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Abstract. In this paper, a numerical comparative study for shear mechanisms is performed, 

based on two different calibration points. The assessment is motivated due to the fact that 

the accuracy of the results obtained by coupled damage models is strongly dependent on the 

calibration point. Hence, the numerical results obtained by these models are more realistic 

and in agreement with experimental evidence when the external loading conditions are close 

to the calibration point. By the way, shear mechanisms proposed by Xue and Nahshon & 

Hutchison were selected and added into damage variable of Gurson-Tvergaard-

Needleman model (GTN), in order to give ability to predict crack formation when shear 

loading condition is presented. In the first part of this paper, both mechanisms are presented 

as well as the GTN model. Besides that, the numerical strategy is introduced, based on an 

implicit integration algorithm. In the following section, a point in high and other in low stress 

triaxialities are taken as calibration points and by an inverse method, the material parameters 

are obtained. In order to analyze the dependence of the results in relation to the calibration 

point, numerical tests are carried out for pure shear and combined shear/tensile loading 

conditions using first, the material parameters obtained by the first calibration point and 

then, using the properties which resulted by the second calibration point. Both numerical 

results are compared with experimental data and the ability to predict the correct fracture 

location. At the end, the equivalent plastic strain and displacement at fracture are analyzed 

for each calibration condition. The numerical tests have shown that for the loading conditions 

applied, the material properties obtained by the shear calibration point was more appropriate 

than the material properties taken for high stress triaxiality calibration point. 
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1 INTRODUCTION 

The fracture in metals is an important subject to be improved, regarding the ability 

to predict the correct location of crack initiation in machine components and rupture 

in general structures. This phenomenon can be studied by its separated evolution 

contribution as the initiation and growth of general micro defects which is induced by 

large deformations. Some researchers like  McClintock (1968) and Rice & Tracey 

(1969) developed pioneering work undertaken on the subject, where the nature of 

defect was taken into account the study of ductile damage by analyzing its geometry 

in a continuous matrix.  

The degradation of material properties is an irreversible process and starts from 

the formation of micro defects which can be voids, cracks and others, that already 

exist or that will be formed in the material matrix. However, the evolution of material 

degradation is dependent on macroscopic loading conditions which can cause a 

volumetric void growth such as in tensile loading condition or a preferential 

elongation of micro defects which can be observed in pure shear loading conditions. 

The ductile fracture phenomenon can be described, based on a micromechanical 

analysis of micro cavity growth, especially for the fracture computation within local 

approaches of fracture, (see Pineau, 1981; Rousselier, 1987; Besson et al., 2001) or 

based on the Continuum Damage Mechanics theory and a thermodynamic  

framework, either phenomenological or micromechanically based, as Lemaitre (1985) 

for damage caused by plastic flow, Chaboche (1984) and Murakami & Ohno (1981) 

for creep damage, Krajčinović & Fonseka (1981) on micromechanical grounds. 

The formulations proposed by Lemaitre and Gurson are the most important 

coupled damage ductile models to describe the above two methodologies (see 

Chaboche et al., 2006). Since then, motivated by the limitations of these classical 

models, such as in prediction of the correct fracture location or in determination of 

the correct values of the internal variables at fracture, many researchers have 

proposed improvements in both methodologies, by introducing more effects in the 

constitutive formulation or  in the damage evolution law  like the pressure effect, 

temperature, Lode angle dependence, viscoplastic effects, crack closure effect, shear 

mechanisms, among others (Tvergaard & Needleman, 1984; Rousselier, 1980 and 

2001; Xue, 2007; Nahshon & Hutchinson, 2008; Lemaitre & Chaboche, 1990; 

Chaboche, 2003; Andrade Pires et al., 2004; Chaboche et al., 2006 ; Besson, 2010). 

These classical coupled damage models have the ability to predict the correct 

fracture location under a specific range of stress triaxialities (see Xue, 2007; Nahshon 

et al.; 2008; Teng,  2008) and are extremely accurate for loading conditions close to 

the calibration point (see Malcher, 2010). For example, within range of high levels of 

stress triaxialities, where the spherical void growth is the predominant mechanism, 

the models based on Gurson theory, like the Gurson-Tvergaard-Needleman model 

(GTN), have good performance in prediction of fracture location and parameters in 

fracture as equivalent plastic strain and displacement. However, under shear 
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dominated loads, where failure is mainly driven by the shear localization of plastic 

strain of the inter-voids ligaments due to void rotation and distortion, the model 

does not perform well, (see Engelen, 2005; Chaboche, 2006). Figure 1 illustrates the 

ductile failure mechanism, which can occur by internal necking (Figure 1a), where the 

large primary voids are formed due to high stress triaxiliaty and the inter ligaments 

are done mainly by a sharp volumetric or by void sheeting (Figure 1b), where primary 

voids remain small due to low stress triaxiality and the inter ligament occurs by 

mainly elongation of voids and formation of secondary voids in strain localization 

bands. 

Due to these two types of ductile failure mechanisms, it is expected that the 

population of micro defects, that can be nucleated, would be higher in void sheeting 

than in internal necking.  

 
(a) (b) 

Figure 1. Schematic representation of ductile failure mechanism (a) internal necking and (b) void 

sheeting. Adapted from Besson, (2010). 

2 CONSTITUTIVE MODEL 

Regarding the work initially developed by Rice and Trace (1969) in order to 

analysis the behaviour of an isolated void, Gurson (1977) proposed a theory to 

describe an internal degradation of material in presence of the finite strain which is 

the first micromechanical based model for ductile damage and fracture. Gurson 

assumes as internal degradation mechanism the appearance of micro voids 

associated with a large plastic deformation, which leads a yield surface that depends 

on the hydrostatic pressure and porosity. The evolution of the damage parameters by 

Gurson is established by assuming a spherical cavity imbibed into a cubic rigid-plastic 

matrix without hardening and the volume void fraction, which plays the damage role 

parameters is defined as a ratio between the volume of voids and the volume of the 

representative volume element.   

𝑓 =
𝑉𝑣𝑜𝑖𝑑
𝑉𝑅𝑉𝐸

 (1) 

where 𝑓  represents the void volume fraction, 𝑉𝑣𝑜𝑖𝑑  is the volume of the void and 

 𝑉𝑅𝑉𝐸  denotes the representative volume element. 

The Tvergaard–Needleman proposition (GTN) (see Tvergaard and Needleman, 

1984) is one of the most famous versions of the Gurson model. The GTN’s model 
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assumes isotropic hardening and isotropic damage, which is represented by the 

effective porosity, 𝑓∗. The constitutive formulation for GTN’s model can be better 

expressed as: 

Φ 𝝈, 𝑘, 𝑓 = 𝐽2 𝑺 −
1

3
 1 + 𝑞3. 𝑓∗2 − 2. 𝑞1. 𝑓∗. cosh  

𝑞2. 3. 𝑝

2. 𝜎𝑦
  . 𝜎𝑦

2 (2) 

where, 𝐽2 represents the second invariant of the deviatoric stress tensor, 𝑝 is the 

hydrostatic pressure, 𝜎𝑦  represents the yield stress and the parameters 𝑞1, 𝑞2 and 𝑞3 

are introduced to bring the model predictions into closer agreement with full 

numerical analyses of a periodic array of voids. 

The damage evolution, in this formulation, is reproduced by three simultaneous or 

successive mechanisms that can be described as the nucleation, growth and 

coalescence of voids as: 

𝑓∗ =  

𝑓                      , 𝑓 < 𝑓𝑐

𝑓𝑐 +  
1

𝑞1
− 𝑓𝑐 

 𝑓 − 𝑓𝑐 

 𝑓𝑓 − 𝑓𝑐 
, 𝑓 ≥ 𝑓𝑐

  (3) 

where, 𝑓∗ represents the effective damage, 𝑓𝑐  denotes the critical volume void 

fraction and 𝑓𝑓  is the volume void fraction at fracture. The effective damage is 

determined based on both nucleation and growth mechanisms if the volume void 

fraction is less than critical value. The coalescence is active only if the volume void 

fraction is higher than the critical value. The volume void fraction rate, 𝑓 , is a sum of 

the nucleation and growth mechanism as. 

𝑓 = 𝑓 𝑛 + 𝑓 𝑔  (4) 

The nucleation mechanism can be driven by either the plastic strain or the 

hydrostatic pressure. Equation 5 represents the nucleation mechanism based on the 

equivalent plastic strain:  

𝑓 𝑛 =
𝑓N

𝑠N .  2𝜋
. exp  −

1

2
 
𝜀
𝑝
− 𝜀N

𝑠N
 

2

 𝜀 
𝑝
 (5) 

where, 𝑓N  represents the volume fraction of all second-phase particles with potential 

for microvoid nucleation, 𝜀N  and 𝑠N  are the mean strain/pressure for void nucleation 

and its standard deviation. The variable 𝜀
𝑝
 represents the equivalent plastic strain and 

𝜀 
𝑝
 is the rate of the accumulated plastic strain. The nucleation mechanism is valid 

only if the hydrostatic pressure is great to zero, 𝑝 > 0. If  𝑝 ≤ 0, the nucleation 

mechanism rate is equal to zero. The evolution of the volume void fraction by Gurson 

is assumed based on mass conservation law, a rigid plastic material and the plastic 

incompressibility and is defined as: 

𝑓 𝑔 = 𝜀 𝑣
𝑝 .  1 − 𝑓  (6) 

where, the plastic strain rate contributions is represented by 𝜀 𝑣
𝑝
. 
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2.1 Shear mechanism 

Regarding the limitation of the Gurson original model in prediction failure when 

void sheeting mechanism plays the main role, researchers as Xue (2007), Nahshon & 

Hutchinson (2008), Butcher et al. (2009) have suggested the introduction of another 

mechanism as shear, in the evolution law of the Gurson’s damage parameter. Both 

researchers have initially formulated shear mechanisms based on phenomenological 

and geometrical aspects resulting in expression dependent on the equivalent strain 

and its rate and a Lode angle function. Xue (2008), based on the volume conservation 

of a cubic cell, has proposed that the rate of the shear damage can be written by: 

𝐷 𝑠𝑕𝑒𝑎𝑟 = 𝑞4. 𝑔0. 𝑓𝑞5 . 𝜀𝑒𝑞 . 𝜀 𝑒𝑞  (7) 

where, 𝑞4 and 𝑞5 are geometrical parameters and can be defined according to two or 

three dimensional problem. For two dimensional problem, 𝑞4 =
3

 𝜋
 and 𝑞5 =  1 2   

and for three dimensional problem, 𝑞4 =
3

2
 

6

𝜋
 
 1 3  

 and 𝑞5 =  1 3  . 𝜀𝑒𝑞  and 𝜀 𝑒𝑞  

represent the equivalent strain and its rate, respectively. 𝑔0 denotes the Lode angle 

function that by Xue is defined as  

𝑔0 =  1 −  𝜃    (8) 

where, 𝜃  is the normalized Lode angle, which can be expressed as 𝜃 = 1 −
2

𝜋
acos 𝜉  

and 𝜉 is the normalized third invariant, which is a ratio between the third invariant of 

the deviatoric stress tensor, 𝑟 =   27 2  . det 𝑺 
1

3  , and the von Mises equivalent 

stress, 𝑞 =   3 2  𝑺: 𝑺. 

Nahshon & Hutchinson (N&H) have suggested a shear mechanism based on 

phenomenological aspects that can be written as (see Nahshon et al, 2008): 

𝐷 𝑠𝑕𝑒𝑎𝑟 = 𝑘. 𝑓. 𝑔0.
𝑺: 𝜺𝒑

𝑞
 (9) 

where, 𝑘 is a material parameter and needs to be calibrated. 𝜺𝒑 denotes the plastic 

strain tensor. The Lode angle function by Nahshon et al. (2008) is defined as: 

𝑔0 =  1 − 𝜉2  (10) 

Thus, the damage internal variable rate (Equation 4) can be re-written according to 

Equation 11.  

𝑓 = 𝑓 𝑛 + 𝑓 𝑔 + 𝐷 𝑠𝑕𝑒𝑎𝑟  (11) 

3 NUMERICAL INTEGRATION ALGORITHM 

Regarding an implicit solution, algorithms based on operator split methodology 

are especially suitable for the numerical integration of the evolution problem and 
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have been widely used in computational plasticity (see Simo & Hughes, 1998; De 

Souza Neto et al., 2008). This method, which is used here, consists of splitting the 

problem in two parts: an elastic predictor, where the problem is assumed to be elastic 

and, a plastic corrector, in which the system of residual equations comprising the 

elasticity law, plastic consistency and the rate equations is solved, taking the results of 

the elastic predictor stage as initial conditions. In the case of the yield condition has 

been violated, the plastic corrector stage is initiated and the Newton- Raphson 

procedure is used to solve the discretised equations. The Newton-Raphson procedure 

was chosen motivated by the quadratic rates of convergence achieved which results 

in return mapping procedures computationally efficient (see Simo & Hughes, 1998; 

De Souza Neto et al., 2008). The overall algorithm for numerical integration is 

summarized in Box 1. 

 

 

Box 1. Fully implicit Elastic predictor/Return mapping algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

(i) Evaluate the elastic trial state: Given the incremental strain  ∆ε and the state 

variables at 𝑡𝑛 : 

𝜺𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙 = 𝜺𝑛

𝑒 + ∆𝜺 

 

; 

 

𝜀  𝑛+1
𝑝 𝑡𝑟𝑖𝑎𝑙

= 𝜀 𝑛
𝑝
 

 

; 

 

𝑅𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝑅𝑛  

 

𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝑓𝑛  

 

; 

 

𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 2𝐺𝜺𝑛+1

𝑒 𝑡𝑟𝑖𝑎𝑙  

 

; 

 

𝑝𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝐾𝜀𝑣 𝑛+1

𝑒 𝑡𝑟𝑖𝑎𝑙  

 

𝜎𝑦
𝑡𝑟𝑖𝑎𝑙 = 𝜎𝑦 𝑅𝑛+1

𝑡𝑟𝑖𝑎𝑙       

(ii) Check plastic admissibility: 

IF Φ𝑡𝑟𝑖𝑎𝑙 = 𝐽2
𝑡𝑟𝑖𝑎𝑙 −

1

3
.  1 + 𝑞3 . 𝑓𝑛+1

𝑡𝑟𝑖𝑎𝑙 2
− 2. 𝑞1. 𝑓𝑛+1

𝑡𝑟𝑖𝑎𝑙 . cosh  
3.𝑞2 .𝑝𝑛+1

𝑡𝑟𝑖𝑎𝑙

2.𝜎𝑦
𝑡𝑟𝑖𝑎𝑙   .  𝜎𝑦

𝑡𝑟𝑖𝑎𝑙  
2
≤ 0 THEN  

set  ∙ 𝑛+1 =  ∙ 𝑛+1
𝑡𝑟𝑖𝑎𝑙   (elastic step) and go to (v) 

ELSE go to (iii) 
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Continue Box 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Δ𝑓𝑛 =
𝑓𝑁

𝑆𝑁 2. 𝜋
. exp  −

1

2
 
𝜀 𝑛+1
𝑝

− 𝜀𝑁
𝑆𝑁

 

2

 . Δ𝜀  𝑝  

Δ𝑓𝑔 =  1 − 𝑓𝑛+1 . Δ𝛾. 𝜎𝑦 . 𝑞1. 𝑞2 . 𝑓𝑛+1. sinh  
3. 𝑞2 . 𝑝𝑛+1

2. 𝜎𝑦
  

Δ𝐷𝑠𝑕𝑒𝑎𝑟 =  

𝑞4 .  1 −  𝜃 𝑛+1
𝑡𝑟𝑖𝑎𝑙   . 𝑓𝑛+1

𝑞5 . 𝜀  𝑛+1
𝑝

. Δ𝜀  𝑝  , 𝑖𝑓 𝑋𝑢𝑒 ′𝑠 𝑚𝑒𝑐𝑕𝑎𝑛𝑖𝑠𝑚

𝑘. 𝑓𝑛+1.  1 − 𝜉𝑛+1
𝑡𝑟𝑖𝑎𝑙 2

 . Δ𝜀  𝑝                  , 𝑖𝑓 𝑁𝑎𝑕𝑠𝑕𝑜𝑛′𝑠 𝑚𝑒𝑐𝑕𝑎𝑛𝑖𝑠𝑚

  

Δ𝑅 =
Δ𝛾

 1 − 𝑓𝑛+1 
.  𝑞1 . 𝑞2 . 𝑓𝑛+1. 𝑝𝑛+1. sinh  

3. 𝑞2 . 𝑝𝑛+1

2. 𝜎𝑦
 

+
2

3
. 𝜎𝑦 .  1 + 𝑞3. 𝑓𝑛+1

2 − 2. 𝑞1 . 𝑓𝑛+1. cosh  
3. 𝑞2 . 𝑝𝑛+1

2. 𝜎𝑦
    

(iii)    Return mapping (plastic step): Solve the system of equations below for 

Δ𝛾,𝑝𝑛+1,𝑓𝑛+1 and 𝑅𝑛+1, using Newton-Raphson method: 

 
 
 
 

 
 
 

𝐽2𝑛+1
𝑡𝑟𝑖𝑎𝑙

 1 + 2𝐺. Δ𝛾 2
−

1

3
.  1 + 𝑞3. 𝑓𝑛+1

2 − 2. 𝑞1 . 𝑓𝑛+1. cosh  
3. 𝑞2. 𝑝𝑛+1

2. 𝜎𝑦
  . 𝜎𝑦

2

𝑝𝑛+1 − 𝑝𝑛+1
𝑡𝑟𝑖𝑎𝑙 + Δ𝛾. 𝐾. 𝜎𝑦 . 𝑞1 . 𝑞2. 𝑓𝑛+1 . sinh  

3. 𝑞2. 𝑝𝑛+1

2. 𝜎𝑦
 

𝑓𝑛+1 − 𝑓𝑛+1
𝑡𝑟𝑖𝑎𝑙 − Δ𝑓𝑛 − Δ𝑓𝑔 − Δ𝐷𝑠𝑕𝑒𝑎𝑟
𝑅𝑛+1 − 𝑅𝑛+1

𝑡𝑟𝑖𝑎𝑙 − Δ𝑅  
 
 
 

 
 
 

=  

0
0
0
0

  

where, 

 

 

 

(iv) Update the others state variables: 

𝜺𝑛+1
𝑒 = 𝜺𝑛+1

𝑒 𝑡𝑟𝑖𝑎𝑙 − Δ𝛾.  
𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙

 1 + 2𝐺. Δ𝛾 
+

1

3
. 𝜎𝑦 . 𝑞1 . 𝑞2. 𝑓𝑛+1 . sinh  

3. 𝑞2. 𝑝𝑛+1

2. 𝜎𝑦
 . 𝜤  

𝑺𝑛+1 =
𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙

 1 + 2𝐺. Δ𝛾 
 

𝝈𝑛+1 = 𝑺𝑛+1 + 𝑝𝑛+1. 𝜤 

Δ𝜀 𝑝 = Δ𝛾. 
2

3
 
𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙 : 𝑺𝑛+1

𝑡𝑟𝑖𝑎𝑙

 1 + 2𝐺. Δ𝛾 2
+

1

3
 𝜎𝑦 . 𝑞1 . 𝑞2. 𝑓𝑛+1. sinh  

3. 𝑞2. 𝑝𝑛+1

2. 𝜎𝑦
  

2

  

𝜀  𝑛+1
𝑝

= 𝜀 𝑛+1
𝑝 𝑡𝑟𝑖𝑎𝑙

+  Δ𝜀  𝑝  

(v) Exit 
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3.1 The consistent tangent operator 

Under elastic loading condition, the tangent operator for this constitutive 

formulation is the standard linear elasticity tensor. Nevertheless, for the plastic step, 

the elasto-plastic tangent operator is obtained by the linearization procedure of the 

above system of residual equations. Hence, the first step for determining the operator 

is to differentiate the stress tensor update expression:  

𝝈𝑛+1 =
𝑺𝑛+1
𝑡𝑟𝑖𝑎𝑙

 1 + 2𝐺. Δ𝛾 
+ 𝑝𝑛+1. 𝜤 (12) 

After some algebraic manipulation, the above equation can be re-written by 

differentiate form as: 

d𝝈𝑛+1 =
2𝐺

 1 + 2𝐺. Δ𝛾 
. d𝜺𝑑 𝑛+1

𝑒 𝑡𝑟𝑖𝑎𝑙 −  
2𝐺

 1 + 2𝐺. Δ𝛾 
 

2

. 𝜺𝑑 𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙 . dΔ𝛾 + d𝑝𝑛+1. 𝜤 (13) 

The terms dΔ𝛾 and d𝑝𝑛+1 can be obtained by the linearization procedure of the 

residual system of equations. After some algebraic manipulation, the term dΔ𝛾 and 

d𝑝𝑛+1 can be written as: 

dΔ𝛾 = −𝐶1,1.
𝜕𝑟Δ𝛾

𝜕𝜺𝑑 𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙

− 𝐶1,2.
𝜕𝑟𝑝

𝜕𝜺𝑣 𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙

− 𝐶1,3.
𝜕𝑟𝑓

𝜕𝜺𝑑 𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙

 

(14)  

d𝑝𝑛+1 = −𝐶2,1.
𝜕𝑟Δ𝛾

𝜕𝜺𝑑 𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙

− 𝐶2,2.
𝜕𝑟𝑝

𝜕𝜺𝑣 𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙

− 𝐶2,3.
𝜕𝑟𝑓

𝜕𝜺𝑑 𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙

 

where, the matrix C is the inversion matrix of the differentiation residual equations in 

order to each variable of the problem. Furthermore, the elasto-plastic operator can 

be determined as: 

𝔻𝑒𝑝 =
d𝝈𝑛+1

d𝜺𝑛+1
𝑒 𝑡𝑟𝑖𝑎𝑙

 (15) 

4 CALIBRATION PROCEDURE 

In order to determine the materials parameters for GTN model and GTN model 

with shear mechanism coupled, two different calibration points are suggested, 

regarding the accuracy of the numerical results. First one, the material parameters will 

be determined based on a usual calibration point, which the smooth cylindrical bar is 

taken. After that, a second point is suggested to be used as calibration point and 

again, all material parameters are calibrated based on a so called “butterfly specimen” 

under pure shear loading condition. In both cases, the hardening law, 𝜎𝑦 𝑅 , for the 

undamaged model is determined as well as the set of parameters for nucleation of 

micro void mechanism  𝑓𝑁 , 𝑆𝑁 , 𝜀𝑁  and the critical value for the damage variable, 𝑓𝑐 . 

The accuracy of both shear mechanisms will be assessed taken hand a material 

weakly dependent on the Lode angle, as a steel 1045. Furthermore, in both cases, the 
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numerical tests are conducted for two different loading conditions: pure shear and 

shear/tensile loading conditions. 

4.1 Geometry and mesh definition 

Regarding the material properties for the first calibration point, a classical smooth 

bar specimen is used and Figure 2a presents the dimensions employed. In order to 

trigger necking, a dimensional reduction of 5% in the central diameter of the 

specimen is used. Besides that, based on the experimental data, a gauge section of 

20.6 mm is also used. The standard eight-nodded axsymmetric quadrilateral element, 

with four Gauss integration points, is adopted. The initial mesh discretisation is 

illustrated in Figure 2b, where only one symmetric quarter of the problem, with the 

appropriate symmetric boundary conditions imposed to the relevant edges, is 

modelled. A total number of 1800 elements have been used in the discretisation of 

the smooth specimen, amounting to a total of 5581 nodes. 

 

 

 
 

(a) (b) 
Figure 2. (a) The geometry for the smooth bar specimen. Dimension in (mm). Taken from Teng (2008). 

(b) Finite element mesh, regarding the gauge section. 

 

 

For the second calibration point and all numerical tests that will be presented, a 

butterfly specimen is used. The specimen was initially designed by Bai (2008) and the 

geometry and general dimensions can be verified by Figure 3. In this case, a three 

dimensional finite element mesh of 3392 twenty nodded elements, with nine Gauss 

integration points, is used amounting to 17465 nodes. 
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(a) (b) 
Figure 3. (a) The geometry for butterfly specimen. Dimension in (mm). Taken from Bai (2008). (b) Finite 

elements mesh for butterfly specimen. 

 

4.2 First Calibration Point: smooth bar specimen (tensile loading condition) 

In the present section the hardening law, 𝜎𝑦 𝑅 , for the undamaged model is 

determined as well as the set of parameters for nucleation of micro void mechanism 

 𝑓𝑁 , 𝑆𝑁 , 𝜀𝑁  and the critical value for the damage variable, 𝑓𝑐 . Through experimental 

tests conducted by Bai 2008, the reaction versus displacement curve is determined as 

well as the stress-strain curve for an elasto-plastic model of von Mises type. The 

inverse method is adopted in order to calibrate the material parameters for coupled 

damage model by forcing the numerical solution to be, as close as possible to the 

experimental results. Figure 4a shows the reaction curve for the model determined 

after the application of inverse method. A good agreement between the experimental 

and numerical results can be observed. Furthermore, the critical volume void fraction 

is also determined in the point where the model attains the displacement to fracture, 

experimentally observed (see Figure 4b). The critical value obtained is 𝑓𝑐 = 0.076. 
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(a) (b) 

Figure 4. (a) Reaction versus displacement curve. (b) Critical volume voids fraction parameter 

The results of the calibration procedure, in terms of stress-strain curve, can also be 

observed in Figure 5, where the curves, for uncoupled and coupled damage models, 

were determined. 

 
Figure 5. Stress-strain curves determined for an uncoupled and coupled models. 

The material properties and others parameters related to the micro void nucleation 

mechanism obtained by employing an inverse method are listed in Table 1: 

 

Material 𝒇𝑵 𝑺𝑵 𝜺𝑵 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒇𝒄 𝑬 (𝐌𝐏𝐚) 𝝊 

GTN 0.05 0.2 0.1 1.5 1.0 2.25 0.076 220.000 0.33 

Table 1: Materials properties and parameters related to nucleation of micro-void mechanism for 

steel 1045. Based on the first calibration point. 

4.3 Second Calibration Point: butterfly specimen (pure shear loading condition) 

In this calibration point, also the hardening law, 𝜎𝑦 𝑅 , for the undamaged model 

is determined as well as the set of parameters for nucleation of micro void 

mechanism  𝑓𝑁 , 𝑆𝑁 , 𝜀𝑁  and the critical value for the damage variable, 𝑓𝑐 . The butterfly 
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specimen is here used under pure shear loading condition and the displacement to 

fracture, experimental determined, was suggested by Bai (2008). An inverse method is 

also adopted, regarding the calibration of the parameters by forcing the numerical 

results to be as close as possible to the experimental data. A critical damage value is 

suggested by each shear mechanism and the result of the second calibration can be 

observed by Figure 6. 

  
(a) (b) 

Figure 6. (a) Reaction versus displacement curve. (b) Shear damage parameter. 

In terms of stress-strain curve, it can also be observed in Figure 7, where the 

curves, for uncoupled and coupled damage models, were determined. 

 
Figure 7. Stress-strain curves determined for an uncoupled and coupled models. 

The material properties and others parameters related to the micro void nucleation 

mechanism obtained by employing an inverse method are also listed in Table 2: 

Material 𝒇𝑵 𝑺𝑵 𝜺𝑵 𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒇𝒄 𝑬 (𝐌𝐏𝐚) 𝝊 

N&H 0.10 0.15 0.1 1.5 1.0 2.25 0.19 220.000 0.33 

Xue 0.10 0.15 0.1 1.5 1.0 2.25 0.24 220.000 0.33 

Table 2: Materials properties and parameters related to nucleation of micro-void mechanism for 

steel 1045. Based on the second calibration point.  
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5 NUMERICAL RESULTS 

Regarding a consistent analysis for the accuracy of both shear mechanisms, some 

numerical tests are performed using the butterfly specimen taken hand the material 

parameters determined based on the first calibration point and after assuming the 

material parameters obtained by the second calibration point. Two different loading 

conditions are performance: pure shear and shear/tensile. The performance of some 

parameters as equivalent plastic strain and displacement at fracture as well as the 

ability to predict the correct site to crack initiation are evaluated for each calibration 

point. 

5.1 Evolution of the equivalent plastic strain and damage parameter 

The equivalent plastic strain and the displacement at fracture are very important 

parameters to evaluate the performance and accuracy of the constitutive models as 

well as the evolution of the damage parameter during all the process. Figure 8 and 

Figure 9 show the evolution of both damage parameter and equivalent stress at the 

critical point of the butterfly specimen, taken hand both material parameters 

determined by the first and second calibration point. Regarding the numerical results 

for the first calibration point, the GTN model with Xue shear mechanism has 

presented very conservative, predicting the beginning of the failure for a 

displacement equal to 𝑢𝑓 = 0.37 𝑚𝑚, which is in disagreement with the experimental 

data. Besides that, the GTN model with N&H shear mechanism and 𝑘 = 1.1 has 

presented the best performance, predicting the failure for a displacement near of the 

experimental data, 𝑢𝑓 = 0.86 𝑚𝑚. Regarding the value of the equivalent plastic strain 

at fracture, the N&H shear mechanism also presented the best results. Furthermore, 

in combined shear/tensile loading condition, the best performance can be highlight 

for the GTN model with Xue shear mechanism, regarding the equivalent plastic strain 

and displacement at fracture (see Table 3). 

Taken hand of the numerical results for the second calibration point (see Figure 9 

and Table 4), during the calibration procedure, each shear mechanism presented a 

different value for the critical damage variable. Hence, in pure shear loading 

condition, the results for the Xue shear mechanism performance well, regarding the 

level of the equivalent plastic strain at fracture. This parameter calculated by N&H 

shear mechanism was very high and in disagreement with the expected value. In 

combined loading condition, the value of the equivalent plastic strain by N&H shear 

mechanism also presented very high but the mechanism predicted the failure for a 

displacement close to the experimental value. The Xue shear mechanism, in this case, 

presented both equivalent plastic strain and displacement at fracture, in 

disagreement with the experimental data. 

Regarding the numerical results for both shear mechanism using the material 

parameters calibrated in different loading condition, we can conclude that in pure 

shear loading condition, the results presented by Xue, taken hand the second 
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calibration point, performance well in terms of the level of the equivalent plastic 

strain and displacement at fracture. In Combined loading condition, the analysis is 

not so simple and the results presented by Xue using the first calibration point are 

quite satisfying. In the other hand, the results by N&H shear mechanism, using the 

second calibration point can also be accurate, in terms of the displacement at 

fracture. Hence, the assessment of the prediction of the correct fracture location can 

be used as a complementary validation. 
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Figure 8. Evolution of the damage parameter and equivalent plastic strain. Based on the first 

calibration point. 
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Angle 
Experimental data Numerical results 

𝑢𝑓  𝜀 𝑝   𝑘 𝑢𝑓  𝜀 𝑝  𝜂𝑎𝑣  𝜃𝑎𝑣  𝑓 

0º 1.03 0.36 

N&H 1.1 0.86 0.53 0.022 0.061 0.076 

N&H 2.0 0.45 0.38 0.022 0.060 0.076 

N&H 2.5 0.37 0.35 0.022 0.060 0.076 

Xue --- 0.37 0.32 0.021 0.057 0.076 

10º 0.42 0.50 

N&H 1.1 0.59 0.56 0.241 0.477 0.076 

N&H 2.0 0.40 0.41 0.245 0.485 0.076 

N&H 2.5 0.37 0.38 0.246 0.488 0.076 

Xue --- 0.37 0.34 0.257 0.507 0.076 

Table 3: Numerical results for butterfly specimen. Based on the first calibration point. 
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Figure 9. Evolution of the damage parameter and equivalent plastic strain. Based on the second 

calibration point. 
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Angle 
Experimental data Numerical results 

𝑢𝑓  𝜀 𝑝   𝑘 𝑢𝑓  𝜀 𝑝  𝜂𝑎𝑣  𝜃𝑎𝑣  𝑓 

0º 1.03 0.50 
N&H 1.0 1.03 0.78 0.022 0.061 0.24 

Xue --- 1.03 0.59 0.021 0.057 0.19 

10º 0.42 0.36 
N&H 1.0 0.46 0.71 0.241 0.477 0.24 

Xue --- 0.69 0.56 0.257 0.507 0.19 

Table 4: Numerical results for butterfly. Based on the second calibration point. 

5.2 Prediction of the correct fracture location 

Another important data to be analyzed in order to validate the accuracy of both 

shear mechanism in two different calibration point is the ability to predict the correct 

fracture location. Researches as Reis et al. (2010) and Malcher et al. (2010) have 

shown that the shear mechanisms already proposed in literature, fail in the prediction 

of the correct location to crack formation when combined loading condition is 

applied. Based on experimental tests performed by Bai (2008), using the butterfly 

specimen, it can be observed that in pure shear loading condition, the micro crack is 

initially formatted in the surface of the critical zone. However, when combined 

shear/tensile loading condition is applied, the crack is formatted in the middle of the 

thickness and growth toward the surface of the critical zone. Figure 10 and Figure 11 

present the contour of the damage parameter at fracture for both calibration point. 

We can conclude that, in pure shear loading condition, both shear mechanisms have 

ability to predict the correct site to crack formation independent of the calibration 

point. However, in combined loading condition, only the contours obtained by the 

material parameters calibrated in the second calibration point, agree with the 

experimental evidence. Hence, regarding both analyze, evolution of the internal 

variable at fracture and ability to predict the correct fracture location, we can suggest 

that the second calibration point presented the best results. 
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Figure 10. Contour of the damage parameter for both shear mechanisms. Based on the first calibration 

point. 
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Figure 11. Contour of the damage parameter for both shear mechanisms. Based on the second 

calibration point. 

6 CONCLUSIONS 

In this paper, an assessment of two different shear mechanisms was performance 

taken hand the set of material parameters, calibrated in two different points. A point 

in high stress triaxiality as well as another point in pure shear loading condition was 

chosen to performance the calibration procedure. Besides that, numerical results were 

done regarding two loading condition, as: pure shear and combined shear/tensile. 

The evolution of the equivalent plastic strain, the damage parameter and 

displacement at fracture were analyzed as well as the ability to predict the correct site 

to crack initiation. The results obtained, highlight that for coupled damage models, 

the point chosen to be used as calibration point exerts a great influence on numerical 

results. The accuracy of the coupled damage models is strongly dependent of the 

calibration point and for these models, the loading condition to be validated has to 

be close to the loading condition selected to be used as calibration point. For this 

analyze, regarding all numerical results, the second calibration point has the best 

results and can be suggested to be used when predominant shear loading condition 

is present. 
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