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Abstract. Wood is a material with a mechanical behavior that is dependent on the direction of its 

fibers. Due to its internal structure, wood is generally treated as linear orthotropic, with the material 

directions (longitudinal, radial and tangential) ideally coincident with the longitudinal and 

transverse directions of a coordinate system associated with a structural member. Such coincidence 

does not occur in the field of lumber production. In wood beams, the fiber orientations are 

typically not aligned with the longitudinal direction from 5° to 15°. This affects the wood 

mechanical properties and requires a transformation of coordinates of the elastic coefficients to 

adjust them to the adopted model for structural analysis. Thus, additional terms appear in the 

constitutive relationship transforming wood as an anisotropic material. By introducing these 

coefficients on the elastic model, a study of the stresses in wood beams, constituted by a Brazilian 

species named Goupia glabra, was developed by applying an analytical method and a program of 

finite elements. Numerical examples confirm that the fiber orientation, even for small angles, has a 

large influence on the mechanical behavior of wood beams. 
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1 INTRODUCTION 

Among construction materials, wood, due to its internal structure with axes of elastic 

symmetry longitudinal, tangential and radial, presents an orthotropic pattern. In terms of 

engineering elastic models, wood is ideally treated as linear orthotropic, where the 

principal material axes (longitudinal, radial and tangential) are coincident with the 

longitudinal and transverse directions of a Cartesian coordinate system associated with a 

structure, called body coordinates.  

Focusing particularly on wood beams, the fiber orientations are not aligned with the 

longitudinal direction in and consequently, the coincidence between material and body 

axes no longer exists.  

In the field of the wood construction (or the lumber production) it is usual wood beams 

and also the wood laminated beams, especially of hardwood species, to contain the angle 

of the fiber orientations laminas in the range of  5º to 15º .  

Bodig and Jayne (1981) shown an example in which a lumber of Sugar Maple with 7º of 

fiber inclination has a reduction of 19.25% of the elastic modulus. Hermanson et al. (1997) 

comments that it is typical in the USA sawn lumber with fibers misaligned of 0º to 15º. Yet 

Wood Handbooks presents some information on variation of strength  for different grain 

slopes showing ,for example, that for an angle of 11.3º the modulus of rupture in bending 

decreases around 55 % comparing to a straight-grained piece. In same direction, the 

Brazilian code NBR 7190 allows the use of wood pieces having fibers with the maximum 6º 

of grain inclination to avoid this reduction in strength. Since the strength and elastic 

properties have a strong relationship, it can be expected that the elastic modulus will have 

a significant reduction as well.  

Thus, in body coordinates, even for an orthotropic material, the structure appears to be 

anisotropic. Obviously, wood beams maintain their orthotropic features since the principal 

elastic axes are distinguished. This is not verified in an anisotropic material. 

In this context, a deep study of elastic coefficients applied to wood also implies in the 

knowledge of elastic behavior of anisotropic. If the structure of an anisotropic body 

expresses some type of symmetry, its properties of elasticity also indicate such. Thus, the 

elastic symmetry expresses the fact that in each point of the solid exists equivalent 

symmetrical directions with respect to the elastic properties. If the symmetry of the elastic 

properties of an anisotropic body exists, the equations of Hooke´s Law can be simplified, 

also occurring many simplifications in the constitutive matrix.  

In general, an anisotropic material does not exhibit elastic symmetry and it is necessary 

to take into account the difference in mechanical properties for different directions. 

Consequently, the study of these solids becomes more complex than other solids that 

possess other types of elastic symmetry, as for example, isotropic solids. Some research 

studies that evidence this complexity can be cited, as for example, the work of Carrier and 

Ithaca (1943), of Green and Zerna (1954), of Nair and Reissner (1976), Bodig and Jayne 

(1982), Kilic et al. (2001) and of Mascia and Vanalli (2002). 

In fact, the study of the anisotropy requires in the knowledge of the constituent law that 

consequently governs the elastic behavior of the material and in determining the 

components of the constituent tensor (or matrix), Sij. Thus, an orthotropic elastic model 
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needs the determination of the following parameters: the elastic moduli, the shear moduli 

and the Poisson´s ratios, whereas to an anisotropic elastic model other parameters among 

them, the coefficients of mutual influence are required.  

As a matter of fact, when the influence of the fiber orientation on the constitutive 

relations and on the stress and strain fields of a wood beam is analyzed, obviously, other 

deformations appear besides of ones presented in the orthotropic beams. These 

deformations are associated to the coefficients of mutual influence that quantify the 

participation of normal stresses in shear strains or shear stresses in normal strains. So, the 

variation of grain angle constitutes the fundamental cause of wood anisotropy. It is 

responsible for the greatest changes in the values of the constitutive tensor components, 

i.e., in the wood´s elastic coefficients. 

In this context, the aim of this paper is to analyze the effect of the orientation of the 

fibers on the mechanical behavior of wood beams the fiber inclined taking into account 

the theory of elasticity applied to anisotropic body. For practical reasons, it is proposed the 

range of this orientation from 5° to 15°. It was used the method established by Hashin 

(1967) for analysis of stresses in plane beams under the uniform distributed loads analyze 

in cantilever beam. The obtained solutions are compared with solutions for isotropic 

beams considering or not the shear effect, and also with numerical solutions for 

orthotropic beams derived of a commercial program of finite elements. On the whole, 

these analyses are addressed to evaluate the effect of the wood´s fiber orientation on the 

mechanical behavior of wood beams. 

2 DESCRIPTION OF PROBLEM     

The most general elastic constitutive model formulated to describe the mechanical 

behavior of material is the anisotropic model. This kind of model implies that there is no 

material symmetry, and mechanical properties in certain directions are different. On the 

other hand, if there is material symmetry, the material can be denominated, for example, 

orthotropic or isotropic. In this context, the adequacy of a determined material for a 

certain elastic model is based on the existence of elastic symmetry axes. In these axes, 

denominated elastic principal axes, there is invariance of the constitutive relations under a 

group of transformations of coordinate axes. 

In fact, the study of anisotropy implies knowing the constitutive law that governs the 

elastic behavior of the material and consequently, determining the constitutive tensor and 

its components. In a completely elastic and anisotropic model this tensor has 21 unknown 

constants.  

This way, the constitutive relationship can be written in the following indicial form: 

 

 
klijklij C       (1) 

 

in which i,j,k,j are: 1,2 and 3, and ij , kl  are components of second-order tensors , 

representing stresses and strains, and ijklC  are components of a fourth-order tensor, known 

as a stiffness tensor.  
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The Eq. (1) can be expressed as: 

 
klijklij S       (2) 

where Sijkl is the compliance tensor. 

The tensor Cijkl  has 81 constants to be determined and must be symmetrical due to 

Cauchy's second law of motion. In addition, since both ij  and  kl  are symmetrical, the 

number of elastic constants is reduced to 21, with 18 independent ones (Lekhnitskii et al., 

1968). This implies that in an anisotropic material with the principal stress directions do not 

coincide with the principal strain directions. The constitutive laws may also be written in 

matrix form, a 6x6 symmetric matrix as follows: 

 



























































































31

23

12

33

22

11

3131

23312323

123112231212

3331332333123333

22312223221222332222

113111231112113311221111

31

23

12

33

22

11

2

2

2

. 























CSym

CC

CCC

CCCC

CCCCC

CCCCCC

   (3) 

 

Similarly for Sijkl: 
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where: ij  are normal strain components for i=j and  shear strain components for i ≠j , ij is 

normal stress component for i=j,  is shear stress component for i≠j . 

In contracted notation for stresses, strains and, consequently, for the constitutive tensor, 

Eq. (4) can be given by (Ting, 1996): 
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Considering, now, a material with elastic symmetry axes, in which the elastic properties 
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remain constant. If the elastic properties of the material are the same in certain directions, 

then the material exhibits symmetry with respect to these directions.  

Thus when a body presents certain kinds of symmetry, the constitutive relations are 

simplified. These simplifications can be done in different ways just as those used by 

Lekhnitskii (1981), that used two different coordinate systems, symmetrical one to other 

and compared the obtained constitutive relations and identified the existence of the elastic 

symmetry. 

A material with elastic symmetry under the linear transformation jiji xtx  , with  ijt being 

the coordinate transformation tensor, requires that the constitutive tensor, either Crspq or 

Srspq, comply with the following condition:  

 ijklqlpksjrirspq SttttS     (6) 

 

In this context, there are four cases of elastic symmetry, which are considered most 

important. They are: one plane of elastic symmetry, three planes of elastic symmetry 

(orthotropic material), transversely isotropy material and isotropic material. Since the 

purpose of this paper is to adopt wood as an orthotropic body, only this kind of elastic 

symmetry is analyzed. 

Thus, a body referred to a coordinate system xi is defined as orthotropic material if 

through each point there are three mutually perpendicular axes of elastic symmetry. Then, 

using the coordinate system x1, x2 and x3 (or x, y, and z), perpendicular to the three planes 

of material symmetry and considering the elastic properties to be invariant under 

counterclockwise rotation 180 of about three axes, and using one at time as showed in 

Figure 1, it is possible to determine the constitutive tensor for orthotropic materials. 

 

Figure 1: 180- Rotation about x3. 

Consequently, one obtains that: 
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And find, either Crspq or Srspq  can be written in matrix form by: 
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As commented, wood containing an internal structure with three axes of elastic 

symmetry has an orthotropic pattern. Thus, there are 9 constants to be determined. The 

three mutually axes of elastic symmetry are longitudinal, tangential and radial, denoted by 

L, T and R.  

Dealing with wood beams, considered a plane structure, with inclined fibers, as 

illustrated in Figure 1, the coincidence or not between the geometric axes of the beam, i.e.: 

x,y, and the principal axes of elasticity of the beam,i.e.:1,2, may become more or less 

complex the analyses of both stresses and strains. 

y

fibers


1

2

x

z

 

Figure 2: Wood Laminated Cantilever Beam 

Thus, this variation of grain angle constitutes the fundamental cause of wood 

anisotropy. It is responsible for the greatest changes in the values of the constitutive tensor 

components, i.e., in these wood elastic constants. Taking into account the plane case and 

the coincidence of the axes, the constitutive matrix is simplified, becoming orthotropic with 

four independent terms and different of zero. So, it has that:  
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and the stiffness coefficients ijS , considering the constitutive matrix symmetry, are 
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modulus, Gij shear modulus and ij  Poisson´ ratio. 
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However, the simplifications presented in the orthotropic matrix disappear since the 

coincidence between the geometric axes of the beam and the principal axes of the lamina 

were not considered, appearing then other elements in the constitutive tensor, which 

becomes anisotropic. Consequently, the constitutive relations for a plane case assume the 

form: 
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Hence, it is evident that beams constituted by orthotropic materials can become 

anisotropic since the zero elements ijS : 16S , 26S  in original matrix may no longer be zero in 

the new matrix ijS
_

. Focusing on Eq.(9), the shear stress will produce now normal strains 

and on the other hand, normal stress will produce shear strain. These effects were not 

present in orthotropic material stressed along its principal elastic directions. This way, it is 

obvious that there is no difference between the solutions of problems for orthotropic 

beams and anisotropic ones since the material direction of the orthotropic laminas are not 

aligned with the body directions. The only advantage associated with the orthotropic 

material in relation to anisotropic one is that it is easier to characterize experimentally. 

However, if the principal material axes are not located, then the orthotropic material is 

indistinguishable from an anisotropic one, as comment by both Jones (1975) and 

Lekhnitskii (1981).  

By returning to Eq.(9), it is noted that:  
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where iji ,  and 
jij ,  are defined by Jones(1975) as coefficients of mutual influence of first 

and second kind, or still as coupling coefficients by Tsai and Hahn (1980).  

So, the coefficients of mutual influence of the first kind  iji ,  characterize stretching in i-

direction caused by shear in ij-plane that is 
ij

i
iji




 ,  for i=  and all other stresses are 

zero. 

The coefficients of mutual influence of the second kind iij ,  characterize shearing in ij-
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plane caused by a normal stress in the i-direction that is 
i

ij

iij



 ,  for ij=  and all other 

stresses are zero. 

From a general point of view, the angles that relate the grain orientation and the 

geometric axes of the analyzed structure establish the anisotropic pattern of wood beams. 

Thus, considering the angle  from Figure 1, the constitutive matrix is transformed by using 

the matrix of transformation [T] and its transpose [T]T according to:  
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The matrix of transformation, presented in Eq. (11), is given by:  
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By focusing Eq.(5), 16S  and 26S   for orthotropic material  stressed in non-principal 

material directions depend on four independents coefficients, Ex , Ey , Gxy and νxy.  It is 

obvious that for anisotropic material this is not happened since by definition, it has no 

principal material directions for this kind of material. Thus, with the use of Eq.(11) or (12) 

serves to find all the constants that are necessary for the development of the anisotropic 

constitutive relations, and they are written by: 
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Although the coupling coefficients are acknowledged in studies of the anisotropic 

models, very little information is available in relation to wood structures. For example, 

Mascia (1991) analyzed the coefficients of mutual influence of the first and the second kind 

for the Brazilian wood species: Angico (Parapiptadenia), Ipê (Tabebuia sp) Pinus Caribaea 

(Bahamensis) and Guapuruvú (Schizolobium parahyba), by beams with inclined fibers 

around X degrees. 

Finally, one does observe that Eqs. (13) to Eq. (18) provides all the elastic coefficients for 

the considered model (anisotropic model) but it is fundamental for researches an 

evaluation of the coefficients of mutual influence to take into account their level of 

magnitude and their influence on the mechanical behaviour of wood beams. 

As a theoretical application, the stresses in wood laminated beams, subjected to 

uniformly distributed load, are analyzed by focusing on an analytical method developed by 

Hashin (1967). Furthermore, a numerical procedure from Ansys1 software based on 

element finite method to compare with the analytical results is used. 

 

3 STRESSES IN WOOD LAMINATED CANTILEVER BEAMS – HASHIN´S  ANALYTICAL 

METHOD  

In this section, the distributions of normal and shear stresses in cantilever beams are 

determined by means of an analytical method,  based on the stress function of Airy (), 

developed by Hashin (1967) for the analysis of plane anisotropic beams. As an application, 

it was considered a beam subjected to the uniformly distributed loads, as Figure 3:  

L

q

x

y

b

y

h z

 

Figure 3: Wood Cantilever Beam 

In summary, these methods can be formulated by using: the constitutive relations, the 

equilibrium equations, the compatibility equation and, naturally, the Airy stress function () 

defined by: 

 22111 ,    (19) 

 11222 ,    (20) 

                                                      

1 ANSYS  Manual and Software Version 5.5, Swanson Analysis Systems, Inc. Canonsburg. 
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 121212 ,    (21) 

 

On the basis of these relations and equations, we obtain the following differential 

equation:  

 

   0,,2,2,2, 22221112221611226612111226111122   SSSSSS   (22) 

which models the anisotropic plane problem.  

Now considering the stress function of Airy (), Hashin (1967) presented an analytical 

method that allows the construction of the following stress function polynomial:  

   nm
Mm

m

Nn

n

mn yxCyx 









0 0

,   (23) 

where Cmn are constants to be determined by the resolution of a linear system of 

equations.  

Introducing Eq.(23) in Eq. (22) and equating the coefficients xmyn of equal powers, 

Hashin (1967) developed relations, among the Cmn coefficients and obtained the normal 

and shear stresses:  
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4 RESULTS  

 

In this section, the normal and shear stresses of wood cantilever beams (Brazilian 

species named Goupia glabra), showed in Figure 3, are analyzed, considering: a-anisotropic 

case using the Theory of Hashin (HAS); b- orthotropic case using a numerical method 

based on a finite element method (Software Ansys-COM SOFT); c- isotropic case focusing 

the influence of the shear (Theory of Timoshenko - ISO1) and d- isotropic case without the 

influence of the shear (Theory of Euler-Bernoulli - ISO2). 
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The dates for analysis are showed in Tables 1 and 2: 

  

Constants E1 E2 G12 12 

Values 10180 MPa 992 MPa 650 MPa 0,438 

Table 1: Elastic Constant Values (Brazilian species named Goupia glabra). 

 

Ratio (h/l) Beam Span (m) Section Height (m) 

1/10 3,00 0,30 

1/5 3,00 0,60 

Table 2: Height of the cross section – span of beam (h / l) relations. 

 

For the plated beam, considering also b = 1 m;  q = 10 kN/m, whose relation h / L = 

1/10, it has the following diagrams:  

 

 

Figure 4: Normal Stresses – h/L=1/10, x=0.5m 
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Figure 5: Shear Stresses – h/L=1/10, x=0.5m 

For the plated beam, considering also b = 1 m;  q = 10 kN/m, whose relation h  / l = 1/5, 

it has the following diagrams:  

 

 

Figure 6: Normal Stresses – h/L=1/5, x=0.5m 
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Figure 7: Shear Stresses – h/L=1/5, x=0.5m 

 

Notice that an increase of the relation h/L results in an increase in the differences of the 

stresses in the isotropic and the anisotropic beams. On the other hand, the isotropic and 

the orthotropic beams had a similar stress behavior. Clearly, the normal stress is 

significantly affected by the anisotropic elastic coefficients from 12% to 26% 

approximately. Finally, it also observed that the distribution of the stresses in the 

anisotropic beams is not symmetric.  

Using the Eq. (13) to Eq. (18), is possible also to find the following diagrams with the 

values for the variations of the elastic constants in relation to the angles of carbon fibers 

can be obtained:  
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Figure 8: Elastic Coefficients for Goupia glaba – nxy,x , nxy,y , vxy. 

 

0 10 20 30 40 50 60 70 80 90
0

2000

4000

6000

8000

10000

12000

Elastic coefficients for Goupia glabra

Angles ( in degrees)

E
la

st
ic

 c
oe

ffi
ci

en
ts

E x

E y

Gxy

 

Figure 9: Elastic Coefficients for Goupia glaba – Ex , Ey , Gxy. 

5 CONCLUSIONS 

This paper focused on an analysis of the distribution of stress field on wood beams 

based on concepts of anisotropic elasticity. From this a theoretical application in wood 

N. MASCIA, L. VANALLI, R. PACCOLA, M. SCOARIS2852

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



  

cantilever beams was carried out. Although this research is restricted to a unique wood 

species and specifically to the LR plane several interesting conclusions can be drawn from 

the current study as follows: 

- The stress distribution, especially the normal stress, and the displacement fields on 

wood beams are affected  by the coupling coefficients evidencing the wood anisotropy; 

- The shear influence varied with the height-span beam relation and increased when this 

relation decreased. Depending on the orientation of fibers in the wood beam, the 

determination of the stresses, as usually admitted by the theory of Euler-Bernoulli, can 

present results very different from which will actually occur. The beam theory of 

Timoshenko can be accepted as more accurate; 

- The Airy stress function demonstrated to be efficient as an analytical method in 

structural mechanics and the numerical results confirmed this. However, it is necessary to 

emphasize that the methods of solutions based on the stress functions are approached 

(stress function is polynomial). 

Finally, this research demonstrated that it is relevant to take into consideration the 

influence of the coefficients of mutual influence on the mechanical behavior of wood 

laminated beam and this may be useful to those especially engaged in investigating  wood 

as an anisotropic material applied to structures. 
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