
LARGE SCALE PARALLEL SIMULATION OPTIMIZATION ON A
NETWORK OF HETEROGENEOUS WORKSTATIONS

Patricia A.P. Costa, Eduardo L.M. Garcia, Bruno Schulze and Hélio J.C. Barbosa

National Laboratory for Scientific Computing (LNCC), Av. Getúlio Vargas, 333, Quitandinha,
Petrópolis, RJ, Brazil

{pcosta, bidu, shulze, hcbm}@lncc.br

Keywords: simulation optimization, distributed computing, aquifer remediation, genetic algo-
rithm (GA)

Abstract. This paper analyses results from large scale parallel computations obtained from a distributed
approach which uses numerical simulation and optimization techniques to automatically find remedia-
tion solutions to a hypothetical contaminated aquifer. The remediation strategy is based on withdrawal,
which requires the removal of contaminated groundwater from the aquifer by pumping. The design of
the remediation system involves the choice of the number of wells to be installed, their locations and
pumping rates, with the goal of maximizing the amount of contaminant extracted, while minimizing
the cost of the system. The optimization strategy adopted, a Genetic Algorithm (GA), requires a large
number of calls to the numerical simulation model of the aquifer, which tends to be computationally
expensive. To overcome this drawback, the numerical simulations are executed in parallel, using a net-
work of heterogeneous workstations. Performance of the parallel approach, using 95 and 190 cores, is
analysed.

Mecánica Computacional Vol XXIX, págs. 3019-3036 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

Recently, there has been a significant increase in the capacity as well as in the availability
of computer processors. Their processing power is made available through clusters, grids, and
networks of workstations (NOWs), which have the potential of becoming powerful platforms for
the simulation of problems that demand high computational power, in particular those that make
use of numerical simulation optimization, since the repeated execution of simulation models
through the optimization cycles tends to be computationally expensive. Large scale parallel
and distributed computing can be a way to obtain faster response, enabling a new generation
of scientific and engineering applications that uses simulation-based optimization. However,
the utilization of the resources is not trivial and achieving this goal requires the development of
software components to make efficient use of the available resources.

In this paper we evaluate and present further development of a distributed approach used to
automatically find remediation solutions to a hypothetical contaminated aquifer. This approach
has been studied by the authors and was presented in (Costa et al., 2008, 2010). Here we
analyse its behavior with large scale parallel experiments, using a network of heterogeneous
workstations.

Groundwater contamination from leakage, spills, or dumping of toxic substances is widely
regarded as one of the leading environmental problems of our time. Numerous techniques are
available for remediation, including: pump-and-treat (PAT) of contaminated water, hydraulic
containment of plumes, and bioremediation (Cunha, 2002). The remediation of groundwater
is generally a long term strategy that requires huge investment. An efficient and cost-effective
system is essential and computational modeling can aid in a decisive way.

The design of such a system can be solved as a simulation optimization problem, which cou-
ples optimization techniques with groundwater flow and mass transport simulators in an attempt
to produce optimal remediation designs (Huang and Mayer, 1997). The remediation strategy
considered is PAT, which requires the removal of contaminated groundwater from the aquifer
by pumping. The purpose of optimal design is usually to determine how many wells to install,
where these wells should be located and what pumping rate is required from each well, while
minimizing a cost function (J. Guan, 1999). The most commonly used objective for the remedi-
ation design is to minimize costs associated with the pumping system in order to meet a specific
human health risk target. A simulation model of a hypothetical aquifer system is used to pre-
dict its response to a proposed pumping strategy, and an optimization technique automatically
simulates a series of alternative pumping scenarios, selecting the best one (Shreedhar Maskey
and Solomatine, 2002).

A Genetic Algorithm (GA) (Eiben and Smith, 2003) is used as the optimization technique.
The main advantage of GAs over conventional optimization methods lies in their ability to lo-
cate global optimum solutions to discrete, non-convex, and discontinuous problems (Goldberg,
1989). However, GAs are criticized since they normally evaluate hundreds or even thousands of
scenarios - each requiring a numerical simulation execution - in the course of searching for the
optimal solution to a giving management question. This process is extremely time-consuming
and computationally expensive. Fortunately, GAs are embarrassingly parallel, and the possible
solutions can be evaluated in different computational nodes.

The distributed approach uses the master/worker pattern (Mattson et al., 2004), where the
master performs the optimization algorithm and assigns the simulations to the workers, dis-
tributed throughout available nodes, which execute instances of the simulator and calculate the
quality of the proposed solutions. Experiments with 95 and 190 workers were executed and

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3020

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

used to analyse the performance of the distributed approach with regard to its scalability and its
behavior concerning network usage. Since a heterogeneous environment is used, load balance
is a critical issue and initial results of a feedback scheduling mechanism that uses information
about workers past performance is presented.

The rest of this paper is organized as follows. Section 2 shows the aquifer model. In Section
3 the optimization technique and the characteristics of its implementation are described. Section
4 is dedicated to the distributed approach. In Section 5 computational experiments are presented
and analysed. Conclusions are drawn in Section 6.

2 MODELING OF CONTAMINANT TRANSPORT

In order to design remediation strategies, the ability to predict future behavior of the ground-
water system is required. Here, this is accomplished with a two-dimensional simulation model
of groundwater flow and contaminant transport based on a mathematical representation, con-
sisting of an elliptic system that comes from the conservation of mass and Darcy’s law and
a convection dominated convection-diffusion equation expressing the conservation of the con-
taminant. The differential system, under assumptions of a miscible and incompressible flow in
a rigid porous media, is given by (Loula et al., 1999):

u = −K
µ
∇p, (1)

divu = f, (2)

φ
∂c

∂t
+ div(uc)− div(D(u)∇c) = ĉf, (3)

with boundary and initial conditions
u · n = 0. (4)

D(u)∇c · n = 0, (5)

c(x, 0) = c0(x), (6)

where p and u are the pressure and Darcy’s velocity of the mixture, φ = φ(x) and K = K(x),
the porosity and permeability of the medium, respectively, f is the source and sink terms asso-
ciated with wells, and ĉ = ĉ(x, t) is the injected concentration at injection wells and the resident
concentration at extraction wells. The diffusion-dispersion tensor D is given by:

D(u) = (
αmol

τ
+ αT‖u‖)I +

αL − αT

‖u‖
u⊗ u, (7)

where τ is the porous medium tortuosity, αmol, αL e αT are, respectively, molecular diffusion,
longitudinal and transverse dispersion coefficients.

Note that the groundwater flow is considered steady state, while the time dependent nature
of the transport equation is retained.

This system of partial differential equation is solved numerically using the Finite Element
Method (FEM). The resulting system of linear equations is solved using a direct method which
guarantees that all simulations will have the same computational cost.

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3021

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The numerical simulator requires as input data: the parameters that define the geometry of the
aquifer, the porous medium and the fluid’s physical properties, the initial boundary conditions
of the mathematical model, the finite element mesh used to discretize the problem, the number
of installed pumping wells, their location and pumping rates. The output data consists of a list
of contaminant concentration values in each well as a function of time, which allows one to
determine the volume of removed contaminant and with that, the quality of a proposed solution.

2.1 A hypothetical aquifer

A hypothetical aquifer was used in this study. Its hydrological settings are: heterogeneous,
confined, and isotropic. The simulations were performed inside a total area of 4, 000 by 8, 000
meters, with a mesh of 160 × 320 bilinear square elements, each having a size of 25.0 × 25.0
meters. The boundary conditions on the lower and upper sides of the domain are of constant
pressure of 50m and 0m respectively. Zero-flow boundary conditions are imposed along the left
and right sides. The porosity of the field was assumed to be 0.2 and its permeability, 100mD,
except on the shaded area (Figure 1), where porosity is 0.05 and permeability 0.1mD, yielding a
variable velocity field along the 8, 000 meters of the domain. The initial volume of contaminant
within the aquifer is 60, 000 units and contaminant transport is simulated for a 5-year period.
The contaminant is divided in two plumes: the one in the right side has half of the volume
of contaminant than the one in the left (Figure 1(a)). To achieve an acceptable level of water
quality, at the end of this period the amount of contaminant must be less or equal to 0.01 units.
Figure 1 describes the physical problem: the initial condition of the aquifer is shown in Figure
1(a)), and Figures 1(b), 1(c), 1(d), 1(e), and 1(f) shows the contaminant on days 400, 700, 1100,
1400, and 1800, in a simulation done without the placement of extraction wells.

(a) Init. cond. (b) 400 days (c) 700 days (d) 1100 days (e) 1400 days (f) 1800 days

Figure 1: Hypothetical contaminated aquifer without remediation.

3 SIMULATION OPTIMIZATION

Simulation optimization is the process of finding the best values for some decision variables
in a system where the performance is evaluated based on the output of a simulation model
of the system. Solutions for problems of groundwater quality control and remediation can be
obtained with this technique, in particular, the design of pump and treat (PAT) systems, the
most frequent application considered, including (Huang and Mayer, 1997; J. Guan, 1999; Ren
and Minsker, 2005; Hilton and Culver, 2005; Chang et al., 2007; Sinha and Minsker, 2007;
Kalwij and Peralta, 2008; Zou et al., 2009). The problem setting contains the usual optimization

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3022

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

components, which can assume the following characteristics, for a groundwater remediation
system by PAT:

• the decision variables are the number of extraction wells to be installed, their locations
and pumping rates;

• the objective function is usually a cost function that has to be minimized; and

• the constraints are defined by the restrictions imposed, such as: the locations where the
wells can be placed, and the pumping rates available.

Many optimization methods are available and recently there has been a significant growth of
interest in using Genetic Algorithms (GAs) for water resource planning and design (Cai et al.,
2001). GAs, as well as other non traditional optimization methodologies, have been proven
as more effective at identifying high-quality solutions than analytical techniques, allowing the
resolution of more complex nonlinear problems since it does not require continuity of the objec-
tive function or other assumptions such as convexity (Hilton and Culver, 2005; Espinoza et al.,
2005). However, since GAs are more computationally expensive - requiring a large number of
calls to the simulation model - hybrid techniques have been used lately: (Espinoza et al., 2005)
proposed a hybrid GA that couples a simple GA with a local search algorithm, (Chang et al.,
2007) integrated GA and constrained differential dynamic programming (CDDP), and (Kalwij
and Peralta, 2008) used GA and Tabu Search (TS). Another approach was adopted by (Sinha
and Minsker, 2007), where a multiscale island GA algorithm used different degrees of spatial
grid discretization. In our approach, the numerical simulations required were done in parallel.
The implemented GA is described in this section and its parallelization in the next.

3.1 Genetic algorithms

GAs are a type of Evolutionary Algorithm (EA), a family of computational models based on
the concept of survival of the fittest (Goldberg, 1989; Colorni et al., 1996). GAs perform global
search exploring simultaneously many possible regions of good performance. They combine the
generation of new individuals in regions of the search space not yet tested, being responsible
for the exploration of new areas, and in the vicinity of known good solutions, performing the
so called exploitation (Eiben and Smith, 2003).

GAs use the population genetic metaphor. Individuals are representations of a potential
solution to the problem at hand (candidate solution) and a population is a set of individuals. The
underlying idea behind the technique is: given a population of individuals, the environmental
pressure causes natural selection (survival of the fittest) and this causes a rise in the fitness of the
population, since the less fit individuals tend to die while the most fit will survive and transmit
some of its desirable traits to their offspring. Based on fitness, which defines the overall quality
of the individuals, some candidates are selected to breed the next generation by applying the
reproduction operators: recombination (also called crossover) and mutation. The new offspring
can replace the old individuals according to some parental substitution rule. This process is
iterated until a stop criteria is achieved. This process is represented in the Algorithm 1.

To apply a GA to a problem, it is necessary: to identify a meaningful representation of
the candidate solution, to identify a fitness function that properly measures the quality of each
individual, to create a set of genetic operators that can efficiently select, recombine, and mutate
the candidate solutions, and to choose a rule for parental substitution. The next subsections
briefly describe how these functionalities were implemented.

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3023

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1: Initialize population
2: Evaluate individuals
3: Repeat
4: Select individuals that will become the parents
5: Apply genetic operators to generate offspring
6: Evaluate new individuals
7: Select individuals for the next generation
8: Until termination condition is met

Algorithm 1: Genetic Algorithm

3.1.1 Representation of individuals

For the pumping strategy problem, each individual has information about the number of
extraction wells, their locations and pumping rates. This information is stored, as real numbers,
in a structure such as shown in Figure 2, where:

• nW : number of extraction wells to be installed

• lW : list of wells, containing nW elements

(xi, yi) : x and y coordinates of the i-th well location, i = 1, .., nW

(qi) : pumping rate of the i-th well, i = 1, .., nW

Figure 2: Representation of Individuals

In the experiments performed in Section 5, each individual could have a maximum of 9
extraction wells, and its size was at most 132 bytes.

3.1.2 Fitness function

The quality or fitness of individuals is calculated through an objective function that has to
be maximized or minimized. Like many problems of practical interest, remediation of con-
taminated aquifers is characterized by multiple objectives, such us maximizing the quantity
of removed contaminant and minimizing remediation costs. One approach when dealing with
multi-objective problems is to build a single function that combines in some way the objectives.
Remediation problems are generally optimized through minimization of a function that takes
into account the cost of the system and penalty terms, used to enforce remediation standards in
order to meet a specific human health risk target (Finsterle, 2004). The fitness function imple-
mented in this work, based on (Geotrans, 2002), uses this strategy, and is shown in Equation 8.

ffitness = CCE + CCTD + FCMS + V CE + V CTD + P ∗ Vres, (8)

where:
CCE = capital costs of each extraction well ($400K)
CCTD = capital costs of treatment plant and discharge piping ($0.460K per m3/day)

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3024

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

FCMS = fixed costs of management and sampling/analysis ($415K per year)
VCE = variable cost of electricity for well operations ($0.009K per m3/day per year)
VCTD = variable cost of treatment and discharge ($0.064K per m3/day per year)
P = penalty charged over the volume of contaminant not removed from the aquifer (Vres).

3.1.3 Genetic operators

Genetic operators should be capable to, starting from existing individuals, generate new
ones with a higher probability of having a better fitness. The basic operators are selection,
recombination, and mutation.

Linear ranking was the selection scheme used, where the individuals are sorted in a list,
according to their fitness, and the selection probability of an individual is proportionate to its
position in the sorted list, not to its fitness, which could cause premature convergence (Goldberg
and Deb, 1991).

Recombination or crossover combines information from two parents in order to create new
offspring while mutation changes information from one parent to generate a new individual. For
this problem of remediation using extraction wells, four operators were developed: recombina-
tion, mutation on the location of wells, mutation on the pumping rates of wells, and mutation
on the number of wells. The frequency with which these operators are used is defined by rates
that can be fixed or have a linear variation throughout the generations, according to parameters
selected by the user in an input file.

3.1.4 Replacement strategy

Replacement strategy is a mechanism used to choose, among parents and the new offspring
created, the individuals who will survive, producing the new generation.

In a generational GA with a population of size µ, λ new individuals are created at each
generation, with λ > µ. The replacement criteria can be one of the following: (i) µ parents are
replaced by the µ best individuals of the offspring or (ii) µ parents are replaced by the µ best
individuals from the union set formed by parents and offspring.

On the other hand, with a non-generational or steady-state GA, each new individual gener-
ated is immediately evaluated and then tested to be inserted in the population.

A strategy often used with generational GAs is elitism, where the K best individuals are
copied to the nest generation, avoiding their loss. The implemented GA is generational and
includes elitism, copying to the next generation K = 2 best individuals.

4 DISTRIBUTED APPROACH

In order to search for the optimal solution, the optimization algorithm needs to evaluate, via
numerical simulations, a large number of candidate solutions. These evaluations are indepen-
dent tasks - there is no communication or dependencies among them. Applications composed
of independent tasks are often referred in the literature as Bag-of-Tasks (BoT). In this approach,
the simulations are solved concurrently, using machines available in a local network. The par-
allel execution guarantees a reduced response time and allows for the solution of more complex
computational modeling problems.

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3025

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

4.1 Master/worker paradigm

To execute the numerical simulations in parallel, the master/worker paradigm is used. Mas-
ter/worker is a simple yet widely used technique appropriate to execute independent tasks under
the centralized supervision of a control processor (Beaumont et al., 2001; Mattson et al., 2004).
For BoT applications running on a network of heterogeneous computers, master/worker as been
the most common choice so far, due mainly to simplicity of implementation, tolerance to worker
failures, and simple communication topology (Yero and Henriques, 2007). However, it is impor-
tant to note that centralized master/worker approach may affect scalability, since the existence
of a single master may become a bottleneck. This problem has been studied by many authors
(Yero and Henriques, 2007; Silva and Senger, 2009; Chronopoulos et al., 2002). The use of a hi-
erarchical master/worker structure reduces this effect. Nevertheless, the standard master/worker
scheme is effective for a moderate number of processors (Brest and Zumer, 2000).

4.1.1 Implementation

Our approach is composed by three main modules:

• Master: written in Java, it follows the steps of the optimization algorithm and is respon-
sible for scheduling the numerical simulations in the available workers.

• Worker: also written in Java, workers are replicated in the available computational nodes
and call the simulator to calculate the quality of the proposed solutions.

• Simulator: a Fortran sequential program that solves the mathematical model of the
aquifer, using FEM.

In our approach, a machine in the network is chosen to become the master, and the worker
modules are replicated in the available nodes. Master and workers communicate via Remote
Method Invocation (RMI), a mechanism that allows a Java program on one machine to invoke
a method on a remote object in a transparent fashion, hiding the low-level communication be-
tween them (Li and Baker, 2005; Silberschatz et al., 2004).

Before the application starts, a number of nodes are chosen by the user to initialize the
workers. These nodes have no prior knowledge of the application, but must have all necessary
libraries installed. The nodes are assumed to be part of the local network and all the necessary
files are copied via SSH.

A machine in the network is chosen to become the master, which follows the steps of Al-
gorithm 1 shown in Section 3.1. On steps 2 and 6 - evaluation of individuals - it partitions the
population in blocks of individuals and distributes the blocks to workers. A worker evaluates all
individuals of a given block, executing for each evaluation, the numerical simulator and using
its output to calculate the fitness function. When a worker finishes processing a block, it returns
the results to the master and receives another block, until all blocks are evaluated. At the end of
each generation, the master sorts all candidate solutions, according to their fitness, and selects
the ones who will survive. Note that in order to proceed to the next generation, all individuals
of the present generation must be evaluated and therefore the end of each generation becomes a
point of synchronization.

A diagram depicting the implemented approach is presented in Figure 3.

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3026

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 3: Implementation architecture.

4.2 Load Balancing

For intrinsically parallel applications, the use of many processing elements (PEs) will cer-
tainly reduce the response time. However, to achieve high performance in heterogeneous envi-
ronments, the distribution of computational workload becomes critical.

Load balancing techniques are designed to equally spread the load on PEs, maximizing their
utilization while minimizing the total application execution time. We want to avoid that faster
PEs become idle while waiting for slower ones to finish their tasks in places that require syn-
chronization. In a generational GA that happens at the end of every generation, when the master
has to wait for all of workers to deliver the results of their evaluations.

Dynamic scheduling of tasks is one of the alternatives for addressing the problem of load
balancing. Scheduling refers to the way tasks are assigned to run on the available PEs. As seen
in the literature (Penmatsa et al., 2007; Yang et al., 2007; Cheng et al., 2004; Costa et al., 2008),
dynamic scheduling is appropriate to achieve load balancing in heterogeneous or homogeneous
non-dedicated environments. In general, under such scheduling, the job of size N is partitioned
into M task blocks, where M is greater than the number of workers W , and blocks are assigned
dynamically to PEs as they become available. Scheduling mechanisms where PEs request new
tasks as they become idle are called self-scheduling.

In this implementation, the methods pure self-scheduling (PSS), guided self-scheduling (GSS),
and factorial self-scheduling (FSS) were made available. However, in the experiments presented
in this paper only PSS was used. PSS partitions the job (in this implementation, the evaluation
of one population) of size N in N blocks of one task (the evaluation of one individual), and in
this way balances the workload. Using this technique, the maximum time a PE will be idle for
is the processing time of the slowest PE. One drawback of this method is the amount of com-
munications required, but here this is minimized as a local network is used and also because the
communication times are very small in comparison to the computation times. In (Costa et al.,
2008), experiments with the aforementioned scheduling techniques are presented.

4.3 Performance Metrics

In general, the primary purpose of parallelizing an application is to reduce the overall elapsed
time to obtain the results. However, execution time is not usually the most convenient metric
by which to evaluate parallel performance.

One of the most important reasons for measuring and evaluating parallel performance is
to verify how efficiently available resources are being utilized and to discern whether actual
performance improves if the parallel environment changes, such as by using more PEs. It is
usually expected that, when the number of PEs in the parallel system is increased, the computa-
tion time decreases or problems of larger size can be solved. The capability of a parallel system
to increase its performance with the increase in the number of PEs is called scalability. It is

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3027

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

necessary to have a way of evaluating parallel performance, assessing whether it is improving
or not, and then identifying the factors affecting performance and where adjustments can be
made to improve it.

Common techniques for evaluating parallel performance have often been speedup and ef-
ficiency. Speedup (S) is a dimensionless metric that measures the performance gain obtained
by the parallel implementation of an application, while efficiency (E) measures the fraction of
time for which the PEs are usefully employed, denoting the effective utilization of computing
resources. They are mathematically given by

S =
T1

TP

and E =
S

P
, (1)

where P is the number of PEs, T1 is the total elapsed time of an execution using one PE, and
TP is the total elapsed time using P PEs.

In an ideal parallel system using P PEs, with computation evenly decomposed into P tasks,
and running on a homogeneous and dedicated environment, speedup is equal to P and effi-
ciency is equal to one. In practice, ideal behavior is not achieved because while executing a
parallel algorithm, the PEs spend some time performing tasks which are not central to the com-
putations of the main algorithm, such as: synchronization, communication, task scheduling,
and additional processing, not necessary when using only one PE. The time spent with these
peripheral computations denotes its overhead. In this application, the idle time due to the need
of synchronization at the end of each generation is the major cause of overhead and reduction
in efficiency.

Measuring and evaluating performance of heterogeneous systems is not straightforward. In
particular, conventional techniques used for homogeneous and dedicated systems are not ap-
propriate and must be adjusted to consider the variation of the computing power of the PEs. In
(Costa et al., 2010) we looked at alternative ways of measuring and evaluating the parallel per-
formance of a heterogeneous system and a dynamic way of calculating speedup and efficiency
- dynamic speedup (S) and dynamic efficiency (E) - was proposed. It uses an approximation
for T1, called T1, calculated as the sum of the elapsed time of all the tasks performed by the
workers (

∑
TW). These metrics consider the capacity of the used PEs at the time of application

execution and were used to analyse the performance of the experiments done in this paper.

5 COMPUTATIONAL EXPERIMENTS

In section 5.1, experiments were done to demonstrate the use of this methodology. In section
5.2, they were conducted to verify the performance of the approach.

5.1 Optimization simulation model analysis

To test the efficiency and ability of the optimization methodology implemented, the aquifer
model described in Section 2.1 was used. The pumping system allows a maximum of nine wells,
each with a pumping rate chosen from a set of four possibilities: 100, 150, 200 and 250m3/day.
Wells can not be placed within the dashed area (Figure 1(a)) and they must be at a minimum
distance of 250m from each other.

In this experiment, the optimization was executed 13 times, each time using a distinct “ran-
dom seed", a number used to initialize a pseudorandom number generator, that is used in many
steps of the GA, including the generation of the initial population. It is expected from a GA
that, starting from different initial populations, it may locate the same set of optimal results.

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3028

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

In each optimization, 42040 simulations were performed, divided in the following manner: 40
candidates for the initial population and 150 additional generations of 280 individuals each.

The solutions found in each of the executions achieved, with similar costs, the accepted
level of water quality using seven extraction wells. Results of remediation using one of these
solutions can be observed in Figure 4. Well locations and pumping rates are shown in Figure
4(a) (= 200m3/day and = 250m3/day). Figure 4(b) shows the plume of contaminant after
1230 days (the amount of time needed to achieve satisfactory contaminant levels). The volume
of contaminant in the aquifer during the simulation time interval is presented in Figure 4(c)
while the volume of contaminant extracted by each of the remediation wells is pictured in Figure
4(d). The value of the fitness function was $5, 292K (CCE = $2, 800K; CCTD = 713K;
FCMS = 1, 399K; V CE = 47K9; V CTD = 333K).

(a) (b)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200 1400 1600 1800

v
o

lu
m

e
o

f
co

n
ta

m
in

a
n

t
in

 a
q

u
if

er

time (days)

(c)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200 1400 1600 1800

v
o

lu
m

e
o

f
co

n
ta

m
in

a
n

t
ex

tr
a

ct
ed

 b
y

 w
el

ls

time (days)

(d)

Figure 4: Remediation solution: (a) A initial contamination and extraction wells (contaminant volume: 60, 000);
(b) Isoconcentration curves after 1230 days (contaminant volume: 0.01); (c) Volume of contaminant in the aquifer;
(d) Volume of contaminant extracted by remediation wells.

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3029

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

5.2 Computational performace analysis

To analyse the performance of the distributed approach, to investigate its scalability, and to
verify its influence on the network, large scale experiments with 95 and 190 workers, installed
in a heterogeneous group of machines, were performed.

5.2.1 Computational environment

Approximately 40 different machines, distributed in separate labs at LNCC (National Lab-
oratory for Scientific Computing), including one cluster, and connected via LAN were used.
These machines are grouped under distinct NIS (Network Information System) and run Linux-
based OS brands such as: openSUSE, Ubuntu, Mandriva, and Red Hat. This heterogeneity
resembles somehow the one of a computational grid.

Machines with multicore processors were used and in some cases more than one worker
was installed in one machine. The application does not automatically recognize the existence of
multiple cores, but it uses a list of machines where the workers will run and, for each worker, the
corresponding port used for communication with the master. The number of workers installed
in each machine was never greater then the number of cores available in its processor.

Two sets of 95 workers each were created: list A and list B, with the same processing ca-
pacity. The characteristics of the machines utilized and the number of workers installed in each
one of them is listed on Table 1. The processor model and clock show the processing power
of the machine and in the third column, the simulator average execution time for the numerical
model used in the experiments is presented. Note that 20 workers were installed in machines
that execute the numerical simulation in 32s (the fastest ones, which we call worker32) and 16
workers were installed in machines that execute the same simulation in 72s (the slowest ones,
named worker70). In order to have the load balanced, it is expected that faster workers evaluate
a larger number of simulations than the slower workers.

Processor Model Clock Simulation Number of Workers
Avg Time list A list B list A + list B

Intel Xeon CPU E5440 2.83GHz 41s 24 24 48
Intel Xeon CPU E5520 (64 bits) 2.27GHz 41s 40 40 80
Intel Xeon CPU E5520 (32 bits) 2.27GHz 46s 4 4 8
Intel Core i7 CPU 920 2.67GHz 32s 10 10 20
Intel Pentium D 2.80GHz 70s 8 8 16
Intel Core2 CPU 6300 1.86GHz 56s 2 2 4
Intel Xeon CPU X7350 2.93GHz 52s 3 3 6
Intel Core 2 Quad CPU Q9300 2.50GHz 45s 4 4 8

Table 1: Characteristics of the machines used.

5.2.2 Experiments Description

To allow the analysis of the distributed approach with regard to its scalability and its behavior
concernig network usage, different experiments were performed, using two different workloads
(7700 and 15400 candidate solutions), two different amount of workers (95 and 190), and three
different sets of workers (list A, list B, and list A + list B). These experiments were named
A, B, AB, BA, C, and D and were defined by a set of optimization parameters and a group

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3030

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

of workers used to execute the optimization. Table 2 shows the GA parameters that influence
the performance of the distributed approach: the number of generations and the number of
candidate solutions in each generation, the total number of evaluations performed, the number of
workers used, and the name of the list of workers. Experiments A, B, C, and D were conducted
at different times. Aiming at identifying a possible bottleneck in the shared resources, mainly in
the network, experiments A and B were performed simultaneously, and were denoted AB and
BA.

Exp. Number of Candidate Number of Number of List of
Generations Solutions Evaluations Workers Workers

A, AB 11 700 7700 95 list A
B, BA 11 700 7700 95 list B
C 11 700 7700 190 list A + list B
D 11 1400 15400 190 list A + list B

Table 2: Experiments

5.2.3 Scalability results

Table 3 reports the results of the experiments A, B, C, and D, presenting the following perfor-
mance metrics: the elapsed time of parallel execution (TP), the sum of workers processing time
(
∑

TW), dynamic speedup (S), dynamic efficiency (E), the number of individuals processed
per minute (Throughput), and the average time of each generation. Speedup and efficiency
were calculated as shown in Section 4.3 and the number of PEs used to calculate efficiency was
the number of workers added by one, accounting for the PE used to execute the master.

Exp. TP

∑
TW S E Throughput Generation

(ind/min) Avg Time
A 65.05min 5403.95min 83.07 0.87 118.37 354s
B 64.37min 5395.12min 83.81 0.87 119.62 353s
C 33.62min 5394.89min 160.47 0.84 229.03 183s
D 64.92min 10873.0min 167.48 0.88 237.22 354s

Table 3: Performance metrics

Experiments A, B, with the same size (7700 simulations) and using the same amount of
computational resources, presented similar results: approximately, they all completed the opti-
mization in 65min, which is 83 times faster (speedup) than if it had been done with one PE with
an average processing power, using the resources with an efficiency of 87%, showing a stable
behavior of the distributed approach.

In experiment C the efficiency dropped, since the amount of resources used was doubled
while the size of the problem remained the same (7700 simulations). As expected, in experiment
D, where the workload was increased in the same proportion as the amount of resources, the
efficiency was higher than in C, and reached the same level of experimentss A and B. With a
better utilization of the cores than experiment C, experiment D presented a higher throughput.

These results demonstrate that the efficiency can be kept fixed as the amount of computa-
tional resources and the size of the problem - the number of simulations - increase, showing that
the distributed approach is scalable.

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3031

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

5.2.4 Communication influency

Table 4, similar to Table 3, presents performance metrics of experiments AB and BA, which
are the same as experiments A and B, respectively, except that AB was executed at the same time
as BA. Since they were executed simultaneously, they shared network resources, and this could
have caused an increase in TP (elapsed time of parallel execution). However AB presented the
same metrics as A while BA presented the same metrics as B, leading us to conclude that the
distributed approach does not overload the network.

Exp. TP

∑
TW S E Throughput Generation

(ind/min) Avg Time
AB 64.92min 5431.57min 83.67 0.87 118.61 354s
BA 64.55min 5429.15min 84.11 0.88 119.29 352s

Table 4: Performance metrics of experiments AB and BA (A and B executed simultaneously)

The number of communications that occured during each experiment are shown in Table 5.
In our approach, communication happens every time the master has to send a block of individ-
uals to a worker and again when that worker sends the block of individuals, with their fitness
calculated, back to the master. In the experiments presented, PSS (pure self-scheduling) strat-
egy was used and since PSS divides the task (evaluation of a population) of size N in N blocks
of size 1, during each experiment, 2×N communications happened . Each block has 1 individ-
ual and each individual has 132 bytes. Experiments AB and BA were performed simultaneously
and therefore, during their execution time 2 × 2 × 7700 communications ocurred. The size of
the each individual (132 bytes) is considered small, but the amount of communications required
could be a bottleneck, which did not happen.

Exp. Number of Size of
Communications Individual

A 2 × 7700 132 bytes
B 2 × 7700 132 bytes
AB 2 × 2 × 7700 132 bytes
BA 2 × 2 × 7700 132 bytes
C 2 × 7700 132 bytes
D 2 × 15400 132 bytes

Table 5: Amount of communications during the period of each experiment

The use of RMI and PSS for this type of application, using resources connected via LAN,
presented satisfactory results.

5.2.5 Better scheduling results

The implemented GA is generational, as seen in Section 3.1.4, which means that all individ-
uals of a given generation have to be evaluated before the calculations of the next generation
take place. This produces points of synchronization at the end of each generation, in particular,
in these experiments with 11 generations each, there are 11 moments of synchronization.

It is important to analyse the behavior within the generations since it brings information that
helps to understand the performance of the distributed approach and identify the causes of loss

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3032

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

of efficiency observed in the experiments presented, even though the application is embarrass-
ingly parallel.

Within each experiment, all generations had similar behavior. The time measurements pre-
sented in Table 6 were obtained at the second generation, and are the following: total number
of simulations performed at that generation (Total Nsim), generation time (Tgeneration), average
time that each worker spent idle (Tidle), for the first and last workers to finish: its total pro-
cessing time (TW), how many simulations it performed (Nsim), and its average simulation time
(Tsim), and the difference in time between the first and last worker to finish their tasks (Tdiff).

Exp. Total Tgeneration Tidle First Worker to Finish Last Worker to Finish Tdiff

Nsim (avg) TW Nsim Tsim (avg) Tw Nsim Tsim (avg)

A 700 354s 44.6s 284s 9 32s 354s 5 71s 70s
B 700 353s 42.8s 283s 9 32s 353s 5 71s 70s
AB 700 354s 42.4s 285s 9 32s 354s 5 71s 69s
BA 700 352s 40.7s 284s 9 32s 352s 5 70s 68s
C 700 183s 28.2s 126s 3 42s 183s 3 61s 57s
D 1400 354s 42.1s 284s 9 32s 354s 5 71s 70s

Table 6: Performance metrics from the 2nd generation

In experiment A, at the given generation, the fastest worker (worker32) executed 9 simula-
tions while the slowest one executed 5 simulations (worker70). This reflects the behavior of
all worker32 and worker70 and this balance was obtained with the use of the PSS mechanism.
However, right before the fastest worker finished its tasks (at 284s), one of the last simulations
was assigned to the slowest worker, causing the fastest one to be idle for 70s, which is the worst
case when using this scheduling strategy, as seen in Section 4.2. This generated an average idle
time of 44.6s per worker. Similar situations happened on experiments B, AB, BA and D.

As concluded in (Costa et al., 2010), in this approach the idle time of PEs at the end of each
generation is the main cause of loss of efficiency and the use of an intelligent scheduling mecha-
nism (Zhang et al., 2008; Huang et al., 2004) that uses information from previous generations to
choose whether or not to assign more tasks to slower workers, is an alternative way to improve
performance. We have been working on a scheduling mechanism, that distributes the last tasks
to workers based on their performance on the last generation. We called it feedback scheduling
and some initial results obtained for experiments A and D are presented on Table 7.

Exp. TP TW S E Throughput Generation Tidle

(ind/min) Avg Time (avg)

A 59.70min 5341.9min 89.48 0.93 129.98 325s 19.3s
D 60.23min 10751.6min 178.5 0.93 255.67 328s 19.8s

Table 7: Performance metrics for feedback scheduling experiments

It can be observed, when compared with values from Table 3, that TP (elapsed time of
parallel execution) decreased from 65.05min to 59.70min on experiment A and from 64.92min
to 60.23min on experiment D. If an optimization with more generations was executed, as the one
on the experiment of Section 5.1 which used 150 generations, the use of this type of scheduling
could represent substantial gain in response time.

In Table 6, it was shown that on experiments A and B without feedback, worker70 performed
5 evaluations and worker32 performed 9 evaluations. Using feedback scheduling, all worker70

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3033

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

performed 4 evaluations, while some worker32 performed 10 simulations. With better utilization
of the PEs, the average idle time per worker decreased and efficiency went up to 0.93.

6 CONCLUSIONS

The paper showed a distributed approach used to automatically find remediation solutions to
a hypothetical contaminated aquifer. This approach has been studied by the authors and was
presented in previous publications. The behavior of the distributed approach with large scale
parallel experiments using a heterogeneous environment was presented here.

To analyse scalability, different experiments were performed, using two different workloads
(7700 and 15400 candidate solutions), two different amount of workers (95 and 190), and three
different sets of workers (list A, list B, and list A + list B). Results demonstrated that the effi-
ciency can be kept fixed as the amount of computational resources and the workload increase,
showing that the distributed approach is scalable.

To verify the behavior of the distributed approach concerning network usage, 2 experiments
were performed, first at distinct times and then simultaneously. Since they were executed si-
multaneously, they shared network resources, and this could have caused an increase in elapsed
time of parallel execution, which did not occur and led us to conclude that the distributed ap-
proach does not overload the network. The use of RMI and PSS for this type of application,
using resources connected via LAN, presented satisfactory results.

Since the GA implemented is generational, the idle time of PEs at the end of each generation
is the main cause of loss of efficiency. The use of an intelligent scheduling mechanism that uses
information from previous generations to choose whether or not to assign more tasks to slower
workers, was suggested in a previous work as an alternative way to improve performance. Initial
results of a feedback scheduling technique, that is being developed, were presented and showed
better performance of the approach: reduction of parallel execution time and of idle time and
increase in speedup, efficiency, and throughput.

To test the ability and efficacy of the implemented GA, an experiment was performed, using
13 different random seeds, and solutions that achieved, with similar costs, the accepted level
of water quality with the placement of seven wells were found in all cases, showing that even
starting from different initial populations, the algorithm was able to locate the same set of
optimal results.

REFERENCES

Beaumont O., Legrand A., and Robert Y. The master-slave paradigm with heterogeneous pro-
cessors. IEEE International Conference on Cluster Computing, 0:419–426, 2001.

Brest J. and Zumer V. Solving asymmetric traveling salesman problems using dynamic schedul-
ing on a heterogeneous computing system. 2000.

Cai X., McKinney D.C., and Lasdon L.S. Solving nonlinear water management models us-
ing a combined genetic algorithm and linear programming approach. Advances in Water
Resources, 24:667–676, 2001.

Chang L.C., Chu H.J., and Hsiao C.T. Optimal planning of a dynamic pump-treat-inject ground-
water remediation system. Journal of Hydrology, 342:295–304, 2007.

Cheng K., Yang C., Lai C., and Chang S. A parallel loop self-scheduling on grid computing
environments. In Proceedings of the 7th International Symposium on Parallel Architectures,
Algorithms and Networks. 2004.

Chronopoulos A., S.P., and Yu N. Scalable loop self-scheduling schemes for heterogeneous

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3034

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

clusters. In Proceedings of the IEEE International Conference on Cluster Computing. 2002.
Colorni A., Dorigo M., Maffioli F., Maniezzo V., Righini G., and Trubian M. Heuristics from

nature for hard combinatorial optimization problems. International Transactions in Opera-
tional Research, 3:1–21, 1996.

Costa P.A., Garcia E.L., Schulze B., and Barbosa H.J. Evaluation of a distributed numerical
simulation optimization approach applied to aquifer remediation. Procedia Computer Sci-
ence, 1(1):7 – 16, 2010. ISSN 1877-0509. doi:DOI:10.1016/j.procs.2010.04.003. ICCS
2010.

Costa P.A.P., Lima F.J., Garcia E.L.M., Barbosa H.J.C., and Schulze B. Task scheduling
schemes for simulation optimization in computational grids (in portuguese). In Anais do
VI Workshop de Computação em Grid e Aplicações, pages 61–72. 2008.

Cunha M.C. Groundwater cleanup: The optimization perspective (a literature review). Eng.
Opt, 34:389–702, 2002.

Eiben A. and Smith J. Introduction to Evolutionary Computing. Springer-Verlag, 2003.
Espinoza F.P., Minsker B.S., and Goldberg D.E. Adaptative hybrid genetic algorithm for

groundwater remediation design. Journal of water resources planning and management,
131(1):14–24, 2005.

Finsterle S. Demonstration of optimization techniques for groundwater plume remediation
using itough2. Technical Report, Earth Science Division, Lawrence Bekerley National Lab-
oratory, 2004.

Geotrans. Transport optimization Hastings naval ammunition depot. 2002. Hastings Documen-
tation Formulations.

Goldberg D.E. Genetic Algorithms in search, optimization and machine learning. Addison
Wesley Publishing Company, 1989.

Goldberg D.E. and Deb K. A comparative analysis of selection schemes used in genetic al-
gorithms. In G.J. rawlins, editor, Foundations of Genetic Algorithms. Morgan Kaufmann
Publishers, 1991.

Hilton A.B.C. and Culver T.B. Groundwater remediation design under uncertainty using genetic
algorithms. Journal of water resources planning and management, 131(1):25–34, 2005.

Huang C. and Mayer A.S. Pump-and-treat optimization using well locations and pumping rates
as decision variables. Water Resources Research, 33:1001–1012, 1997.

Huang C.Q., Chen D.R., and Hu H.L. Intelligent agent-based scheduling mechanism for grid
service. In Proceedings of the Third International Conference on Machine Learning and
Cybernetics, Shangai. 2004.

J. Guan M.A. Optimal remediation with well locations and pumping rates selected as continuous
decision variables. Journal of Hydrology, 221:20–42, 1999.

Kalwij I.M. and Peralta R.C. Non-adaptive and adaptive hybrid approaches for enhancing water
quality management. Journal of Hydrology, 358(3-4):182 – 192, 2008.

Li M. and Baker M. The Grid Core Technologies. John Wiley An Sons, 2005.
Loula A., Garcia E., and Coutinho A. Miscible displacement simulation by finite elements

methods in distributed memory machines. Computer methods in applied mechanics and
engineering, 174:339–354, 1999.

Mattson T.G., Sanders B.A., and Massingill B.L. Patterns for Parallel Programming. Addison-
Wesley, 2004.

Penmatsa S., Chronopoulos A., Karonis N., and Toonen B. Implementation of distributed loop
scheduling schemes on the teragrid. Parallel and Distributed Processing Symposium, IEEE,
pages 1–8, 2007.

Mecánica Computacional Vol XXIX, págs. 3019-3036 (2010) 3035

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Ren X. and Minsker B. Which groundwater remediation objective is better, a realistic one or a
simple one? Journal of water resources planning and management, 131(5):351–361, 2005.

Shreedhar Maskey A.J. and Solomatine D.P. Groundwater remediation strategies using global
optimization algorithms. Journal of Water Resources Planning and Management, 128:431–
440, 2002.

Silberschatz A., Gakvin P.B., and Gagne G. Operating System Concepts. John Wiley and Sons,
Inc, 2004.

Silva F.A. and Senger H. Improving scalability of bag-of-tasks applications running on master-
slave platforms. Parallel Computing, 35:57–71, 2009.

Sinha E. and Minsker B. Multiscale island injection genetic algorithms for groundwater reme-
diation. Advances in Water Resources, 30:1933–1942, 2007.

Yang C., Cheng K., and Shih W. On development of an efficient parallel loop self-scheduling
for grid computing environments. Parallel Computing, 33:467–487, 2007.

Yero E.J.H. and Henriques M.A.A. Speedup and scalability analysis of master-slave appli-
cations on large heterogeneous clusters. Journal of Parallel and Distributed Computing,
67:1155–1167, 2007.

Zhang Y., Coleman P., and Pellon M. A new load balancing scheme for distributed multi-agent
simulations. Journal of Simulation, pages 955–961, 2008.

Zou Y., Huang G.H., He L., and Li H. Multi-stage optimal design for groundwater remediation:
a hybrid bi-level programming approach. Journal of Contaminant Hydrology, 108:64 – 76,
2009.

P. COSTA, E. GARCIA, B. SCHULZE, H. BARBOSA3036

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

	Introduction
	Modeling of contaminant transport
	A hypothetical aquifer

	Simulation optimization
	Genetic algorithms
	Representation of individuals
	Fitness function
	Genetic operators
	Replacement strategy

	Distributed approach
	Master/worker paradigm
	Implementation

	Load Balancing
	Performance Metrics

	Computational Experiments
	Optimization simulation model analysis
	Computational performace analysis
	Computational environment
	Experiments Description
	Scalability results
	Communication influency
	Better scheduling results

	CONCLUSIONS

