ2(D+

t ) + θD+
t

][
∂V +/∂D

]
+

+1
2
σ2(D+

t )
[
∂2V +/∂D2

]
=
[
r+ + λ+

]
V + − λ+V −(S + h+S, D, t)

∂V −/∂t + 1
2
σ2(D−

t ) S2
t

[
∂2V −/∂S2

]
+ r−S

[
∂V −/∂S

]
+

+σ2(D−
t ) St

[
∂2V −/∂S∂D

]
−
[

1
2
σ2(D−

t ) + θD−
t

][
∂V −/∂D

]
+

+1
2
σ2(D−

t )
[
∂2V −/∂D2

]
=
[
r− + λ−

]
V − − λ−V +(S + h−S, D, t)

(23)

2.1 Formulation of the Problems

The mathematical modeling associated with memory in asset and volatility for pri-
cing options is defined in an unbounded domain,Ω∞ = [0,∞] × [−∞,∞]. To construct
the approximate solution, it is necessary to truncateΩ∞ obtaining a bounded domainΩ =
[0, Smax]× [Dmin, Dmax], whereSmax is the maximum value the underlying asset,Dmax is the
maximum deviation andDmin is the minimum deviation.

Usually Dirichlet boundary conditions are assumed in a bounded setΩ

p±(0, D, t) = Ee−r±(T−t) and p±(Smax, D, t) = 0 , (24)

resulting from classical theory. In the case of a call option, the boundary conditions of Dirichlet
type inΩ come fromc(0, D, t) = 0, the parity formula with the boundary condition for the put
optionslimS→∞ c(S, D, t) = limS→∞ c∞(S, D, t) ≈ S for S = Smax large enough, resulting

c±(0, D, t) = 0 and c±(Smax, D, t) = Smax − Ee−r±(T−t) . (25)

The problem for European put option pricing is formulated asfollows
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PROBLEM EPHR: For t ∈ [0, T ], we findp(S, D, t) =
[
p+(S, D, t) + p−(S, D, t)

]
/2, such

that 




∂p+/∂t + 1
2
σ2(D+

t ) S2
t

[
∂2p+/∂S2

]
+ r+S

[
∂p+/∂S

]
+

+σ2(D+
t ) St

[
∂2p+/∂S∂D

]
−
[

1
2
σ2(D+

t ) + θD+
t

][
∂p+/∂D

]
+

+1
2
σ2(D+

t )
[
∂2p+/∂D2

]
=
[
r+ + λ+

]
p+ − λ+p−(S + h+S, D, t)

∂p−/∂t + 1
2
σ2(D−

t ) S2
t

[
∂2p−/∂S2

]
+ r−S

[
∂p−/∂S

]
+

+σ2(D−
t ) St

[
∂2p−/∂S∂D

]
−
[

1
2
σ2(D−

t ) + θD−
t

][
∂p−/∂D

]
+

+1
2
σ2(D−

t )
[
∂2p−/∂D2

]
=
[
r− + λ−

]
p− − λ−p+(S + h−S, D, t)

(26)

with Payoff condition,

p+(S, D, T ) = (E − S)+ and p−(S, D, T ) = (E − S)+,

boundary condition,

p+(0, D, t) = Ee−r+[T−t] , p+(Smax, D, t) = 0,

p−(0, D, t) = Ee−r−[T−t] and p−(Smax, D, t) = 0.

And the problem of European call option pricing as

PROBLEM ECHR: For t ∈ [0, T ], we findc(S, D, t) =
[
c+(S, D, t) + c−(S, D, t)

]
/2, such

that 




∂c+/∂t + 1
2
σ2(D+

t ) S2
t

[
∂2c+/∂S2

]
+ r+S

[
∂c+/∂S

]
+

+σ2(D+
t ) St

[
∂2c+/∂S∂D

]
−
[

1
2
σ2(D+

t ) + θD+
t

][
∂c+/∂D

]
+

+1
2
σ2(D+

t )
[
∂2c+/∂D2

]
=
[
r+ + λ+

]
c+ − λ+c−(S + h+S, D, t)

∂c−/∂t + 1
2
σ2(D−

t ) S2
t

[
∂2c−/∂S2

]
+ r−S

[
∂c−/∂S

]
+

+σ2(D−
t ) St

[
∂2c−/∂S∂D

]
−
[

1
2
σ2(D−

t ) + θD−
t

][
∂c−/∂D

]
+

+1
2
σ2(D−

t )
[
∂2c−/∂D2

]
=
[
r− + λ−

]
c− − λ−c+(S + h−S, D, t)

(27)

with Payoff condition,

c+(S, D, T ) = (S − E)+ and c−(S, D, T ) = (S − E)+,

boundary condition,

c+(0, D, t) = 0 , c+(Smax, D, t) = Smax − Ee−r+[T−t],

c−(0, D, t) = 0 and c−(Smax, D, t) = Smax − Ee−r−[T−t].
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2.2 Variational Formulation

In order to get an initial value problem we need to consider the transformation in the time
variableτ = T − t. The following problem for the European put option pricing is then deduced

PROBLEM IEPHR: For all τ ∈ [0, T ], we findp(S, D, τ) =
[
p+(S, D, τ) + p−(S, D, τ)

]
/2,

such that




∂p+/∂τ − 1
2
σ2(D+

τ ) S2
t

[
∂2p+/∂S2

]
− r+S

[
∂p+/∂S

]
−

−σ2(D+
τ ) St

[
∂2p+/∂S∂D

]
+
[

1
2
σ2(D+

τ ) + θD+
τ

][
∂p+/∂D

]
−

−1
2
σ2(D+

τ )
[
∂2p+/∂D2

]
= −

[
r+ + λ+

]
p+ + λ+p−(S + h+S, D, t)

∂p−/∂τ − 1
2
σ2(D−

τ ) S2
t

[
∂2p−/∂S2

]
− r−S

[
∂p−/∂S

]
−

−σ2(D−
τ ) St

[
∂2p−/∂S∂D

]
+
[

1
2
σ2(D−

τ ) + θD−
τ

][
∂p−/∂D

]
−

−1
2
σ2(D−

τ )
[
∂2p−/∂D2

]
= −

[
r− + λ−

]
p− + λ−p+(S + h−S, D, t)

(28)

with initial condition,

p+(S, D, 0) = (E − S)+ and p−(S, D, 0) = (E − S)+,

boundary condition,

p+(0, D, T − τ) = Ee−r+[τ ] , p+(Smax, D, T − τ) = 0,

p−(0, D, T − τ) = Ee−r−[τ ] and p−(Smax, D, T − τ) = 0.

The variableτ is the time remaining to the maturity of the option. While System Eq. (28)
does not require the conditionτ < T , the model assumes that the pricep is computed to the
limit time T . We define the set of functions,

Wτ =
{
p ∈ L2(0, T ; H1(Ω)) | ∂p/∂τ ∈ L2(Ω) a.e. in[0, T ] ; p(0, D, τ) = Ee−rτ ,

p(Smax, D, τ) = 0, a.e.[Dmin, Dmax] × [0, T ]
}
,

and the variations space

W0 =
{
v ∈ H1

0 (Ω)
}

.

Defining the following inner product in theL2(Ω),

(u,v) ,

∫

Ω

u(x)v(x) dx,

the system Eq. (28) can be written in vector form

∂p

∂τ
− 1

2
VoltS2 ∂2p

∂S2
− RS

∂p

∂S
−VoltS

∂2p

∂S∂D
+ Φ

∂p

∂D
− 1

2
Volt

∂2p

∂D2
+ Λp = F , (29)

where

p =




p+

p−


 , Volt =




σ2(D+
τ ) 0

0 σ2(D−
τ )


 , R =




r+ 0

0 r−



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Φ =




1
2
σ2(D+

τ ) + θD+
t 0

0 1
2
σ2(D−

τ ) + θD−
t




Λ =




r+ + λ+ 0

0 r− + λ−


 , F =




F+

F−


 =




λ+p−(S + h+S, D, τ)

λ−p+(S + h−S, D, τ)




multiplying the Eq. (29) by a test functionv and integrating inΩ, we obtain
(

∂p

∂τ
,v

)
−

(
1

2
VoltS2 ∂2p

∂S2
,v

)
−
(
RS

∂p

∂S
,v

)
−
(
VoltS

∂2p

∂S∂D
,v

)
+

+

(
Φ

∂p

∂D
,v

)
−
(

1

2
Volt

∂2p

∂D2
,v

)
+
(
Λp,v

)
=
(
F,v

)
, (30)

∀ v ∈ W0(Ω). Considering that

1

2
VoltS2 ∂2p

∂S2
=

1

2
Volt

∂

∂S

{
S2 ∂p

∂S

}
− VoltS

∂p

∂S
, (31)

as also
1

2
Volt

∂2p

∂D2
=

1

2

∂

∂D

{
Volt

∂p

∂D

}
− ∂

∂D

{
Volt

} ∂p

∂D
(32)

and finally

VoltS
∂2p

∂S∂D
= Volt

∂

∂S

{
S

∂p

∂D

}
−Volt

∂p

∂D
. (33)

So substituting Eq. (31), Eq. (32) and Eq. (33) in Eq. (30), we get
(

∂p

∂τ
,v

)
−

(
1

2
Volt

∂

∂S

{
S2 ∂p

∂S

}
,v

)
−
(
Volt

∂

∂S

{
S

∂p

∂D

}
,v

)
−

−
(

1

2

∂

∂D

{
Volt

∂p

∂D

}
,v

)
−
([

R −Volt
]
S

∂p

∂S
,v

)
+
(
Λ p,v

)
+

+

([
Φ + Volt +

∂

∂D

{
Volt

}] ∂p

∂D
,v

)
=
(
F,v

)
. (34)

Using the integration by parts in the second, third and fourth terms of the Eq. (34) andv ∈
W0(Ω), we obtain

(
∂p

∂τ
,v

)
+

(
1

2
VoltS

∂p

∂S
, S

∂v

∂S

)
+

(
VoltS

∂p

∂D
,
∂v

∂S

)
+

+

(
1

2
Volt

∂p

∂D
,
∂v

∂D

)
−
([

R− Volt
]
S

∂p

∂S
,v

)
+

+

([
Φ + Volt +

∂

∂D

{
Volt

}] ∂p

∂D
,v

)
+
(
Λ p,v

)
=
(
F,v

)
.

Thus, the problem of put options pricing can be formulated asfollows

PROBLEM IEPHRV: For allτ ∈ [0, T ], we findp(S, D, τ) =
[
p+(S, D, τ) + p−(S, D, τ)

]
/2,

such that (
∂p

∂τ
,v

)
+ a(p,v) =

(
F,v

)
, ∀v ∈ W0,
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satisfying the initial condition

(
p(0),v

)
=




(
p+(0), v+

)

(
p−(0), v−

)


 , ∀v ∈ W0,

with the bilinear form given by

a(p,v) =

(
1

2
VoltS

∂p

∂S
, S

∂v

∂S

)
+

(
VoltS

∂p

∂D
,
∂v

∂S

)
+

(
1

2
Volt

∂p

∂D
,
∂v

∂D

)
+
(
Λ p,v

)
−

−
([

R − Volt
]
S

∂p

∂S
,v

)
+

([
Φ + Volt +

∂

∂D

{
Volt

}] ∂p

∂D
,v

)
(35)

On existence and uniqueness of this kind of parabolic variational equality see, for example,
Brézis(1984).

Next we present a finite element approximation toPROBLEM IEPHRVin the space domain
combined with an implicit finite difference approximation in the time domain.

2.3 Finite Element Approximation

For the construction of an approximation through finite elements, we define

Wk
h = {vh ∈ C0(Ω);vh|k ∈ Pk(K)} ,

Wh =
{
ph ∈ L2(0, T ;Wk

h) | ∂ph/∂τ ∈ L2(Ω) a.e. in[0, T ] ; ph(0, D, τ) = Ee−rτ ,

ph(Smax, D, τ) = 0 a.e. in[0, T ], ∀D ∈ [Dmin, Dmax]
}
,

so thatWk
h ⊂ Wτ is the space of element’s of degreek ≥ 1, in each elementK of triangulation

Th, wherePk(K) is the polynomial set of degree less or equal defined inK.
By using the Galerkin method inPROBLEM IEPHRV, we obtain the semi-discrete approxi-

mation or the continuous approximation in time.
The fully discrete problem is now defined using theEuler Implicit methodin the discretisa-

tion in time. We split[0, T ] in sub-intervals[τn−1, τn], whereτn = n∆t, n = 1, · · · , N , with
τ0 = 0 andτN = T , and we use the notationspn,± = p±(τn),

∂τp
n,± =

pn+1,± − pn,±

∆t
.

The fully discrete approximation is considered in the following functional space

W∆τ,h =
{
pn

h, n = 1, . . . , N, pn
h ∈ Wk

h , ph(0, D, τn) = Ee−rτn ,

ph(Smax, D, τn) = 0, n = 1, . . . , N, ∀D ∈ [Dmin, Dmax]
}

.

The fully discrete approximation in then computed using thefollowing variational problem:
PROBLEM IEPHRhm: Givenn = 1, · · · , N , we findpn

h ∈ W∆τ,h such that
(
∂τp

n
h,vh

)
+ a(pn+1

h ,vh) =
(
Fh,vh

)
, vh ∈ Wk

h ∩ H1
0 (Ω) (36)

satisfying the initial condition
(
p0

h,vh

)
=
(
p(0),vh

)
, vh ∈ Wk

h ∩ H1
0 (Ω).
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3 AMERICAN OPTION PRICING MODEL

Was previously presented a formulation of the problem of European option. Now will be a
formulation of American options pricing as free boundary problems. Following the same idea
presented byWilmott et al.(2000) to the case in standard Black and Scholes modeling.

If at any time t∗ < T the price of the underlying asset isS∗ < E(1 − e−r(T−t∗)), the
put option must be exercised immediately, because the income L generated by the premature
exercise satisfies

L = (E − S∗) > E(e−r(T−t∗)) > p∗(S∗, t),

wherep∗(S∗, t) is the price of put European option with the exercise priceE and maturity in
T − t∗ years. Like any portfolio income is(E − S)+ in t = T and this has the same value
that the European option, we have no portfolio is a better alternative to the exercise premature.
Noting that in this case the priceP (S∗, t∗) should have the valueE − S∗ not to have arbitrage.

In particular, we have forS∗ = 0, P (0, t∗) = E using the arbitrage argument, we can see
that

P (S, D, t) ≥ (E − S)+ = 0, ∀ S ≥ E.

It appears that price timet that lead to the premature exercise of forming a range of[0, Sf ],
whose upper limit is called theoptimal point of exercise.

The pointSf , divides the dominion in a segment where the option is exercised, and the other
in which it should exercise it later. Thus, the American put options pricing problem may be
seen asfree boundary problems, where the free boundary is given bySf = Sf(t).

We can formulate thefree boundary problems in two well defined regions for “positive
past information”, one where we must exercise the option,

P+(St, D, t) = (E − S)+ ,

∂P+

∂t
+

1

2
σ2(D+

t ) S2
t

∂2P+

∂S2
+ r+S

∂P+

∂S
+ σ2(D+

t ) St

∂2P+

∂S∂D
−
[
1

2
σ2(D+

t ) + θD+
t

]
∂P+

∂D
+

+
1

2
σ2(D+

t )
∂2P+

∂D2
−
[
r+ + λ+

]
P+ ≤ −λ+P−(S + h+S, D, t) ,

0 ≤ S ≤ Sf .

another where is not optimal the exercise of the option

P+(S, D, t) > (E − S)+,

∂P+

∂t
+

1

2
σ2(D+

t ) S2
t

∂2P+

∂S2
+ r+S

∂P+

∂S
+ σ2(D+

t ) St

∂2P+

∂S∂D
−
[
1

2
σ2(D+

t ) + θD+
t

]
∂P+

∂D
+

+
1

2
σ2(D+

t )
∂2P+

∂D2
−
[
r+ + λ+

]
P+ = −λ+P−(S + h+S, D, t) ,

Sf ≤ S ≤ ∞.

The conditions of the interface between two regions of the domain in pointsSf , given by

P+(Sf , D, t) = (E − Sf (t)})+ ,
∂

∂n
P+(Sf(t), D, t) = −1.
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Besides the condition of final time, payoff function, which is

P+(S, D, T ) = (E − S)+,

and the boundary condition (S ∈ ∂Ω∞),

P+(S = 0, D, t) = Ee−r+(T−t) , lim
S→∞

P−(S, D, t) = 0

Similarly calculated for “negative past information”, onewhere we must exercise the option,

P−(St, D, t) = (E − S)+ ,

∂P−

∂t
+

1

2
σ2(D−

t ) S2
t

∂2P−

∂S2
+ r−S

∂P−

∂S
+ σ2(D−

t ) St

∂2P−

∂S∂D
−
[
1

2
σ2(D−

t ) + θD−
t

]
∂P−

∂D
+

+
1

2
σ2(D−

t )
∂2P−

∂D2
−
[
r− + λ−

]
P− ≤ −λ−P+(S + h−S, D, t) ,

0 ≤ S ≤ Sf .

another where is not optimal the exercise of the option

P−(S, D, t) > (E − S)+,

∂P−

∂t
+

1

2
σ2(D−

t ) S2
t

∂2P−

∂S2
+ r−S

∂P−

∂S
+ σ2(D−

t ) St

∂2P−

∂S∂D
−
[
1

2
σ2(D−

t ) + θD−
t

]
∂P−

∂D
+

+
1

2
σ2(D−

t )
∂2P−

∂D2
−
[
r− + λ−

]
P− = −λ−P+(S + h−S, D, t) ,

Sf ≤ S ≤ ∞.

The conditions of the interface between two regions of the domain in pointsSf , given by

P−(Sf , D, t) = (E − Sf (t)})+ ,
∂

∂n
P−(Sf(t), D, t) = −1.

Besides the condition of final time, payoff function, which is

P−(S, D, T ) = (E − S)+,

and the boundary condition (S ∈ ∂Ω∞),

P−(S = 0, D, t) = Ee−r−(T−t) , lim
S→∞

P−(S, D, t) = 0

3.1 Formulation of the Problem

The problem of American put option pricing as

PROBLEM APHR: For τ ∈ [0, T ], we findP (S, D, τ) =
[
P+(S, D, τ) + P−(S, D, τ)

]
/2,

such that
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• ForP+(S, D, τ) = (E − S)+, P−(S, D, τ) = (E − S)+ and0 ≤ S ≤ Sf ,





∂P+/∂t + 1
2
σ2(D+

t ) S2
t

[
∂2P+/∂S2

]
+ r+S

[
∂P+/∂S

]
+

+σ2(D+
t ) St

[
∂2P+/∂S∂D

]
−
[

1
2
σ2(D+

t ) + θD+
t

][
∂P+/∂D

]
+

+1
2
σ2(D+

t )
[
∂2P+/∂D2

]
≤
[
r+ + λ+

]
p+ − λ+P−(S + h+S, D, t)

∂P−/∂t + 1
2
σ2(D−

t ) S2
t

[
∂2P−/∂S2

]
+ r−S

[
∂P−/∂S

]
+

+σ2(D−
t ) St

[
∂2P−/∂S∂D

]
−
[

1
2
σ2(D−

t ) + θD−
t

][
∂P−/∂D

]
+

+1
2
σ2(D−

t )
[
∂2P−/∂D2

]
≤
[
r− + λ−

]
P− − λ−P+(S + h−S, D, t)

(37)

• ForP+(S, D, t) > (E − S)+, P−(S, D, t) > (E − S)+ andSf ≤ S ≤ ∞,




∂p+/∂t + 1
2
σ2(D+

t ) S2
t

[
∂2p+/∂S2

]
+ r+S

[
∂p+/∂S

]
+

+σ2(D+
t ) St

[
∂2p+/∂S∂D

]
−
[

1
2
σ2(D+

t ) + θD+
t

][
∂p+/∂D

]
+

+1
2
σ2(D+

t )
[
∂2p+/∂D2

]
=
[
r+ + λ+

]
p+ − λ+p−(S + h+S, D, t)

∂p−/∂t + 1
2
σ2(D−

t ) S2
t

[
∂2p−/∂S2

]
+ r−S

[
∂p−/∂S

]
+

+σ2(D−
t ) St

[
∂2p−/∂S∂D

]
−
[

1
2
σ2(D−

t ) + θD−
t

][
∂p−/∂D

]
+

+1
2
σ2(D−

t )
[
∂2p−/∂D2

]
=
[
r− + λ−

]
p− − λ−p+(S + h−S, D, t)

(38)

The conditions of the interface between two regions

P+(Sf , D, t) = (E − Sf (t)})+ ,
∂

∂n
P+(Sf (t), D, t) = −1 ,

and

P−(Sf , D, t) = (E − Sf (t)})+ ,
∂

∂n
P−(Sf (t), D, t) = −1 ,

with payoff condition,

P+(S, D, T ) = (E − S)+ and P−(S, D, T ) = (E − S)+ ,

boundary condition,

P+(0, D, t) = Ee−r+(T−t) , P+(Smax, D, t) = 0 ,

P−(0, D, t) = Ee−r−(T−t) and P−(Smax, D, t) = 0.

3.2 Variational Formulation

Defining the subset of functions bounded below byg(S)

K = {P ∈ Wτ (Ω) ; P(S, D, τ) ≥ g(S)}, (39)
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whereg(S) is the payoff value which, in the case of put option is given byg(S) = (E − S)+

andg(S) = (S − E)+ for call option.
As the system (37) can be rewritten as

∂p

∂τ
− 1

2
VoltS2 ∂2p

∂S2
− RS

∂p

∂S
− VoltS

∂2p

∂S∂D
+ Φ

∂p

∂D
− 1

2
Volt

∂2p

∂D2
+ Λp ≥ F (40)

and the system (38) as

∂p

∂τ
− 1

2
VoltS2 ∂2p

∂S2
− RS

∂p

∂S
−VoltS

∂2p

∂S∂D
+ Φ

∂p

∂D
− 1

2
Volt

∂2p

∂D2
+ Λp = F , (41)

multiplying (40) and (41) by v, wherev is a test function inW0, and integrating inΩ we get
(

∂P

∂τ
,v

)
−

(
1

2
VoltS2∂2P

∂S2
,v

)
−
(
RS

∂P

∂S
,v

)
−
(
VoltS

∂2P

∂S∂D
,v

)
+

+

(
Φ

∂P

∂D
,v

)
−
(

1

2
Volt

∂2P

∂D2
,v

)
+
(
ΛP,v

)
≥
(
F,v

)
.

Taking into account Eq. (31), Eq. (32) and Eq. (33), we establish
(

∂P

∂τ
,v

)
−

(
1

2
Volt

∂

∂S

{
S2∂P

∂S

}
,v

)
−
(
Volt

∂

∂S

{
S

∂P

∂D

}
,v

)
−

−
(

1

2

∂

∂D

{
Volt

∂P

∂D

}
,v

)
−
([

R− Volt
]
S

∂P

∂S
,v

)
+
(
Λ P,v

)
+

+

([
Φ + Volt +

∂

∂D

{
Volt

}]∂P

∂D
,v

)
≥
(
F,v

)
, (42)

which leads
(

∂p

∂τ
,v

)
+

(
1

2
VoltS

∂P

∂S
, S

∂v

∂S

)
+

(
VoltS

∂P

∂D
,
∂v

∂S

)
+

+

(
1

2
Volt

∂P

∂D
,
∂v

∂D

)
−
([

R− Volt
]
S

∂P

∂S
,v

)
+

+

([
Φ + Volt +

∂

∂D

{
Volt

}]∂P

∂D
,v

)
+
(
Λ P,v

)
≥
(
F,v

)
.

Thus, the problem of American put options pricing can be formulated as follows

PROBLEM IAPHRV: Forτ ∈ [0, T ] we findP ∈ K, P (S, D, τ) =
[
P+(S, D, τ)+P−(S, D, τ)

]
/2,

satisfying the variational inequality
(

∂P

∂τ
,v

)
+ a(P,v) ≥

(
F,v

)
, ∀ v ∈ W0,

and the initial condition

(
P(0),v

)
=




(
P+(0), v+

)

(
P−(0), v−

)


 , ∀ v ∈ W0,
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with the bilinear form given by

a(P,v) =

(
1

2
VoltS

∂P

∂S
, S

∂v

∂S

)
+

(
VoltS

∂P

∂D
,
∂v

∂S

)
+

(
1

2
Volt

∂P

∂D
,
∂v

∂D

)
+
(
Λ P,v

)
−

−
([

R− Volt
]
S

∂P

∂S
,v

)
+

([
Φ + Volt +

∂

∂D

{
Volt

}]∂P

∂D
,v

)
(43)

On existence and uniqueness of this kind of parabolic variational inequality see, for example,
Brézis(1984).

Next we present a finite element approximation toPROBLEM IAPHRV. in the space domain
combined with an implicit finite difference approximation in the time domain.

3.3 Finite Element Approximation

For the construction of a fully discrete approximation we introduce the set

WA
∆t,h = {Pn

h ∈ W∆t,h ; Pn
h(S, D, τn) ≥ g(S)}.

We should point out that the inequality arising in the previous definition will be considered only
in nodal points of the triangular mesh.

Thus the fully discrete problem forput american optionsis given by

PROBLEM APHRhm: Forn = 0, 1, 2, · · · , we findP n
h =

[
P n,+

h +P n,−
h

]
/2 ∈ WA

∆t,h such that

(
1

∆τ

{
Pn+1

h − Pn
h

}
,vh − Pn+1

h

)
+ a(Pn+1

h ,vh −Pn+1
h ) ≥

(
Fh,vh

)
, vh ∈ Wh ∩ H1

0 (Ω)

(44)
with initial condition

(
p0

h,vh

)
=
(
p(0),vh

)
, ∀vh ∈ Wh ∩ H1

0 (Ω) .

4 SOLUTION OF THE ALGEBRAIC PROBLEMS

The numerical results were obtained with the Picard’s Algorithm with the method of Suc-
cessive Over-Relaxation - SOR(ω) for European option pricing. This last method was replaced
by method of Successive Over-Relaxation SOR(ω) with projection on the convex set when the
American option pricing problem is solved.

4.1 Iterative Method of Successive Over-Relaxation- SOR(ω)

In iterative methods for solution of linear systemsAx = b is generally evaluated the norm of
the residue of “r = b − Ax” of the approximated solution. The process stop when the residue
satisfies a stopping criterion.

In the numerical approximation of the European option pricing we use the method of Suc-
cessive Over-Relaxation which leads, in each time step, to asequence of approximations topn

h,i,

p
n,(k)
h,i , which uses a combination ofp

n,(k+1)
h,i andp

n,(k)
h,i , i.e,

p
n,(k+1)
h,i = (1 − ω)p

n,(k)
h,i + ωp

n,(k+1)
h,i

leading to

p
n,(k+1)
h,i = (1 − ω)p

n,(k)
h,i +

ω

aii

(
bi −

i−1∑

j=1

aijp
n,(k+1)
h,j −

n∑

j=i+1

aijp
n,(k)
h,j

)
.
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For the American option pricing, in the numerical computation of an approximation for
the solution of the system (44), we use the iterative method of Successive Over-Relaxation -
SOR(ω) with projection on convex set at each instant of time, i.e.,

P̃
n,(k+1)
h,j = (1 − ω)P

n,(k)
h,i +

ω

aii

[
bi −

i−1∑

j=1

aijP
n,(k+1)
h,j −

n∑

j=i+1

aijP
n,(k)
h,j

]

P
n,(k+1)
h,j = min

[
P̃

n,(k+1)
h,j , g(S)

]

whereaij are the coefficients of the matrix of the system of inequations (44) resulting from
the piecewise linear approximation. In the case of put optionsg(S) = (E − S)+ andg(S) =
(S − E)+ for call option.

The iterative method converges to0 < ω < 2. For ω = 1 would be the equivalent to the
Gauss-Seidel method,ω < 1 has been under-relaxation andω > 1 has been over-relaxation.

4.2 Picard’s Algorithm

In all time steps is performed such procedures.

1. Forn = 1, ..., N :

i - Resets the force vectors,F− = 0 andF+ = 0 ;

ii - Loop to adjust the force vector. Forconst = 1, ..., 10 :

A . Solve the equation for positive past information,V +(S, D, τn).

B . Solve the equation for negative past information,V −(S, D, τn).

C . Adjust the force vector positive and negative,F+ = ∆t λ− V +,i

j(1+h−) and

F− = ∆τ λ+ V −,i

j(1+h+).

5 NUMERICAL RESULTS

The aim of the this section is to illustrate some important aspects concerning the application
of numerical methods in the financial market, more precisely, the use of finite element methods
for numerical solution of equations and inequations related to European and American pricing
of options with memory in assets and volatility.

The code of implementation for the finite element method is written in Matlab in the spirit
of the seriesAlberty et al.(1999, 2002); Cartensen and Klose(2002) and moreBecker et al.
(1981)

We remark that the purpose of the simulations is to provide aneasier overview of the theo-
retical results presented in this paper.

5.1 Example: Recovering the Standard Black and Scholes Model

The economics parameters of modeling are:$36.00 is o initial price of underlying asset,
exercise price is$40, interest rate is6%/year, Here in this example the volatility is constant (σ)
de30%/year and the time of maturity of the option is one year. The memory parameters are
zeros.

In the implementation of the Finite Element Method we have the addition of the following
parameters:51 is the number of step of time and51 is the number of é número de underlying
asset (space).
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Figure 1: European option without memory, assumptions of Black and Scholes

Verified by the figure, Fig.1, that we recover the Black and Scholes model, ie has the numerical
value found by the Finite Element Method is equal to the Blackand Scholes formula. Detailed
study of the convergence of Numerical Solution for Black-Scholes formula is presented in the
master’s thesisThomaz(2005). In the next figure, Fig.2, we see the option value over time of
maturation.
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Figure 2: Over time
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5.2 Example: Memory in Assets and Stochastic Volatility of Hobson and Rogers

In this example, we present an European put option. The Economics parameters are:$36.00
is o initial price of underlying asset, exercise price is$50, interest rate is20%/year. Here in
this example the volatility (σ(D)) is not constant being a function ofD, i.e. volatility function
of Hobson and Rogers. The time of maturity of the option is oneyear.

The parameterη is said to be the minimal level of implied volatility and is found in the
volatility functionσ(D). We shall useη = 0.4. Furthermore we haveε = 5, a scaling parameter
for the influence of the initial offset in the volatility function σ(D), θ = 1, the rate that past
information gets discounted in the offset function.λ = 0.1 is discontinuity parameter of the
underlying asset.

The method numerical parameters are:31 is the number of step of time,51 is the number of
é número de underlying asset (space) and41 is the number of step of Deviation. To generate
numerical solution we have plane overS × D. This example we useD ∈ [−2; 2] andS ∈
[0; 122.14].

We found that over time the behavior of the solution curve hasa slope greater due to the
parameters of the memory, both in the price as in the volatility.
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Figure 3: Option pricing in over time

American put option with the same parameters.

Mecánica Computacional Vol XXIX, págs. 2623-2646 (2010) 2643

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



0

0.2

0.4

0.6

0.8

1

0
20

40
60

80
100

120
140

0

5

10

15

20

25

30

35

40

45

50

Time to Maturity

Price of American Option (FEM, D = 0.1) 

Assets Price

O
pt

io
n 

P
ric

e

Figure 4: Option pricing in over time

If we useη = 0.35 with ε = 5, almost no influence of the initial offset in the volatility
function σ(D), θ = 1, the rate that past information gets discounted in the offset function.
λ = 0.1 is discontinuity parameter of the underlying asset. The Economics parameters are,
$36.00 is o initial price of underlying asset, exercise price is$80, interest rate is10%/year.
The time of maturity of the option is one year. We find Europeanput option pricing inD = 0.1
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Figure 5: Option pricing in over time

European put option pricing with the same parameters inD = 0.5 andD = 1.0,
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Figure 6: Option pricing in over time (D = 0.5)
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Figure 7: Option pricing in over time (D = 1.0)

We observed that for higher values ofD we have a increase in the value of the volatility function
which results in one greater displacement of the option price curve over time.

6 CONCLUSIONS

In this paper a new model for the evolution of option pricing when memory price and vo-
latility underlying asset are considered. We combine models where certain memory effect is
presented in the price of the underlying asset due toCrescenzo and Pellerey(2002) and de-
veloped later byRatanov(2007), with the original class of models of non-constant volatility
developedHobson and Rogers(1998).

The use of Jump-Telegraph-Diffusion-Drift processes (JTDD process) for underlying asset
models leads to an increasing of the difficulties in the modeling process. In fact, such JTDD
process induces a system of equations involving the optionspricing into different assets pri-
cing: system (25) for put European options; system (26) for call European options; system of
differential inequalities (37) for put American options.

The solution of the previous systems of PDEs were approximated using a combination be-
tween Galerkin method and Implicit Euler’s method. The fully discrete problem was numeri-
cally solved using the Picard’s algorithm.

A direct extension for this work would be to consider the stochastic interest rate where a
three-factor model will obtained. Empirical studies in this case have crucial importance, mainly
for the calibration of volatility function, similar toFoschi and Pascucci(2009) which was done
for models with memory in asset pricing.
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