
PERFORMANCE OF A NUMERICAL THREE-DIMENSIONAL
TRANSONIC AND SUPERSONIC FLOW ALGORITHM USING FINITE

ELEMENTS IN A CLUSTER OF PERSONAL COMPUTERS

João R. Masueroa, Gustavo Bonob and Armando M. Awruchc

aCentro de Mecânica Aplicada e Computacional (CEMACOM), Departamento de Engenharia Civil,
Universidade Federal do Rio Grande do Sul, Osvaldo Aranha 99, Porto Alegre, Brasil,

joao.masuero@ufrgs.br, http://www.ufrgs.br/cemacom

bDepartamento de Engenharia Mecânica, Universidade Federal de Pernambuco, Av. Prof. Moraes
Rego, 1235 – Cidade Universitária, Pernambuco, Brasil, bonogustavo@gmail.com,

http://www.ufpe.br/ctg

cCentro de Mecânica Aplicada e Computacional (CEMACOM), Departamento de Engenharia Civil,
Universidade Federal do Rio Grande do Sul, Osvaldo Aranha 99, Porto Alegre, Brasil,

amawruch@ufrgs.br, http://www.ufrgs.br/cemacom

Keywords: Parallel Computing, Computational Fluid Dynamics, Finite Element Method,
High Performance Computing, Compressible Flow.

Abstract. The performance of an algorithm to simulate three-dimensional (3-D) high
compressible transonic and supersonic flows using the Finite Element Method, which is
implemented for distributed memory and hybrid shared-distributed memory parallel
configurations in a cluster of personal computers, is presented in this work. An explicit one-
step Taylor-Galerkin scheme is used for time integration and both tetrahedral and hexahedral
meshes are employed in the spatial discretization. Task division is achieved through a
technique based on nodal ordering to obtain two distinct configurations: the first one
minimizes the number of neighbor sub-domains in the partitioned mesh, minimizing the
number of communication operations among the cluster nodes, and the second one minimizes
the number of common elements among sub-domains, minimizing the amount of data
exchanged by the cluster nodes through the network. The influence of the meshes size and
type (structured or unstructured), the task division employed as well as the number of cores or
processors of each cluster node is analyzed through two examples in terms of speed-up and
parallel efficiency. The results obtained from these examples show the importance of using a
task division suited to the hardware configuration of the cluster in the efficiency of parallel
solutions, and the viability of using personal computers in clusters as an alternative to reach
relatively high performance computing with cheap resources.

Mecánica Computacional Vol XXIX, págs. 3093-3105 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

Over the past fifty years, an intense research activity in the numerical simulation of
compressible flows was developed, especially by the aerospace industry, with its
requirements for highly accurate solutions at minimal computational cost. The demand to
solve finely detailed models with realistic configurations for transonic and supersonic flows
has challenged many researchers to come up with new and efficient algorithms. Specifically,
computational power and memory have always been the main constrains for size and degree
of detail of the numerical models employed. Vector supercomputers have traditionally been
used to match these requirements, but their high acquisition and maintenance costs limited
their use to few research centers. Recently, parallel computers based on high performance
derivatives of personal computer processors have been the most common configuration used
to achieve the performance needed for 3-D flow simulation with lower costs. Clusters of
personal computers connected by fast usual networks have been used as a cheap, versatile and
scalable alternative to obtain the computational power and main memory needed to simulate
realistic engineering scale problems.

In Finite Elements Flow Simulation, time integration may be performed in one of the two
classical approaches, explicit or implicit techniques. Implicit methods are computationally
more expensive in terms of computer memory, but they have less stringent stability bounds.
Explicit methods are relatively simple to implement, and they are easily cast in a form
suitable for efficient parallel codes, but they are limited by very small time steps due to the
Courant-Friedricks-Lewy (CFL) stability condition, which depends on the elements
dimension. In many cases, it is necessary to use very small elements to accurately capture
some phenomena and, consequently, small time steps must be also used. Adaptive meshes
avoid the use of fine meshes over the entire spatial domain, saving computational effort.
Adaptive time integration techniques are frequently used to minimize the impact over the
performance of the CFL stability condition, especially in unsteady transient flows, but for
detailed and complex models the demand for computational power, higher than a single
personal computer may offer, still stands. Parallel computing is employed in this work
providing the necessary computational power that allows the use of explicit approach in
detailed and realistic meshes, preserving its advantages of small computer memory
requirements and easy implementation.

2 THE GOVERNING EQUATIONS

Let 3Ω R⊂ and (0,T) be the spatial and temporal domains, respectively, and let Γ to be the
boundary of Ω. The spatial and temporal coordinates are denoted by x and t, respectively. We
consider the Navier-Stokes equations with no source terms, governing unsteady compressible
flows, written here in their dimensionless form as follows:

 0i i

i it x x
∂ ∂∂

+ + =
∂ ∂ ∂

F GU , iv

e

ρ

ρ

ρ

⎧ ⎫
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

U ,

()

j

i i j ij

j

v

v v p

v e p

ρ

ρ δ

ρ

⎧ ⎫
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪

+⎪ ⎪⎩ ⎭

F ,

0

i ij

ji i jv q

τ

τ

⎧ ⎫
⎪ ⎪⎪ ⎪= −⎨ ⎬
⎪ ⎪
− −⎪ ⎪⎩ ⎭

G (1)

with i, j = 1,2,3, where U is the unknown vector of the conservation variables, Fi and Gi
are, respectively, the convective and diffusive flux vectors. Here vi is the velocity component
in the direction of the coordinate xi, ρ is the specific mass, p is the thermodynamic pressure,
τij are the components of the viscous stress tensor, qj is the heat flux vector, e is the total
specific energy and δij is the Kronecker delta function. Dimensionless scales are used.

J. MASUERO, G. BONO, A. AWRUCH3094

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Assuming that air behaves as a calorically perfect gas, the pressure (which is calculated by
the equation of state) and internal energy u are given by the following equations in terms of
dimensionless variables:

 ()1p uγ ρ= − , 1
2v i iu c T e v v= = − (2)

where T is the temperature and the specific heat ratio γ = cp / cv, relating specific heat
coefficients at constant pressure and constant volume, is assumed to be constant and equal to
1.4. The dynamic viscosity and the coefficient of thermal conductivity in the heat flux depend
on the temperature and therefore are modeled using Sutherland’s law. The Euler equations are
obtained eliminating the diffusive flux vector in Eq. (1). Initial and boundary conditions must
be added to Eq. (1) in order to define uniquely the problem.

3 TAYLOR-GALERKIN FORMULATION

The one-step Taylor-Galerkin scheme employed in this work is similar to that presented by
Donea (1984). Expanding the conservation variables U at 1nt t += in Taylor series including
the first and second derivatives, the following final expression is obtained:

1 1 1

1
1 2 2 2

n n nn n n
i J i J i Jn n ni i i

J k k
i i k i i i k i

t t tt
x x x x x x x x

+ + +
+
+

⎤⎡ ⎛ ⎞⎡ ⎤ ∂ ∆ ∂ ∆ ∂ ∆⎛ ⎞∂ ∂ ∂∆ ∂ ∆ ∆ ∂ ⎥⎜ ⎟∆ = ∆ − − + + − − +⎢⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎥⎢⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎝ ⎠⎦

F G FF G F
U A A (3)

with ∆Un+1 = Un+1 - Un, ∆tn+1 = tn+1 - tn is the time step, where n and n+1 indicates t and
t+∆t, respectively, J is an iteration counter, ∆Fi

n+1 = Fi
n+1 - Fi

n, ∆Gi
n+1 = Gi

n+1 - Gi
n and Ai is

the convection Jacobian defined as Ai = ∂Fi /∂U. This iterative process converges fast (no
more than two or three iterations per time step are necessary).

Applying the classical Bubnov-Galerkin weighted residual method in the context of the
FEM to Eq (3), the spatial discretization is obtained. In this work linear tetrahedral and
hexahedral elements are used. Tetrahedral meshes are well suited for problems with complex
geometry, hexahedral meshes need fewer elements to reach the same accuracy, and both
elements can be exactly integrated without numerical quadrature. The consistent mass matrix
is substituted by the lumped mass matrix, and then Eq. (3) is solved with an explicit scheme,
which is conditionally stable, and its local stability condition is given by

()

1
2

E
E

i i

L
t SC

a v v
∆ =

+
 (4)

where E denotes a specific element, LE is its characteristic dimension, a is the sound speed
and SC is a safety coefficient (which is equal or less than 1.0). In this work, SC = 0.1 is
adopted for all numerical examples.

At transonic and supersonic speeds, an additional numerical damping is necessary to
capture shocks and to smooth local oscillations in their vicinities. An artificial viscosity
model, as proposed by Argyris et al. (1990), is adopted in this work due to its simplicity and
efficiency in terms of CPU time. The term representing the artificial viscosity is added
explicitly to the non-smoothed solution as follows:

 1 1 1n n
s L
+ + −= +U U M d , []

ele

= CFL CAF n
ele L eleele

S −∑d M M U (5)

where M and ML are the consistent mass matrix at element level and the assembled
lumped mass matrix, respectively. Us

n+1 and Un+1 are the smoothed and non-smoothed

Mecánica Computacional Vol XXIX, págs. 3093-3105 (2010) 3095

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

solutions at t+∆t, respectively. The index ele in vector d is referred to a specific element, CFL
= ∆t/∆tE is the local Courant-Friedricks-Lewy number, CAF is an artificial damping
coefficient given by the user (in this work, CAF = 1.0 was adopted, and it must be specified
with care in order to avoid undesired interference of the artificial viscosity on the physical
viscosity), Sele is a pressure sensor at element level obtained as an average of nodal values Si.
Values of Si are components of the following assembled global vector in Eq.(6) where p is the
pressure vector of a specific element, and the symbol | | indicates absolute values:

()
()i

ele
= L eleele i

L eleele i

S
−

−
∑

M M p

M M p
 (6)

4 PARALLEL IMPLEMENATION

Equation (3) corresponds to a set of uncoupled equations regarding the variables ρ, vi and
e, within each iteration of each time step. Thus, if the values of these variables are known in
time t, the new value of any nodal variable, in the Jth iteration of time t+∆t, can be evaluated
in an independent way. For each nodal equation, the needed information from the previous
iteration or the previous time step is only the values of the variables corresponding to nodes
belonging to the elements connected to the node where the nodal equation is being evaluated.

In this work, a logical processor corresponds to a CPU core in clusters formed by both
single-core single-CPU computers and multi-core single-CPU computers.

In the parallel algorithm, groups of nodal equations can be independently processed by
different logical processors within each iteration of each time step. At the end of each
iteration, values of the variables corresponding to nodes belonging to elements connected to
nodes processed by other logical processors are informed to these logical processors and vice-
versa, and the algorithm may be continued. This concept can be used for distributed memory
configuration, shared memory configuration or for a combination of both alternatives (hybrid
configuration). The use of an artificial viscosity model, particularly the computation of
sensors Sele and Si in equations (5) and (6), demands one extra communication (exchange of
variable values) per time step among logical processors. Thus, the one-step Taylor-Galerkin
scheme employed in this work, in its parallel implementation, requires, for each time step,
one communication among logical processors for the evaluation of the artificial viscosity
model and one communication for each iteration into the time step to communicate the
problem variables ρ, vi and e.

Since the governing equations are uncoupled within each iteration or time step, a hostless
program model can be used to minimize the amount of data transferred through the network
among logical processors, avoiding the undesirable high network data traffic characteristic of
master-slave model that negatively impacts the performance. This way, all logical processors
execute the same code, and the values of the problem variables are transferred to a specific
computer only at determined intervals in order to be stored.

The MPI (Message Passing Interface) library was chosen to provide communication
between computers in this work because it is suitable to the parallel approach proposed here,
it is efficient in distributed memory, shared memory and hybrid configurations, it has a
standard which warrants portability of the same code across different computational
platforms, and can be coupled to both, Fortran and C++, the most common programming
languages in engineering analysis and simulations. The OpenMP library is equally portable
and can be coupled to Fortran and C++ too, but its limited to shared memory configurations.
In this work it was used together with MPI in clusters formed by multi-core single-CPU

J. MASUERO, G. BONO, A. AWRUCH3096

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

computers.
To estimate the speed-up provided by the parallel implementation, the relative speed (rsi)

of each logical processor i and the obtained relative speed (orsP) of a set of P logical
processors can be evaluated, respectively, by:

 ref
i

i

t
rs

t
= , ref

P
P

t
ors

t
= (7)

where tref is a reference solution time and ti is the solution time of logical processor i and tP
is the solution time obtained by the set working in parallel. Considering that the entire
solution algorithm can be parallelized, the theoretical relative speed (trsP), the parallelization
efficiency EffP and the speed-upP of the set of P processors can be evaluated, respectively, by:

 P i
P

trs rs= ∑ , P
P

P

ors
Eff

trs
= , .P Pspeed up P Eff− = (8)

5 TASK DIVISION AND LOAD BALANCE

The efficiency of computational parallel algorithms using the Finite Element Method in
distributed memory configurations is highly dependent of the way the task division is
performed. Mesh splitting in sub-domains and Graph partitioning are commonly used to
accomplish task division, resulting in a partition of the problem equations among the different
processors employed in the parallel solution. Schloegel et al (2000) provide a comprehensive
overview of the techniques employed in graph partition for high performance scientific
simulations.

Since the governing equations of the problem are uncoupled nodal equations, a task
division among the logical processors based on mesh nodes is used in this work: the
computational effort of each logical processor used in the solution of the problem is
considered as proportional to the number of mesh nodes allocated to that processor. The mesh
nodes (and the corresponding nodal variables and equations) are divided in as many groups as
the number of logical processors, proportionally to the individual relative performance of
each processor. In the absence of a better parameter, the core frequency of each processor is
used to estimate the individual performance, allowing efficient parallelization even in clusters
formed by heterogeneous nodes.

When performing element loops, each logical processor acts over all the elements
connected to its own group of nodes. Some elements on the mesh, called here as common
elements, are connected to nodes that belong to different groups, and must be processed by
more than one logical processor. Thus, overlapping in computational efforts by different
logical processors related to these elements is inherent of the adopted task division.

The values of the variables related to nodes of common elements and that belong to a node
group (logical processor) are the information which is necessary to others node groups
(processors) that also include nodes of these common elements. This way, the number of
common elements in a mesh defines the overlapped computational effort due to parallel
implementation, and the number of nodes connected to these elements defines the amount of
data that must be communicated among the logical processor in each time step. Considering
that network communications are a severe bottleneck to the performance in distributed
memory configurations due to the relative low speed of network when compared to memory
or local storage accesses, and that computational overlapping impacts performance in both,
distributed memory and hybrid configurations, a task division that leads to a minimal number
of common elements is highly desirable.

Mecánica Computacional Vol XXIX, págs. 3093-3105 (2010) 3097

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

When the latency is the main factor in the communication performance through the
network, minimizing the number of communication operations among the logical processors
(or the number of sub-domains that are neighbors each other) is more important than
minimizing the amount of data being communicated through the network (Hendrickson and
Leland, 1995). This may be obtained by dividing the mesh in several “slices” across its
smaller dimension, in order that each sub-domain has no more than 2 neighbor sub-domains
(or each logical processor communicates data to no more than other 2 processors). This task
division can be obtained geometrically by the Inertial Stripwise Partitioning method
(Dorneles et al., 2005) or, in a much more simple way, by organizing the nodes in order to
minimize the matrix bandwidth of the corresponding system of equations.

Despite the fact that equations are uncoupled and the bandwidth of the system has no
influence over the performance of the solver, a nodal reordering was used to minimize both,
communications among logical processors and computational work overlapping. The
algorithm used here consists in an initial element reordering using Silvester and Auda (1984)
criteria to minimize Front, followed by a nodal reordering using the Profile Front
Minimization of Hoit and Wilson (1983). The resultant ordered list of nodes is sequentially
divided in as many groups as the number of logical processors present in the cluster,
proportionally to the relative computational power of each processor. The load balance is
made processing some time steps of the code, registering the CPU time spent individually by
each logical processor and re-evaluating the number of mesh nodes allocated to each
processor (inversely proportional to CPU-time). This process is repeated until all the
individual CPU times are equal, or differing less than a given tolerance, and it is easily
performed by re-dividing the ordered list of mesh nodes, without any further geometric
consideration or nodal reordering.

This algorithm is called SNR (single nodal reordering) and an example of its application
for tetrahedral and hexahedral meshes is shown in Fig. 1(a) and (b), respectively. The number
of borders between sub-domains is minimal.

Figure 1: Tetrahedral (a) and hexahedral (b) elements meshes divided in groups or sub-domains by the algorithm

SNR.

(a) (b)

J. MASUERO, G. BONO, A. AWRUCH3098

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

In Fig. 1 each color corresponds to a sub-domain or group of mesh nodes allocated to a
logical processor, and the common elements are shown in grey. When the mesh is divided in
many groups of nodes following a single initial nodal reordering, the optimal division
regarding effort overlapping and data communication is not reached, since a change in the
division direction is needed. A better division is obtained geometrically by the Inertial
Recursive Coordinate Bisection method, where, after each division, the “narrowest”
dimension of each resulting sub-domain is determined, indicating the direction of the next
division.

In order to avoid intricate geometric considerations, this kind of division can be performed
substituting the determining of “narrowest” dimension by a nodal reordering for matrix
bandwidth minimization of the resultant sub-domains after each division. This method is
called RNR (recursive nodal reordering) and its application is shown in Fig. 2(a) and (b) for
tetrahedral and hexahedral meshes, respectively. The number of neighbor sub-domains is
greater than with SNR method, but the amount of data communicated among logical
processors through the network (equivalent to the borders length) is considerably smaller.
Load balancing can be reached as in SNR, but a new recursive nodal reordering is necessary
any time the number of nodes assigned to each processor is changed.

Figure 2: Tetrahedral (a) and hexahedral (b) elements meshes divided in groups or sub-domains by the algorithm

RNR.

A complex mesh of a generic Canard-Wing-Body configuration, shown in Fig. 3, is used to
numerically evaluate the impact of SNR and RNR partitioning processes over the amount of
data communicated through network and the computational overhead. The mesh has 1.5
millions of tetrahedral elements and 272 thousands of nodes, and is partitioned among 16
identical processors. Three mesh partitions based in nodal order are used: the first one uses
the original nodal order obtained from the mesh generation process to assign nodes to the
processors, the second uses the SNR approach and the last one the RNR approach. Data
dependency and computational overhead of these partitions can be seen in Fig. 4.

(a) (b)

Mecánica Computacional Vol XXIX, págs. 3093-3105 (2010) 3099

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 3: Generic Canard-Wing-Body model.

Original nodal order
Processors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2,8 1,3 3,4 3,8 3,6 4,1 5,5 5,3 5,3 4,4 5,0 5,6 5,8 4,3 4,3
2 3,5 3,2 4,2 5,0 5,8 6,0 5,4 5,0 5,4 6,7 7,3 6,8 6,5 5,2 6,7
3 1,7 3,0 4,8 3,8 2,9 3,1 2,6 2,3 2,4 1,6 1,4 1,7 1,8 4,4 5,0
4 9,8 11,5 4,9 7,3 6,1 5,5 5,0 3,8 3,4 4,4 3,2 2,3 1,6 1,3 1,5
5 10,1 11,9 3,8 7,5 6,7 5,9 5,4 4,3 4,1 4,8 3,7 2,8 2,0 1,2 1,7
6 8,7 13,0 3,5 6,1 6,8 6,2 5,9 4,8 5,0 5,0 3,9 3,1 2,7 1,9 2,1
7 9,3 12,4 3,5 5,5 6,1 6,3 7,0 5,7 5,2 4,7 4,0 3,5 2,8 2,2 2,2
8 12,2 10,3 3,0 5,0 5,3 5,8 7,1 6,5 5,4 5,2 4,7 4,0 3,5 2,6 2,4
9 11,4 9,3 3,0 3,6 3,9 4,6 5,6 6,4 6,2 4,8 4,8 4,6 4,5 3,3 2,3

10 11,3 9,6 2,8 3,1 3,8 4,6 5,0 5,3 6,3 5,2 5,3 5,2 5,3 4,0 2,9
11 9,7 12,9 1,7 4,3 4,6 5,0 4,8 5,4 5,2 5,4 9,8 7,4 5,5 2,7 3,3
12 10,8 12,2 1,6 3,0 3,5 3,7 3,8 4,6 4,7 5,4 9,4 9,8 7,9 3,9 4,0
13 11,4 11,3 1,9 2,2 2,7 2,9 3,3 3,8 4,4 5,0 7,4 9,7 10,3 5,7 4,8
14 11,8 10,7 2,0 1,5 1,9 2,6 2,6 3,5 4,3 5,3 5,6 7,9 10,3 9,0 6,1
15 7,2 7,5 7,3 1,2 1,1 1,8 2,0 2,4 3,0 3,7 2,6 3,7 5,2 7,5 7,4
16 7,9 11,4 5,5 1,6 1,9 2,4 2,7 3,0 2,9 3,5 3,6 4,5 5,6 7,0 8,5

Nodes 137 150 49 57 62 65 68 71 69 71 75 79 78 75 60 57
Elements 308 399 208 209 216 225 229 235 223 228 253 260 258 254 215 211

SNR partition
Processors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2,8
2 3,5 4,3
3 5,1 5,5
4 6,6 6,5
5 7,8 7,8
6 9,6 9,1
7 10,7 9,6
8 10,9 9,0
9 9,7 8,9

10 9,9 9,2
11 10,7 9,4
12 10,6 9,8
13 10,7 9,4
14 10,3 8,1
15 8,6 6,1
16 5,9

Nodes 4 8 11 13 16 18 20 19 19 20 20 20 20 18 14 6
Elements 110 121 129 137 145 152 156 154 145 147 147 147 144 135 123 94

RNR partition
Processors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1,5 0,1 1,1
2 1,8 1,6 0,7 1,9
3 0,2 2,0 1,4 0,7 1,8 0,2 1,1
4 1,2 0,7 1,6 0,4 0,7 1,4 0,1 0,1
5 0,8 0,6 1,4 0,8 0,3 1,1
6 2,0 0,9 1,8 1,4 1,2 1,3
7 0,2 1,4 0,8 1,7 0,7 0,8
8 0,1 0,2 1,5 0,8 2,8
9 1,8 1,0 0,1 1,2 1,6 1,0 3,5 8,9

10 9,9 4,9 4,4
11 5,4 0,4 4,5
12 5,3 0,5 5,3
13 4,8 6,3 9,4
14 10,3 8,1
15 8,6 6,1
16 5,9

Nodes 3 6 7 6 5 9 6 6 19 20 10 11 20 18 14 6
Elements 107 117 123 114 118 125 112 114 145 147 119 122 144 135 123 94

Figure 4: Data dependency and computational overhead for mesh partition following the original nodal order,
SNR partition and RNR partition.

J. MASUERO, G. BONO, A. AWRUCH3100

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The columns represent each logical processor and the lines represent the processors with
which it communicates, indicated by the number of nodes (or nodal variables sets) being
communicated in thousand of units. In the bottom lines labeled nodes and elements are shown
the total number of nodes communicated and the total number of elements processed by each
logical processor, respectively, in thousands of units. The line elements include both
exclusive elements and common elements. The mesh generation process results in a sparse
dependency matrix, while SNR approach results in a narrow band shaped matrix. RNR leads
to a sparse matrix too, but the amount of data being communicated among processors and the
number of communication processes is far smaller than the original mesh and smaller than
SNR.

Table 1 shows some efficiency statistics of each partition method. The redundancy in
processing elements is obtained by the quotient between the total number of elements
processed by all logical processors that exceeds the number of elements in the mesh and the
number of elements in the mesh. The efficiency in processing elements is evaluated by the
quotient between the number of elements in the mesh and the total number of elements
processed by all logical processors. Finally, the Data exchange index is the quotient between
the total amount of nodes communicated through the network by all processors and the
number of nodes in the mesh. Both SNR and RNR partitioning processes result in much better
statistics than the partition based on original nodal order, indicating great reduction in
computational overhead and in data communication through the network. The RNR approach
has better indexes than SNR, except by the Number of communication processes. Increasing
the number of communications make the schedule of these communications more complex,
and the performance more dependent on the network latency.

Efficiency statistics Original nodal

ordering
SNR

Partition
RNR

Partition
Amount of nodes communicated by all processors (x1000) 1221 246 166
Amount of elements processed by all processors (x1000) 3932 2186 1958
Redundancy in processing elements 162% 46% 30%
Efficiency in processing elements 38% 69% 77%
Data exchange index 449% 91% 61%
Number of communication processes 240 32 70

Table 1: Efficiency parameters of partition methods.

6 RESULTS

The methodology described above was applied in two realistic models, both under steady-
state supersonic flows: a generic Space Vehicle (SV) configuration shown in Fig.5 and a
generic Canard-Wing-Body (CWB) configuration already shown in Fig. 3. Two meshes,
relatively coarse and fine, were used for each configuration in order to evaluate de impact of
mesh size in the parallelization efficiency. The characteristics of the meshes are shown in
Tab. 2.

Mesh Element Number of Elements Number of Nodes Degrees of Freedom
SV1 Hexahedral 198750 211146 1.055.730
SV2 Hexahedral 917700 949212 4.746.060

CWB1 Tetrahedral 242979 45823 229115
CWB2 Tetrahedral 1501912 271842 1359210

Table 2: Meshes characteristics.

Mecánica Computacional Vol XXIX, págs. 3093-3105 (2010) 3101

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 5: (a) Space Vehicle model.

The four meshes were tested in a heterogeneous cluster formed by 12 quad-core single-
CPU Intel Core 2 nodes with core frequency of 3.7 GHz and 8 quad-core single-CPU Intel
Core i7 nodes with core frequency of 3.5 GHz. The network used was Gigabit Ethernet and
each node had a single network interface.

For hexahedral meshes, the parallel algorithm scales quite well, as shown in Fig.6 (a) and
(b) for SV1 and SV2 meshes, respectively. There are no significant differences between the
results for SNR and RNR methods. The best result was obtained using MPI alone (as if each
core was an independent computer) instead of using hybrid parallelization (OpenMP inside
the node and MPI between cluster nodes). As expected, the solution for the larger mesh SV2
scales better than for the smaller mesh SV1. Using 8 cluster nodes, 32 logical processors
(cores), the speed-up curve for SV1 presents a slope reduction, pointing to a loss of parallel
efficiency for increasing cluster sizes.

0

5

10

15

20

25

0 8 16 24 32

Logical Processors

S
pe

ed
-u

p

SV1 MPI SNR SV1 MPI RNR

SV1 Hyb SNR SV1 Hyb RNR

0

5

10

15

20

25

0 8 16 24 32

Logical Processors

S
pe

ed
-u

p

SV2 MPI SNR SV2 MPI RNR

SV2 Hyb SNR SV2 Hyb RNR

Figure 6: Obtained speed-up in (a) SV1 and (b) SV2 hexahedral meshes

J. MASUERO, G. BONO, A. AWRUCH3102

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The largest mesh scales well even when all available logical processors in the cluster were
used, as shown in Fig. 7. The differences between partition methods and kind of
parallelization became less visible here. For structured meshes, even a relatively simple
partition algorithm as SNR can lead to good performance results, reaching a parallel
efficiency of around 60% for a cluster size of 20 nodes / 80 cores.

0

10

20

30

40

50

0 8 16 24 32 40 48 56 64 72 80

Logical Processors

S
pe

ed
-u

p

MPI SNR MPI RNR Hyb SNR Hyb RNR

Figure 7: Obtained speed-up in SV2 hexahedral mesh

For tetrahedral meshes, the parallel algorithm scales considerably worse than for
hexahedral ones, although significant speed-up values could be reached, as can be seen in Fig.
8 (a) and (b) for CWB1 and CWB2 meshes, respectively. The elevated number of elements
connected to each mesh node in tetrahedral meshes results in higher computational effort
overlapping and data communication, explaining the worse results, when compared to
hexahedral meshes. In a quad-core configuration cluster, the communication among
processors through the network results in a severe performance penalty, since a single
network interface must attend 4 cores in each cluster node. In this configuration, the use of
hybrid parallelization (OpenMP inside de node and MPI between cluster nodes) led to better
results than using MPI alone. For the same reason, the SNR method (minimum number of
neighbor sub-domains or communication processes) led to better results than RNR (minimum
amount of communicated data), since RNR tends to generate cross communications among all
logical processors (sparser matrix than the SNR one, shown in Fig. 4). This effect is more
evident in the smallest CWB1 mesh when the number of logical processors increases,
resulting in a severe loss of parallel efficiency, as shown in Fig.9.

Mecánica Computacional Vol XXIX, págs. 3093-3105 (2010) 3103

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0

4

8

12

16

20

0 8 16 24 32
Logical Processors

S
pe

ed
-u

p

CWB1 MPI SNR CWB1 MPI RNR

CWB1 Hyb SNR CWB1 Hyb RNR

0

4

8

12

16

20

0 8 16 24 32

Logical Processors

S
pe

ed
-u

p
CWB2 MPI SNR CWB2 MPI RNR

CWB2 Hyb SNR CWB2 Hyb RNR

Figure 8: Obtained speed-up in (a) CWB1 and (b) CWB2 tetrahedral meshes

0

4

8

12

16

20

0 8 16 24 32 40 48 56 64 72 80

Logical Processors

S
pe

ed
-u

p

 MPI SNR MPI RNR Hyb SNR Hyb RNR

Figure 9: Obtained speed-up in CWB1 tetrahedral mesh

J. MASUERO, G. BONO, A. AWRUCH3104

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

7 CONCLUSIONS

The results obtained seem to indicate that it is possible to reach good computational
performance in numerical flow simulations using inexpensive clusters of personal computers.
Besides, the task division method must be adequate to the hardware configuration of the
cluster. Multi-core nodes with a single network interface seem to require a partition method
that minimizes the number of communication operations instead the amount of data being
communicated between processors, especially in unstructured meshes were the number of
elements connected to each mesh node is high.

8 ACKNOWLEDGEMENTS

The authors wish to thank CAPES and CNPq for their financial support.

REFERENCES

Argyris J., Doltsinis I.S., Friz, H., 1990. “Study on computational reentry aerodynamics”.
Computer Methods in Applied Mechanics and Engineering Vol. 81, pp. 257–289.

Donea J., 1984. “ A Taylor-Galerkin for convective transport problems”. International Journal
for Numerical Methods in Engineering, Vol. 20, pp. 101–119.

Dorneles, R.V.; Rizzi, R.L.; Martinotto, A.L.; Picinin Jr., D.; Navaux, P.O.A.; Diverio, T.A.,
2005. “Parallel Computational Model with Dynamic Load Balancing in PC Clusters”.
Lecture Notes in Computer Science, Springer-Verlag GmbH, Vol. 3402, pp. 468-479.

Hendrikson, B.; Leland, R., 1995. “An improved spectral graph partitioning algorithm for
mapping parallel computations”. SIAM Journal Scientific Computing, Vol. 16, No. 2, pp.
452-469.

Hoit, M., Wilson, F.L., 1983. “An equation numbering algorithm based on a minimum
FRONT criteria”. International Journal for Numerical Methods in Engineering, Vol. 16, pp.
225-239.

Schloegel, K.; Karypis, G.; Kumar, V., 2000. “Graph partitioning for high performance
scientific simulations”. In http://www.cs.umn.edu/research/technical_reports.php?page=
report& report _id=00-018, accessed in October 2009.

Silvester, P.P.; Auda, H.A., 1984. “A memory economic frontwidth reduction algorithm”.
International Journal for Numerical Methods in Engineering, Vol. 20, pp. 733-743.

Mecánica Computacional Vol XXIX, págs. 3093-3105 (2010) 3105

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

