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Abstract. Theoretical predictions are derived for the viscoplastisponse of polycrystalline solids
containing arandomdistribution of intergranular porosity. The predictiord@lédw from a nonlinear
homogenization method based on a ‘generalized secardrizagion of the viscoplastic crystal response,
as proposed by Liu & Ponte CastafiedaNlech. Phys. Solid§2:467-495, 2004). The influence of
crystallographic texture and porosity on the instantasa@sponse is investigated in the case of non-
hardening power-law crystals with face-centered cubicragtny. It is found that crystallinity of the
matrix material has a minor effect, even when crystals éxhitbow strain-rate sensitivity. Thus, the
assumption of matrix isotropy implicit in all standard thies of dilatational viscoplasticity should be
appropriate for this class of materials.
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1 INTRODUCTION

The aim of this work is to provide constitutive models for flmte-deformation viscoplastic
response of polycrystalline aggregates accounting fodtla¢ational effects associated with
the presence of intergranular cavities. Such constitutivdels are required for the numerical
simulation of many engineering applications (e.g., dyraloading of polycrystalline mate-
rials, forming aggregates with initial porosity), where thilatational effects associated with
the presence of cavities must be accounted for, and stapdgrcrystalline models for incom-
pressible plasticity are not appropriate. They are alsde@¢o account for texture effects on
ductile failure of metals —and other polycrystalline sekd by void growth to coalescence, as
observed under both quasi-static (Bache and Evans, 20@Enksehret al., 1996; Hales and
Hafley, 1998) and dynamic (Grast al., 1999) loading conditions. In the presence of a com-
pressible voided phase, the elementary Taylor and Sachexamations for polycrystalline
solids are known to give unphysical predictions; altereatipproaches are thus required. A
dilatational viscoplasticity theory for voided polycrat is derived in this work by extending
a nonlinear homogenization method initially proposed by &nd Ponte Castafieda (2004) for
fully dense polycrystals. The resulting models are genemalugh to account far) morpho-
logical and crystallographic texture of the polycrystalimatrix,ii) porosity, andii) average
pore shape and orientation, as well as their deformatidoaed evolution under arbitrary load-
ing conditions. At the same time, the models should be siraptaigh to be implemented in
dynamic finite-element codes. In this first study we will restattention to cubic polycrystals.

Voided polycrystals are idealized here as random aggregégeerfectly bonded single crys-
tals —i.e., grains— and cavities. Individual grains andittes are assumed to be of a similar
size, much smaller than the specimen size and the scaleiafigarof the applied loads. Fur-
thermore, aggregates are assumed to be statisticallyromdod ergodic. Their viscoplastic
behavior is most conveniently studied by adopting an Earedescription of motion. At a
generic stage of deformation, grains are assumed to indiliddeform by multi-glide along
K slip systems. Cavities, on the other hand, cannot sustassstThe effects of grain elasticity
and possible twinning are neglected in this work, for siipli Let the grain orientations in the
current configuration take on a set&fdiscrete values, characterized by rotation ten€yfs
(r = 1,..., N). All grains with a given orientatio®") are collectively referred to as ‘phase’
while all cavities are collectively referred to as ‘phaseThe local viscoplastic response of the
aggregate can then be described by a stress potensiath that the Eulerian strain-rate tensor
D and the stress tenserare related by

—(x,0), u(x,o)= ZX(T) (x)u (o). (1)

In this expression, the functiong” (x) are random variables that take the value 1 if the position
vectorx is in the domain of phaseand 0 otherwisey”) is the stress potential for the voided

phase, which takes the val0éf o = 0 and infinity otherwise, and®, ...., u"¥) are the stress
potentials characterizing grains with orientat@f, ..., Q), given by
K
r _ (r) (_(r)
u(o) = Z D) <T(k)) : (2)
k=1

The convex functionaﬁ)) (k = 1, ..., K) characterize the response of theslip systems in a

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 2775-2784 (2010) 2777

crystal with orientatiorQ("), and depend on the resolved shear (or Schmid) stresses
_ - W _ L)o@ ) o)
T = o). where p) = 5 (nj) ©mi + m ©n)). (3)

Here, theu(z) are second-order tensors wnﬁé and m( ) denoting the unit vectors normal
to the slip plane and along the slip direction of #tth system, respectively, for a crystal with

orientationQ("”). Note that the Schmid tensqméz)) are related to corresponding tenspgg, for

a ‘reference’ crystal viaz,gz)) = Q" QW

Due to the microstructural inhomogeneity, the local fieldsx) and o (x) exhibit strong
spatial variations within the aggregate. The effectiveoastic behavior of the aggregate is
obtained by homogenizing the local viscoplasticity prafle_et (-) and(-)(" denote volume
averages over the aggregate and over each phasespectively. The effective response can be
formally written as (e.g., Ponte Castafieda and Suquet,)1998

ou
55 %), @) Ug{lﬁ)w(x,a» ( oégn(la E 4)

D=
wherea = (o) and D = (D) are the average stress and strain rate over the aggregdte, an
u is the effective stress potentiaf denotes the volume fraction of cavities —or porosity— and
cg’") represents the volume fraction of the crystalline phaséthin the matrix phase. Also,
S(o) denotes the set of statically admissible stress fields wiésgribed average, while
§* C S denotes the subset of stress fields with zero traction veatthre surface of the cavities.
Carrying out the minimization ird is in general a formidable task, since it requires the smut
to sets of nonlinear partial differential equations withadamly oscillatory coefficients. In this
work we generate approximagstimatedor the effective potential by means of a variational
‘linear-comparison’ method.

2 NONLINEAR HOMOGENIZATION ESTIMATES

Following Liu and Ponte Castafieda (2004), the approachogexpin this work makes use
of a ‘linear-comparison polycrystal’ (LCP) which consistfisa polycrystal with the same mi-
crostructure as the nonlinear polycrystal but whose sioglstal response is identified with a
certain linearization of the corresponding nonlinear oesge. Then, any of the available models
for linear polycrystals can be used to estimate the effegiistential of the linear-comparison
polycrystal, which in turn can be used to estimate the affegiotential of the nonlinear poly-
crystal.

The linearized crystalline phases are characterized bgrgtia potentials of the form

. 1
ué)(o') = 50- . M(T)O' + e(r) o, (5)
where
K K
M) ZO‘EQ)“’ ,U,EZ)) and e = Z E ))NEZ)) (r=1,..,N) (6)
k=1

k=1

define the viscous-compliance and ‘residual’ strain-ratesors at the grain level in terms of
the corresponding slip-level quantitia%)) andegz)), respectively. For the voided phase, in turn,
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Figure 1: ‘Generalized-secant’ linearization scheme.

(M©)~1 = 0 ande® = 0. Now, generalizing the theory of Liu and Ponte Castafied@4p0
to account for the additional vacuous phase, we approxithatdéocal potentials.”) of the
nonlinear polycrystal in terms of the local potentiaL@ and a suitable measure of the error, to
obtain the following approximation for the effective padti@hof the nonlinear polycrystal:

N K
W) = (1= )3 > [9R00) — o) T — 7)) ™)

where the variableé((,z)) and?EQ) depend on the averages and fluctuations of the resolved shear

stresseg - ,u,(’")) in the linear-comparison polycrystal subjected to the saraeroscopic stress

k
o as the noniinear material. They are such that:

(r)
=(r) _ (r) _ =(r (r)
Tk = <‘7 ' “(k)> =" ) (8)

and .
2 T
L) =()y2 _ " =0 @) ), @)
Ty = Tiwy)™ = <(” B~ T(k)) > =ty - Co Ky ©)
where
7" = ()" and CY ={((c-7")®(c-7")" = (ea0) " az". (10)

The quantities?((;)) — FEQ) in (9) are taken to have the same sign asﬁﬁga

The tensors¥0) are given in terms of the local properti®$") ande”) according to the lin-
ear theory utilized. A particularly accurate and easy4e-eory is the so-calles|f-consistent
model (see Lebensohn et al., 2004). This linear model wasnaitly proposed —in the math-
ematically analogous context of linear elasticity— as atthad model by Hershey (1954) and
Koner (1958), and was later derived more rigorously and eedowith a clear statistical inter-
pretation by Willis (1977). Self-consistent estimatestfa tensorg ") andCf;) can be found,
for instance, in Liu and Ponte Castafieda (2004) —see Se&an that Reference.
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In turn, the properties of the linear-comparison polyaystust be specified such that the
variabIeSe anda |n relations 6) satisfy the relations

= o0 (7)) — a7l (11)

and
3 () = 90 (70 = a7 7)) (12)

Note that relation 12) identifies the viscous slip compliance%?) of the linear-comparison
polycrystal with a ‘generalized-secant’ approximatiortted nonlinear constitutive relation for
the corresponding slips systems in the viscoplastic pgdtaf, taking into account both the
average and fluctuation of the stress for the given graimtaimn —as determined by the
linear-comparison approximation, see FigdreExpressions§)-(12) together With 10) con-
stitute a system of nonlineagebraic equations for the variableﬁ,:) and a(k), which
must be solved numerically, in general. In this work, theagguns are soived by means of the
‘VPSC’ FORTRAN code developed by Lebensohn and coworkersglsy modified to account
for the presence of a compressible voided phase. Detailssoasigorithm can be found in Tomé
and Lebensohn (2007).

3 PREDICTIONS FOR CUBIC POWER-LAW POLYCRYSTALS

The ‘generalized-secant’ method presented above is useddstudy the influence of crys-
tallinity, texture and porosity on the instantaneous respf a special —but representative—
class of cubic polycrystalline solids. Of particular ir@stin this study is to assess the simplify-
ing assumption made in standard theories of dilatatiorsabplasticity (e.g., Gurson, 1977) that
the matrix material surrounding the cavities is isotroior this reason, attention is restricted
to polycrystalline solids witlsotropicmicrostructural statistics, that is, with ‘equiaxed’ grai
and isotropically distributed porosity.

Crystals are assumed to exhibit face-centered cubic (faohsetry and to deform plasti-
cally through slip on a set of four slip planes of the tyjdé 1} along three slip directions (per
plane) of type(110), which, together, constitute a set of twelve slip systenth suitably de-
fined Schmid tensorﬂgz)). Of these, five are linearly independent, allowing arbytralastic
deformation for the grains (see Groves and Kelly, 1953). vikeous flow is characterized by
potentials of the common power-law form
7_070 n+1
n+1|7

T

Py (1) =

(13)

for all grains. Herem = 1/n (0 < m < 1) is the strain-rate sensitivity, is a reference strain
rate, andr, > 0 is the flow stress of the slip system in the ‘reference’ clydtar simplicity,
all systems are assumed to be nonhardening. This claspgfakntials is particularly appro-
priate for investigating the effect nonlinearity and gramsotropy in a wide range of material
behaviors. In particular, the limiting cases = 1 andm = 0 correspond to linearly viscous
and rigid-ideally plastic behaviors, respectively.

The fact that the viscous exponenand the reference strain rajg are the same for all the
slip systems and grains in a given polycrystal simplifiesahalysis considerably. The local
potentialwu is in this case a homogeneous function of degree 1 in o, and consequently,
the corresponding effective potenttals a homogeneous function of degree- 1 in & (Ponte

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar



2780

M. IDIART, R. LEBENSOHN, P. PONTE CASTANEDA

a) 1'2 I ‘ I ror T L L | I ‘ L T
1E / ’ -~ fully-dense solid E
_083_ / - ////’/// _f
2e 0.6 S GSEC-WM =
0'4;// // _ /"// n=1 =
02p ~ -~ -~ GSEC/AFF-FCC £=0.05"
O é \i\/\/l ‘ | | | | ‘ | | | | | | | | | ‘ | | | | | | | | ‘ | | | | | | | | [
0 0.5 1 15 2 2.5 3 3.5
Xm
b) 1'2 [ ] 1 A ‘ 1 1 1 I ‘ I I 1 1 1 1 1 I I I 1 1 1 1 I 1 ‘ 1 1 1 1 1 1 I ]
- g -~ fully-dense solid E
3 ////”':AFF/-FCC
4L T GSEC-FCC E
02F 7 GSEC-WM =
O E’\gf \_I O‘ ()|5| | | ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | \-\ L] I:
0 0.5 1 15 2 2.5 3 3.5
Xm

Figure 2: ‘Generalized-secant’ (GSEC) estimates for thggaurfaces of untextured fcc
polycrystalline solids with porosity level = 0.05 and viscous exponents (a)= 1 and (b)
n = 10. Dashed lines indicate directions of constant stressistigies X, = 1/3,1, 2, 4.

Castafieda and Suquet, 1998). Then, a single equipotemtiateu (o) =constant ing-space
fully characterizes:; any other equipotential surface is simply a homothetitasar (Leblond
et al., 1994). Results for power-law polycrystals are reggbhere in the form of equipotential

surfaces given by
S .~ _ %0 Yo
Y:axE) =2
{ u) n+1 } ’

whereo, is some reference flow stress —see below. This is the sodogdlage surfacef
the polycrystal, which characterizes completely the ¢ffeaesponse (Leblond et al., 1994).
The ‘normal’ to this surface i@-space dictates the direction of macroscopic plastic flow in
D-space. In the ideally-plastic limit, the gauge surfaceuoes to the yield surface of the
aggregate. With the objective of comparing predictionspolycrystalline and isotropic von
Mises solids, we will report gauge surfacesvordedpolycrystals withr, being the flow stress
of the correspondinfully densepolycrystal withisotropiccrystallographic and morphological
textures. The values are taken from the work of Lebensohh €R810): oy = 1.4997, for

n = 1 andoy = 2.5741 for n = 10. Finally, we recall for later use that the overall stress
triaxiality X, is defined as the ratio of the hydrostatic strgssto the von Mises equivalent
stress7,, and that uniaxial tension correspondsip = 1/3. Corresponding invariants &f in
(14) are defined similarly.

(14)
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The simultaneous effect of crystallinity and porosity oe #ffective response is explored
in fig. 2. The generalized-secant (GSEC) predictions for fcc pgbtats correspond to two
hundred (V. = 200) equi-weighted grain orientations prescribed accordmmgdme random
process in order to generate solids with a fairly isotroffieative response. For reasons that
will become evident shortly, generalized-secant (GSE@asas forn = 10 have been plotted
in continuous lines forX, < 2 but in dotted lines forX, > 2. The effect of crystallinity
Is assessed by comparing polycrystal estimates with GSEMates for von Mises voided
solids derived by Danas et al. (2008). Also shown in this fgior comparison purposes
are the ‘affine’ (AFF) estimates proposed by Masson et alO@20 These ‘classical’ linear-
comparison estimates of the self-consistent type make fusdimearization scheme based on
the first moments of the fields only. In the representationgfdj the gauge surface of a fully
dense solid with either polycrystalline or von Mises maisigiven by the linec, = 1, parallel
to the hydrostatic axis. We begin by noting that for= 1 the GSEC and AFF estimates agree
exactly with the underlying self-consistent estimates dnctv they are based, but far= 10
they give diverging predictions. The GSEC surfaceor= 10 is closed and convex, as it
should, while the AFF surface is non-convex and exhibits @mounded hydrostatic strength.
The poor performance of classical models like the affine rhatliarge triaxialities is a direct
consequence of a linearization scheme solely based onshmbments of the local fields. The
generalized-secant linearization scheme, on the othet, hiavolves the second moments and
as a consequence gives superior predictions. At low to nabelériaxialities ( < X, < 2)
GSEC estimates predict an increasing weakening effect —tadthee presence of voids— with
increasing nonlinearity, but a minor influence of matrix crystallinity within the énetrange of
nonlinearities considered. At large triaxialities, on @tlkeer hand, opposite trends are observed:
for n = 10, the predicted hydrostatic strength of the voided polytadyis almost two times
that of the von Mises solid. However, as discussed in moraildetlow, generalized-secant
predictions at large triaxialities should be taken withteau

We now assess the effect of crystallographic texture andsiyron the effective response.
A sharp rolling texture is simulated by a set of one thousavnd+ 1000) crystal orientations.
The anisotropic specimens are loaded in axisymmetricaarsdbng three mutually orthogonal
directions: the rolling, normal and transverse directigkiso included in these figures for com-
parison purposes are the corresponding gauge surfacesfdfiiges voided solids. Once again,
we note that GSEC surfaces are closed and convex, as expantedxhibit the same trends
with increasing nonlinearity as those observed previolaslyntextured polycrystals. The main
observation, however, is that GSEC estimates predict ammifiaence of crystallographic tex-
ture on the effective response of fcc polycrystals, andqaérly so at the hydrostatic point.

Now, while very accurate at low to moderate triaxialitiesg X, < 2, linear-comparison
estimates like GSEC estimates are known to give overly gtppedictions at larger triaxiali-
ties. In fact, they are found here to exhibit a corner at thdristatic point while smoothness
is expected. As a result, GSEC predictions for highly tahgreeping processes will give un-
realistically small hydrostatic strain rates and consatyewill underestimate void growth at
the initial stages of deformation. This problem of variatiblinear-comparison estimates is al-
ready well known in the context of von Mises voided solidg(der instance, Pastor and Ponte
Castarieda, 2002; Bilger et al., 2002). In this connecti@and3 et al. (2008) have proposed an
ad-hoc remedy whereby the linearization scheme is forcetépend explicitly on the macro-
scopic stress triaxiality in such a way that the effectivaggsurface tends to some specified
hydrostatic point. In the case of von Mises solids, a suitalydrostatic point is available from
the well-known solution of a hollow shell. A similar strategould be envisaged for voided
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Figure 3: ‘Generalized-secant’ (GSEC) estimates for theygaurfaces of textured fcc
polycrystalline solids with porosity level = 0.05 and viscous exponents (a)= 1 and (b)
n = 10. Dashed lines indicate directions of constant stressistigies X, = 1/3,1, 2, 4.

polycrystalline solids and will be explored in future woik;this connection, the recent work
of Idiart (2007, 2008) for sequentially laminated compesitould prove helpful. In any event,
as it stands, the generalized-secant theory proposedsimvtirk should be accurate enough to
model deformation processes involving low to moderatesstheaxialities.

Thus, this study shows that, at least at low to moderatesstriesialities, the usual assump-
tion of matrix isotropy made in most available theories ddw@itional viscoplasticity —such as
Gurson’s theory (Gruson, 1977) and its generalizatiorgs,(eeblond et al., 1994)— should
be reasonable for cubic polycrystals, even for specimenibigxg strong crystallographic tex-
tures. Of course, this is so provided other sources of awigptsuch as morphological texture
and anisotropic distributions of second-phase partiglesbsent.
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