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Abstract. Theoretical predictions are derived for the viscoplastic response of polycrystalline solids
containing arandomdistribution of intergranular porosity. The predictions follow from a nonlinear
homogenization method based on a ‘generalized secant’ linearization of the viscoplastic crystal response,
as proposed by Liu & Ponte Castañeda (J. Mech. Phys. Solids52:467-495, 2004). The influence of
crystallographic texture and porosity on the instantaneous response is investigated in the case of non-
hardening power-law crystals with face-centered cubic symmetry. It is found that crystallinity of the
matrix material has a minor effect, even when crystals exhibit a low strain-rate sensitivity. Thus, the
assumption of matrix isotropy implicit in all standard theories of dilatational viscoplasticity should be
appropriate for this class of materials.
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1 INTRODUCTION

The aim of this work is to provide constitutive models for thefinite-deformation viscoplastic
response of polycrystalline aggregates accounting for thedilatational effects associated with
the presence of intergranular cavities. Such constitutivemodels are required for the numerical
simulation of many engineering applications (e.g., dynamic loading of polycrystalline mate-
rials, forming aggregates with initial porosity), where the dilatational effects associated with
the presence of cavities must be accounted for, and standardpolycrystalline models for incom-
pressible plasticity are not appropriate. They are also needed to account for texture effects on
ductile failure of metals —and other polycrystalline solids— by void growth to coalescence, as
observed under both quasi-static (Bache and Evans, 2001; Lebensohnet al., 1996; Hales and
Hafley, 1998) and dynamic (Grayet al., 1999) loading conditions. In the presence of a com-
pressible voided phase, the elementary Taylor and Sachs approximations for polycrystalline
solids are known to give unphysical predictions; alternative approaches are thus required. A
dilatational viscoplasticity theory for voided polycrystals is derived in this work by extending
a nonlinear homogenization method initially proposed by Liu and Ponte Castañeda (2004) for
fully dense polycrystals. The resulting models are generalenough to account fori) morpho-
logical and crystallographic texture of the polycrystalline matrix,ii) porosity, andiii) average
pore shape and orientation, as well as their deformation-induced evolution under arbitrary load-
ing conditions. At the same time, the models should be simpleenough to be implemented in
dynamic finite-element codes. In this first study we will restrict attention to cubic polycrystals.

Voided polycrystals are idealized here as random aggregates of perfectly bonded single crys-
tals —i.e., grains— and cavities. Individual grains and cavities are assumed to be of a similar
size, much smaller than the specimen size and the scale of variation of the applied loads. Fur-
thermore, aggregates are assumed to be statistically uniform and ergodic. Their viscoplastic
behavior is most conveniently studied by adopting an Eulerian description of motion. At a
generic stage of deformation, grains are assumed to individually deform by multi-glide along
K slip systems. Cavities, on the other hand, cannot sustain stress. The effects of grain elasticity
and possible twinning are neglected in this work, for simplicity. Let the grain orientations in the
current configuration take on a set ofN discrete values, characterized by rotation tensorsQ(r)

(r = 1, ..., N). All grains with a given orientationQ(r) are collectively referred to as ‘phase’r,
while all cavities are collectively referred to as ‘phase’ 0. The local viscoplastic response of the
aggregate can then be described by a stress potentialu, such that the Eulerian strain-rate tensor
D and the stress tensorσ are related by

D =
∂u

∂σ
(x, σ), u(x, σ) =

N∑

r=0

χ(r)(x)u(r)(σ). (1)

In this expression, the functionsχ(r)(x) are random variables that take the value 1 if the position
vectorx is in the domain of phaser and 0 otherwise,u(0) is the stress potential for the voided
phase, which takes the value0 if σ = 0 and infinity otherwise, andu(1), ...., u(N) are the stress
potentials characterizing grains with orientationQ(1), ...,Q(N), given by

u(r)(σ) =
K∑

k=1

φ
(r)
(k)

(
τ

(r)
(k)

)
. (2)

The convex functionsφ(r)
(k) (k = 1, ..., K) characterize the response of theK slip systems in a
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crystal with orientationQ(r), and depend on the resolved shear (or Schmid) stresses

τ
(r)
(k) = σ · µ

(r)
(k), where µ

(r)
(k) =

1

2

(
n

(r)
(k) ⊗ m

(r)
(k) + m

(r)
(k) ⊗ n

(r)
(k)

)
. (3)

Here, theµ(r)
(k) are second-order tensors withn(r)

(k) andm
(r)
(k) denoting the unit vectors normal

to the slip plane and along the slip direction of thekth system, respectively, for a crystal with
orientationQ(r). Note that the Schmid tensorsµ

(r)
(k) are related to corresponding tensorsµ(k) for

a ‘reference’ crystal viaµ(r)
(k) = Q(r)T

µ(k)Q
(r).

Due to the microstructural inhomogeneity, the local fieldsD(x) andσ(x) exhibit strong
spatial variations within the aggregate. The effective viscoplastic behavior of the aggregate is
obtained by homogenizing the local viscoplasticity problem. Let 〈·〉 and〈·〉(r) denote volume
averages over the aggregate and over each phase(r), respectively. The effective response can be
formally written as (e.g., Ponte Castañeda and Suquet, 1998)

D =
∂ũ

∂σ
(σ), ũ(σ) = min

σ∈S(σ)
〈u(x, σ)〉 = (1 − f) min

σ∈S∗(σ)

N∑

r=1

c(r)
g 〈u(r)(σ)〉(r), (4)

whereσ = 〈σ〉 andD = 〈D〉 are the average stress and strain rate over the aggregate, and
ũ is theeffective stress potential, f denotes the volume fraction of cavities –or porosity– and
c
(r)
g represents the volume fraction of the crystalline phaser within the matrix phase. Also,
S(σ) denotes the set of statically admissible stress fields with prescribed averageσ, while
S∗ ⊂ S denotes the subset of stress fields with zero traction vectoron the surface of the cavities.
Carrying out the minimization in (4) is in general a formidable task, since it requires the solution
to sets of nonlinear partial differential equations with randomly oscillatory coefficients. In this
work we generate approximateestimatesfor the effective potential by means of a variational
‘linear-comparison’ method.

2 NONLINEAR HOMOGENIZATION ESTIMATES

Following Liu and Ponte Castañeda (2004), the approach proposed in this work makes use
of a ‘linear-comparison polycrystal’ (LCP) which consistsof a polycrystal with the same mi-
crostructure as the nonlinear polycrystal but whose single-crystal response is identified with a
certain linearization of the corresponding nonlinear response. Then, any of the available models
for linear polycrystals can be used to estimate the effective potential of the linear-comparison
polycrystal, which in turn can be used to estimate the effective potential of the nonlinear poly-
crystal.

The linearized crystalline phases are characterized by quadratic potentials of the form

u
(r)
L (σ) =

1

2
σ · M(r)σ + e(r) · σ, (5)

where

M(r) =

K∑

k=1

α
(r)
(k)µ

(r)
(k) ⊗ µ

(r)
(k) and e(r) =

K∑

k=1

e
(r)
(k)µ

(r)
(k) (r = 1, ..., N) (6)

define the viscous-compliance and ‘residual’ strain-rate tensors at the grain level in terms of
the corresponding slip-level quantitiesα

(r)
(k) ande

(r)
(k), respectively. For the voided phase, in turn,
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Figure 1: ‘Generalized-secant’ linearization scheme.

(M(0))−1 = 0 ande(0) = 0. Now, generalizing the theory of Liu and Ponte Castañeda (2004)
to account for the additional vacuous phase, we approximatethe local potentialsu(r) of the
nonlinear polycrystal in terms of the local potentialsu

(r)
L and a suitable measure of the error, to

obtain the following approximation for the effective potential of the nonlinear polycrystal:

ũ(σ) = (1 − f)

N∑

r=1

K∑

k=1

c(r)
g

[
φ

(r)
(k)(τ̂

(r)
(k) ) − φ

(r)
(k)

′

(τ
(r)
(k))(τ̂

(r)
(k) − τ

(r)
(k))

]
, (7)

where the variableŝτ (r)
(k) andτ

(r)
(k) depend on the averages and fluctuations of the resolved shear

stressesσ · µ
(r)
(k) in the linear-comparison polycrystal subjected to the samemacroscopic stress

σ as the nonlinear material. They are such that:

τ
(r)
(k) =

〈
σ · µ

(r)
(k)

〉(r)

= σ(r) · µ
(r)
(k) (8)

and

(τ̂
(r)
(k) − τ

(r)
(k))

2 =

〈(
σ · µ

(r)
(k) − τ

(r)
(k)

)2
〉(r)

= µ
(r)
(k) · C

(r)
σ µ

(r)
(k), (9)

where

σ(r) = 〈σ〉(r) and C
(r)
σ =

〈
(σ − σ(r)) ⊗ (σ − σ(r))

〉(r)
= 〈σ⊗σ〉(r) −σ(r) ⊗σ(r). (10)

The quantitieŝτ (r)
(k) − τ

(r)
(k) in (9) are taken to have the same sign as theτ

(r)
(k).

The tensors (10) are given in terms of the local propertiesM(r) ande(r) according to the lin-
ear theory utilized. A particularly accurate and easy-to-use theory is the so-calledself-consistent
model (see Lebensohn et al., 2004). This linear model was originally proposed —in the math-
ematically analogous context of linear elasticity— as an ad-hoc model by Hershey (1954) and
Köner (1958), and was later derived more rigorously and endowed with a clear statistical inter-
pretation by Willis (1977). Self-consistent estimates forthe tensorsσ(r) andC

(r)
σ can be found,

for instance, in Liu and Ponte Castañeda (2004) —see Section3.3 in that Reference.
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In turn, the properties of the linear-comparison polycrystal must be specified such that the
variablese(r)

(k) andα
(r)
(k) in relations (6) satisfy the relations

e
(r)
(k) = φ

(r)
(k)

′

(τ
(r)
(k)) − α

(r)
(k)τ

(r)
(k) (11)

and
φ

(r)
(k)

′

(τ̂
(r)
(k) ) − φ

(r)
(k)

′

(τ
(r)
(k)) = α

(r)
(k)(τ̂

(r)
(k) − τ

(r)
(k)). (12)

Note that relation (12) identifies the viscous slip compliancesα
(r)
(k) of the linear-comparison

polycrystal with a ‘generalized-secant’ approximation ofthe nonlinear constitutive relation for
the corresponding slips systems in the viscoplastic polycrystal, taking into account both the
average and fluctuation of the stress for the given grain orientation —as determined by the
linear-comparison approximation, see Figure1. Expressions (8)-(12) together with (10) con-
stitute a system of nonlinearalgebraicequations for the variableŝτ (r)

(k) , τ
(r)
(k) andα

(r)
(k), which

must be solved numerically, in general. In this work, the equations are solved by means of the
‘VPSC’ FORTRAN code developed by Lebensohn and coworkers, suitably modified to account
for the presence of a compressible voided phase. Details on the algorithm can be found in Tomé
and Lebensohn (2007).

3 PREDICTIONS FOR CUBIC POWER-LAW POLYCRYSTALS

The ‘generalized-secant’ method presented above is used here to study the influence of crys-
tallinity, texture and porosity on the instantaneous response of a special —but representative—
class of cubic polycrystalline solids. Of particular interest in this study is to assess the simplify-
ing assumption made in standard theories of dilatational viscoplasticity (e.g., Gurson, 1977) that
the matrix material surrounding the cavities is isotropic.For this reason, attention is restricted
to polycrystalline solids withisotropicmicrostructural statistics, that is, with ‘equiaxed’ grains
and isotropically distributed porosity.

Crystals are assumed to exhibit face-centered cubic (fcc) symmetry and to deform plasti-
cally through slip on a set of four slip planes of the type{111} along three slip directions (per
plane) of type〈110〉, which, together, constitute a set of twelve slip systems with suitably de-
fined Schmid tensorsµ(r)

(k). Of these, five are linearly independent, allowing arbitrary plastic
deformation for the grains (see Groves and Kelly, 1953). Theviscous flow is characterized by
potentials of the common power-law form

φ(k)(τ) =
τ0γ̇0

n + 1

∣∣∣∣
τ

τ0

∣∣∣∣
n+1

(13)

for all grains. Here,m = 1/n (0 ≤ m ≤ 1) is the strain-rate sensitivity,γ̇0 is a reference strain
rate, andτ0 > 0 is the flow stress of the slip system in the ‘reference’ crystal. For simplicity,
all systems are assumed to be nonhardening. This class of slip potentials is particularly appro-
priate for investigating the effect nonlinearity and grainanisotropy in a wide range of material
behaviors. In particular, the limiting casesm = 1 andm = 0 correspond to linearly viscous
and rigid-ideally plastic behaviors, respectively.

The fact that the viscous exponentn and the reference strain rateγ̇0 are the same for all the
slip systems and grains in a given polycrystal simplifies theanalysis considerably. The local
potentialu is in this case a homogeneous function of degreen + 1 in σ, and consequently,
the corresponding effective potentialũ is a homogeneous function of degreen + 1 in σ (Ponte
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Figure 2: ‘Generalized-secant’ (GSEC) estimates for the gauge surfaces of untextured fcc
polycrystalline solids with porosity levelf = 0.05 and viscous exponents (a)n = 1 and (b)
n = 10. Dashed lines indicate directions of constant stress triaxialitiesXσ = 1/3, 1, 2, 4.

Castañeda and Suquet, 1998). Then, a single equipotential surfaceũ(σ) =constant inσ-space
fully characterizes̃u; any other equipotential surface is simply a homothetic surface (Leblond
et al., 1994). Results for power-law polycrystals are reported here in the form of equipotential
surfaces given by {

Σ : ũ(Σ) =
σ−n

0 γ̇0

n + 1

}
, (14)

whereσ0 is some reference flow stress —see below. This is the so-called gauge surfaceof
the polycrystal, which characterizes completely the effective response (Leblond et al., 1994).
The ‘normal’ to this surface inσ-space dictates the direction of macroscopic plastic flow in
D-space. In the ideally-plastic limit, the gauge surface reduces to the yield surface of the
aggregate. With the objective of comparing predictions forpolycrystalline and isotropic von
Mises solids, we will report gauge surfaces forvoidedpolycrystals withσ0 being the flow stress
of the correspondingfully densepolycrystal withisotropiccrystallographic and morphological
textures. The values are taken from the work of Lebensohn et al. (2010): σ0 = 1.499τ0 for
n = 1 andσ0 = 2.574τ0 for n = 10. Finally, we recall for later use that the overall stress
triaxiality Xσ is defined as the ratio of the hydrostatic stressσm to the von Mises equivalent
stressσe, and that uniaxial tension corresponds toXσ = 1/3. Corresponding invariants ofΣ in
(14) are defined similarly.
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The simultaneous effect of crystallinity and porosity on the effective response is explored
in fig. 2. The generalized-secant (GSEC) predictions for fcc polycrystals correspond to two
hundred (N = 200) equi-weighted grain orientations prescribed according to some random
process in order to generate solids with a fairly isotropic effective response. For reasons that
will become evident shortly, generalized-secant (GSEC) surfaces forn = 10 have been plotted
in continuous lines forXσ ≤ 2 but in dotted lines forXσ > 2. The effect of crystallinity
is assessed by comparing polycrystal estimates with GSEC estimates for von Mises voided
solids derived by Danas et al. (2008). Also shown in this figure for comparison purposes
are the ‘affine’ (AFF) estimates proposed by Masson et al. (2000). These ‘classical’ linear-
comparison estimates of the self-consistent type make use of a linearization scheme based on
the first moments of the fields only. In the representation of fig. 2, the gauge surface of a fully
dense solid with either polycrystalline or von Mises matrixis given by the lineΣe = 1, parallel
to the hydrostatic axis. We begin by noting that forn = 1 the GSEC and AFF estimates agree
exactly with the underlying self-consistent estimates on which they are based, but forn = 10
they give diverging predictions. The GSEC surface forn = 10 is closed and convex, as it
should, while the AFF surface is non-convex and exhibits an unbounded hydrostatic strength.
The poor performance of classical models like the affine model at large triaxialities is a direct
consequence of a linearization scheme solely based on the first moments of the local fields. The
generalized-secant linearization scheme, on the other hand, involves the second moments and
as a consequence gives superior predictions. At low to moderate triaxialities (0 ≤ Xσ . 2)
GSEC estimates predict an increasing weakening effect —dueto the presence of voids— with
increasing nonlinearityn, but a minor influence of matrix crystallinity within the entire range of
nonlinearities considered. At large triaxialities, on theother hand, opposite trends are observed:
for n = 10, the predicted hydrostatic strength of the voided polycrystal is almost two times
that of the von Mises solid. However, as discussed in more detail below, generalized-secant
predictions at large triaxialities should be taken with caution.

We now assess the effect of crystallographic texture and porosity on the effective response.
A sharp rolling texture is simulated by a set of one thousand (N = 1000) crystal orientations.
The anisotropic specimens are loaded in axisymmetric tension along three mutually orthogonal
directions: the rolling, normal and transverse directions. Also included in these figures for com-
parison purposes are the corresponding gauge surfaces for von Mises voided solids. Once again,
we note that GSEC surfaces are closed and convex, as expected, and exhibit the same trends
with increasing nonlinearity as those observed previouslyfor untextured polycrystals. The main
observation, however, is that GSEC estimates predict a minor influence of crystallographic tex-
ture on the effective response of fcc polycrystals, and particularly so at the hydrostatic point.

Now, while very accurate at low to moderate triaxialities,0 ≤ Xσ . 2, linear-comparison
estimates like GSEC estimates are known to give overly strong predictions at larger triaxiali-
ties. In fact, they are found here to exhibit a corner at the hydrostatic point while smoothness
is expected. As a result, GSEC predictions for highly triaxial creeping processes will give un-
realistically small hydrostatic strain rates and consequently, will underestimate void growth at
the initial stages of deformation. This problem of variational linear-comparison estimates is al-
ready well known in the context of von Mises voided solids (see, for instance, Pastor and Ponte
Castañeda, 2002; Bilger et al., 2002). In this connection, Danas et al. (2008) have proposed an
ad-hoc remedy whereby the linearization scheme is forced todepend explicitly on the macro-
scopic stress triaxiality in such a way that the effective gauge surface tends to some specified
hydrostatic point. In the case of von Mises solids, a suitable hydrostatic point is available from
the well-known solution of a hollow shell. A similar strategy could be envisaged for voided
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Figure 3: ‘Generalized-secant’ (GSEC) estimates for the gauge surfaces of textured fcc
polycrystalline solids with porosity levelf = 0.05 and viscous exponents (a)n = 1 and (b)
n = 10. Dashed lines indicate directions of constant stress triaxialitiesXσ = 1/3, 1, 2, 4.

polycrystalline solids and will be explored in future work;in this connection, the recent work
of Idiart (2007, 2008) for sequentially laminated composites could prove helpful. In any event,
as it stands, the generalized-secant theory proposed in this work should be accurate enough to
model deformation processes involving low to moderate stress triaxialities.

Thus, this study shows that, at least at low to moderate stress triaxialities, the usual assump-
tion of matrix isotropy made in most available theories of dilatational viscoplasticity —such as
Gurson’s theory (Gruson, 1977) and its generalizations (e.g., Leblond et al., 1994)— should
be reasonable for cubic polycrystals, even for specimens exhibiting strong crystallographic tex-
tures. Of course, this is so provided other sources of anisotropy such as morphological texture
and anisotropic distributions of second-phase particles are absent.
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