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Abstract. The performance of an algorithm to simulate three-dimensional (3-D) high 
compressible transonic and supersonic flows using the Finite Element Method, which is 
implemented for distributed memory and hybrid shared-distributed memory parallel 
configurations in a cluster of personal computers, is presented in this work. An explicit one-
step Taylor-Galerkin scheme is used for time integration and both tetrahedral and hexahedral 
meshes are employed in the spatial discretization. Task division is achieved through a 
technique based on nodal ordering to obtain two distinct configurations: the first one 
minimizes the number of neighbor sub-domains in the partitioned mesh, minimizing the 
number of communication operations among the cluster nodes, and the second one minimizes 
the number of common elements among sub-domains, minimizing the amount of data 
exchanged by the cluster nodes through the network. The influence of the meshes size and 
type (structured or unstructured), the task division employed as well as the number of cores or 
processors of each cluster node is analyzed through two examples in terms of speed-up and 
parallel efficiency. The results obtained from these examples show the importance of using a 
task division suited to the hardware configuration of the cluster in the efficiency of parallel 
solutions, and the viability of using personal computers in clusters as an alternative to reach 
relatively high performance computing with cheap resources. 
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1 INTRODUCTION 

Over the past fifty years, an intense research activity in the numerical simulation of 
compressible flows was developed, especially by the aerospace industry, with its 
requirements for highly accurate solutions at minimal computational cost. The demand to 
solve finely detailed models with realistic configurations for transonic and supersonic flows 
has challenged many researchers to come up with new and efficient algorithms. Specifically, 
computational power and memory have always been the main constrains for size and degree 
of detail of the numerical models employed. Vector supercomputers have traditionally been 
used to match these requirements, but their high acquisition and maintenance costs limited 
their use to few research centers. Recently, parallel computers based on high performance 
derivatives of personal computer processors have been the most common configuration used 
to achieve the performance needed for 3-D flow simulation with lower costs. Clusters of 
personal computers connected by fast usual networks have been used as a cheap, versatile and 
scalable alternative to obtain the computational power and main memory needed to simulate 
realistic engineering scale problems. 

In Finite Elements Flow Simulation, time integration may be performed in one of the two 
classical approaches, explicit or implicit techniques. Implicit methods are computationally 
more expensive in terms of computer memory, but they have less stringent stability bounds. 
Explicit methods are relatively simple to implement, and they are easily cast in a form 
suitable for efficient parallel codes, but they are limited by very small time steps due to the 
Courant-Friedricks-Lewy (CFL) stability condition, which depends on the elements 
dimension. In many cases, it is necessary to use very small elements to accurately capture 
some phenomena and, consequently, small time steps must be also used. Adaptive meshes 
avoid the use of fine meshes over the entire spatial domain, saving computational effort. 
Adaptive time integration techniques are frequently used to minimize the impact over the 
performance of the CFL stability condition, especially in unsteady transient flows, but for 
detailed and complex models the demand for computational power, higher than a single 
personal computer may offer, still stands. Parallel computing is employed in this work 
providing the necessary computational power that allows the use of explicit approach in 
detailed and realistic meshes, preserving its advantages of small computer memory 
requirements and easy implementation. 

2 THE GOVERNING EQUATIONS 

Let 3Ω R⊂ and (0,T) be the spatial and temporal domains, respectively, and let Γ to be the 
boundary of Ω. The spatial and temporal coordinates are denoted by x and t, respectively. We 
consider the Navier-Stokes equations with no source terms, governing unsteady compressible 
flows, written here in their dimensionless form as follows: 
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with i, j = 1,2,3, where U is the unknown vector of the conservation variables, Fi and Gi 
are, respectively, the convective and diffusive flux vectors. Here vi is the velocity component 
in the direction of the coordinate xi, ρ is the specific mass, p is the thermodynamic pressure, 
τij are the components of the viscous stress tensor, qj is the heat flux vector, e is the total 
specific energy and δij is the Kronecker delta function. Dimensionless scales are used. 
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Assuming that air behaves as a calorically perfect gas, the pressure (which is calculated by 
the equation of state) and internal energy u are given by the following equations in terms of 
dimensionless variables: 

 ( )1p uγ ρ= − ,     1
2v i iu c T e v v= = −  (2) 

where T is the temperature and the specific heat ratio γ = cp / cv, relating specific heat 
coefficients at constant pressure and constant volume, is assumed to be constant and equal to 
1.4. The dynamic viscosity and the coefficient of thermal conductivity in the heat flux depend 
on the temperature and therefore are modeled using Sutherland’s law. The Euler equations are 
obtained eliminating the diffusive flux vector in Eq. (1). Initial and boundary conditions must 
be added to Eq. (1) in order to define uniquely the problem. 

3 TAYLOR-GALERKIN FORMULATION 

The one-step Taylor-Galerkin scheme employed in this work is similar to that presented by 
Donea (1984). Expanding the conservation variables U at 1nt t +=  in Taylor series including 
the first and second derivatives, the following final expression is obtained: 
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with ∆Un+1 = Un+1 - Un, ∆tn+1 = tn+1 - tn  is the time step, where n and n+1 indicates t and 
t+∆t, respectively, J is an iteration counter, ∆Fi

n+1 = Fi
n+1 - Fi

n, ∆Gi
n+1 = Gi

n+1 - Gi
n and Ai is 

the convection Jacobian defined as Ai = ∂Fi /∂U. This iterative process converges fast (no 
more than two or three iterations per time step are necessary). 

Applying the classical Bubnov-Galerkin weighted residual method in the context of the 
FEM to Eq (3), the spatial discretization is obtained. In this work linear tetrahedral and 
hexahedral elements are used. Tetrahedral meshes are well suited for problems with complex 
geometry, hexahedral meshes need fewer elements to reach the same accuracy, and both 
elements can be exactly integrated without numerical quadrature. The consistent mass matrix 
is substituted by the lumped mass matrix, and then Eq. (3) is solved with an explicit scheme, 
which is conditionally stable, and its local stability condition is given by 
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where E denotes a specific element, LE is its characteristic dimension, a is the sound speed 
and SC is a safety coefficient (which is equal or less than 1.0). In this work, SC = 0.1 is 
adopted for all numerical examples. 

At transonic and supersonic speeds, an additional numerical damping is necessary to 
capture shocks and to smooth local oscillations in their vicinities. An artificial viscosity 
model, as proposed by Argyris et al. (1990), is adopted in this work due to its simplicity and 
efficiency in terms of CPU time. The term representing the artificial viscosity is added 
explicitly to the non-smoothed solution as follows: 

 1 1 1n n
s L
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where M and ML are the consistent mass matrix  at element level and the assembled 
lumped mass matrix, respectively. Us

n+1 and Un+1 are the smoothed and non-smoothed 
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solutions at t+∆t, respectively. The index ele in vector d is referred to a specific element, CFL 
= ∆t/∆tE is the local Courant-Friedricks-Lewy number, CAF is an artificial damping 
coefficient given by the user (in this work, CAF = 1.0 was adopted, and it must be specified 
with care in order to avoid undesired interference of the artificial viscosity on the physical 
viscosity), Sele is a pressure sensor at element level obtained as an average of nodal values Si. 
Values of Si are components of the following assembled global vector in Eq.(6) where p is the 
pressure vector of a specific element, and the symbol | | indicates absolute values: 
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4 PARALLEL IMPLEMENATION 

Equation (3) corresponds to a set of uncoupled equations regarding the variables ρ, vi and 
e, within each iteration of each time step. Thus, if the values of these variables are known in 
time t, the new value of any nodal variable, in the Jth iteration of time t+∆t, can be evaluated 
in an independent way. For each nodal equation, the needed information from the previous 
iteration or the previous time step is only the values of the variables corresponding to nodes 
belonging to the elements connected to the node where the nodal equation is being evaluated. 

In this work, a logical processor corresponds to a CPU core in clusters formed by both 
single-core single-CPU computers and multi-core single-CPU computers. 

In the parallel algorithm, groups of nodal equations can be independently processed by 
different logical processors within each iteration of each time step. At the end of each 
iteration, values of the variables corresponding to nodes belonging to elements connected to 
nodes processed by other logical processors are informed to these logical processors and vice-
versa, and the algorithm may be continued. This concept can be used for distributed memory 
configuration, shared memory configuration or for a combination of both alternatives (hybrid 
configuration). The use of an artificial viscosity model, particularly the computation of 
sensors Sele and Si in equations (5) and (6), demands one extra communication (exchange of 
variable values) per time step among logical processors. Thus, the one-step Taylor-Galerkin 
scheme employed in this work, in its parallel implementation, requires, for each time step, 
one communication among logical processors for the evaluation of the artificial viscosity 
model and one communication for each iteration into the time step to communicate the 
problem variables ρ, vi and e. 

Since the governing equations are uncoupled within each iteration or time step, a hostless 
program model can be used to minimize the amount of data transferred through the network 
among logical processors, avoiding the undesirable high network data traffic characteristic of 
master-slave model that negatively impacts the performance. This way, all logical processors 
execute the same code, and the values of the problem variables are transferred to a specific 
computer only at determined intervals in order to be stored. 

The MPI (Message Passing Interface) library was chosen to provide communication 
between computers in this work because it is suitable to the parallel approach proposed here, 
it is efficient in distributed memory, shared memory and hybrid configurations, it has a 
standard which warrants portability of the same code across different computational 
platforms, and can be coupled to both, Fortran and C++, the most common programming 
languages in engineering analysis and simulations. The OpenMP library is equally portable 
and can be coupled to Fortran and C++ too, but its limited to shared memory configurations. 
In this work it was used together with MPI in clusters formed by multi-core single-CPU 
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computers. 
To estimate the speed-up provided by the parallel implementation, the relative speed (rsi) 

of each logical processor i and the obtained relative speed (orsP) of a set of P logical 
processors can be evaluated, respectively, by: 

 ref
i

i

t
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t
= ,       ref

P
P

t
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t
=  (7) 

where tref is a reference solution time and ti is the solution time of logical processor i and tP 
is the solution time obtained by the set working in parallel. Considering that the entire 
solution algorithm can be parallelized, the theoretical relative speed (trsP), the parallelization 
efficiency EffP and the speed-upP of the set of P processors can be evaluated, respectively, by: 
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P
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5 TASK DIVISION AND LOAD BALANCE 

The efficiency of computational parallel algorithms using the Finite Element Method in 
distributed memory configurations is highly dependent of the way the task division is 
performed. Mesh splitting in sub-domains and Graph partitioning are commonly used to 
accomplish task division, resulting in a partition of the problem equations among the different 
processors employed in the parallel solution. Schloegel et al (2000) provide a comprehensive 
overview of the techniques employed in graph partition for high performance scientific 
simulations. 

Since the governing equations of the problem are uncoupled nodal equations, a task 
division among the logical processors based on mesh nodes is used in this work: the 
computational effort of each logical processor used in the solution of the problem is 
considered as proportional to the number of mesh nodes allocated to that processor. The mesh 
nodes (and the corresponding nodal variables and equations) are divided in as many groups as 
the number of logical processors, proportionally to the individual relative performance of 
each processor. In the absence of a better parameter, the core frequency of each processor is 
used to estimate the individual performance, allowing efficient parallelization even in clusters 
formed by heterogeneous nodes. 

When performing element loops, each logical processor acts over all the elements 
connected to its own group of nodes. Some elements on the mesh, called here as common 
elements, are connected to nodes that belong to different groups, and must be processed by 
more than one logical processor. Thus, overlapping in computational efforts by different 
logical processors related to these elements is inherent of the adopted task division. 

The values of the variables related to nodes of common elements and that belong to a node 
group (logical processor) are the information which is necessary to others node groups 
(processors) that also include nodes of these common elements. This way, the number of 
common elements in a mesh defines the overlapped computational effort due to parallel 
implementation, and the number of nodes connected to these elements defines the amount of 
data that must be communicated among the logical processor in each time step. Considering 
that network communications are a severe bottleneck to the performance in distributed 
memory configurations due to the relative low speed of network when compared to memory 
or local storage accesses, and that computational overlapping impacts performance in both, 
distributed memory and hybrid configurations, a task division that leads to a minimal number 
of common elements is highly desirable. 
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When the latency is the main factor in the communication performance through the 
network, minimizing the number of communication operations among the logical processors 
(or the number of sub-domains that are neighbors each other) is more important than 
minimizing the amount of data being communicated through the network (Hendrickson and 
Leland, 1995). This may be obtained by dividing the mesh in several “slices” across its 
smaller dimension, in order that each sub-domain has no more than 2 neighbor sub-domains 
(or each logical processor communicates data to no more than other 2 processors). This task 
division can be obtained geometrically by the Inertial Stripwise Partitioning method 
(Dorneles et al., 2005) or, in a much more simple way, by organizing the nodes in order to 
minimize the matrix bandwidth of the corresponding system of equations.  

Despite the fact that equations are uncoupled and the bandwidth of the system has no 
influence over the performance of the solver, a nodal reordering was used to minimize both, 
communications among logical processors and computational work overlapping. The 
algorithm used here consists in an initial element reordering using Silvester and Auda (1984) 
criteria to minimize Front, followed by a nodal reordering using the Profile Front 
Minimization of Hoit and Wilson (1983). The resultant ordered list of nodes is sequentially 
divided in as many groups as the number of logical processors present in the cluster, 
proportionally to the relative computational power of each processor. The load balance is 
made processing some time steps of the code, registering the CPU time spent individually by 
each logical processor and re-evaluating the number of mesh nodes allocated to each 
processor (inversely proportional to CPU-time). This process is repeated until all the 
individual CPU times are equal, or differing less than a given tolerance, and it is easily 
performed by re-dividing the ordered list of mesh nodes, without any further geometric 
consideration or nodal reordering.  

This algorithm is called SNR (single nodal reordering) and an example of its application 
for tetrahedral and hexahedral meshes is shown in Fig. 1(a) and (b), respectively. The number 
of borders between sub-domains is minimal. 

 
Figure 1: Tetrahedral (a) and hexahedral (b) elements meshes divided in groups or sub-domains by the algorithm 

SNR. 

(a) (b) 
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In Fig. 1 each color corresponds to a sub-domain or group of mesh nodes allocated to a 
logical processor, and the common elements are shown in grey. When the mesh is divided in 
many groups of nodes following a single initial nodal reordering, the optimal division 
regarding effort overlapping and data communication is not reached, since a change in the 
division direction is needed. A better division is obtained geometrically by the Inertial 
Recursive Coordinate Bisection method, where, after each division, the “narrowest” 
dimension of each resulting sub-domain is determined, indicating the direction of the next 
division. 

In order to avoid intricate geometric considerations, this kind of division can be performed 
substituting the determining of “narrowest” dimension by a nodal reordering for matrix 
bandwidth minimization of the resultant sub-domains after each division. This method is 
called RNR (recursive nodal reordering) and its application is shown in Fig. 2(a) and (b) for 
tetrahedral and hexahedral meshes, respectively. The number of neighbor sub-domains is 
greater than with SNR method, but the amount of data communicated among logical 
processors through the network (equivalent to the borders length) is considerably smaller. 
Load balancing can be reached as in SNR, but a new recursive nodal reordering is necessary 
any time the number of nodes assigned to each processor is changed. 

 
Figure 2: Tetrahedral (a) and hexahedral (b) elements meshes divided in groups or sub-domains by the algorithm 

RNR. 

A complex mesh of a generic Canard-Wing-Body configuration, shown in Fig. 3, is used to 
numerically evaluate the impact of SNR and RNR partitioning processes over the amount of 
data communicated through network and the computational overhead. The mesh has 1.5 
millions of tetrahedral elements and 272 thousands of nodes, and is partitioned among 16 
identical processors. Three mesh partitions based in nodal order are used: the first one uses 
the original nodal order obtained from the mesh generation process to assign nodes to the 
processors, the second uses the SNR approach and the last one the RNR approach. Data 
dependency and computational overhead of these partitions can be seen in Fig. 4.  

(a) (b) 
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Figure 3: Generic Canard-Wing-Body model. 

Original nodal order
Processors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2,8 1,3 3,4 3,8 3,6 4,1 5,5 5,3 5,3 4,4 5,0 5,6 5,8 4,3 4,3
2 3,5 3,2 4,2 5,0 5,8 6,0 5,4 5,0 5,4 6,7 7,3 6,8 6,5 5,2 6,7
3 1,7 3,0 4,8 3,8 2,9 3,1 2,6 2,3 2,4 1,6 1,4 1,7 1,8 4,4 5,0
4 9,8 11,5 4,9 7,3 6,1 5,5 5,0 3,8 3,4 4,4 3,2 2,3 1,6 1,3 1,5
5 10,1 11,9 3,8 7,5 6,7 5,9 5,4 4,3 4,1 4,8 3,7 2,8 2,0 1,2 1,7
6 8,7 13,0 3,5 6,1 6,8 6,2 5,9 4,8 5,0 5,0 3,9 3,1 2,7 1,9 2,1
7 9,3 12,4 3,5 5,5 6,1 6,3 7,0 5,7 5,2 4,7 4,0 3,5 2,8 2,2 2,2
8 12,2 10,3 3,0 5,0 5,3 5,8 7,1 6,5 5,4 5,2 4,7 4,0 3,5 2,6 2,4
9 11,4 9,3 3,0 3,6 3,9 4,6 5,6 6,4 6,2 4,8 4,8 4,6 4,5 3,3 2,3

10 11,3 9,6 2,8 3,1 3,8 4,6 5,0 5,3 6,3 5,2 5,3 5,2 5,3 4,0 2,9
11 9,7 12,9 1,7 4,3 4,6 5,0 4,8 5,4 5,2 5,4 9,8 7,4 5,5 2,7 3,3
12 10,8 12,2 1,6 3,0 3,5 3,7 3,8 4,6 4,7 5,4 9,4 9,8 7,9 3,9 4,0
13 11,4 11,3 1,9 2,2 2,7 2,9 3,3 3,8 4,4 5,0 7,4 9,7 10,3 5,7 4,8
14 11,8 10,7 2,0 1,5 1,9 2,6 2,6 3,5 4,3 5,3 5,6 7,9 10,3 9,0 6,1
15 7,2 7,5 7,3 1,2 1,1 1,8 2,0 2,4 3,0 3,7 2,6 3,7 5,2 7,5 7,4
16 7,9 11,4 5,5 1,6 1,9 2,4 2,7 3,0 2,9 3,5 3,6 4,5 5,6 7,0 8,5

Nodes 137 150 49 57 62 65 68 71 69 71 75 79 78 75 60 57
Elements 308 399 208 209 216 225 229 235 223 228 253 260 258 254 215 211

SNR partition
Processors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2,8
2 3,5 4,3
3 5,1 5,5
4 6,6 6,5
5 7,8 7,8
6 9,6 9,1
7 10,7 9,6
8 10,9 9,0
9 9,7 8,9

10 9,9 9,2
11 10,7 9,4
12 10,6 9,8
13 10,7 9,4
14 10,3 8,1
15 8,6 6,1
16 5,9

Nodes 4 8 11 13 16 18 20 19 19 20 20 20 20 18 14 6
Elements 110 121 129 137 145 152 156 154 145 147 147 147 144 135 123 94

RNR partition
Processors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1,5 0,1 1,1
2 1,8 1,6 0,7 1,9
3 0,2 2,0 1,4 0,7 1,8 0,2 1,1
4 1,2 0,7 1,6 0,4 0,7 1,4 0,1 0,1
5 0,8 0,6 1,4 0,8 0,3 1,1
6 2,0 0,9 1,8 1,4 1,2 1,3
7 0,2 1,4 0,8 1,7 0,7 0,8
8 0,1 0,2 1,5 0,8 2,8
9 1,8 1,0 0,1 1,2 1,6 1,0 3,5 8,9

10 9,9 4,9 4,4
11 5,4 0,4 4,5
12 5,3 0,5 5,3
13 4,8 6,3 9,4
14 10,3 8,1
15 8,6 6,1
16 5,9

Nodes 3 6 7 6 5 9 6 6 19 20 10 11 20 18 14 6
Elements 107 117 123 114 118 125 112 114 145 147 119 122 144 135 123 94  

Figure 4: Data dependency and computational overhead for mesh partition following the original nodal order, 
SNR partition and RNR partition. 
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The columns represent each logical processor and the lines represent the processors with 
which it communicates, indicated by the number of nodes (or nodal variables sets) being 
communicated in thousand of units. In the bottom lines labeled nodes and elements are shown 
the total number of nodes communicated and the total number of elements processed by each 
logical processor, respectively, in thousands of units. The line elements include both 
exclusive elements and common elements. The mesh generation process results in a sparse 
dependency matrix, while SNR approach results in a narrow band shaped matrix. RNR leads 
to a sparse matrix too, but the amount of data being communicated among processors and the 
number of communication processes is far smaller than the original mesh and smaller than 
SNR. 

Table 1 shows some efficiency statistics of each partition method. The redundancy in 
processing elements is obtained by the quotient between the total number of elements 
processed by all logical processors that exceeds the number of elements in the mesh and the 
number of elements in the mesh. The efficiency in processing elements is evaluated by the 
quotient between the number of elements in the mesh and the total number of elements 
processed by all logical processors. Finally, the Data exchange index is the quotient between 
the total amount of nodes communicated through the network by all processors and the 
number of nodes in the mesh. Both SNR and RNR partitioning processes result in much better 
statistics than the partition based on original nodal order, indicating great reduction in 
computational overhead and in data communication through the network. The RNR approach 
has better indexes than SNR, except by the Number of communication processes. Increasing 
the number of communications make the schedule of these communications more complex, 
and the performance more dependent on the network latency. 

 
Efficiency statistics Original nodal 

ordering 
SNR 

Partition 
RNR 

Partition 
Amount of nodes communicated by all processors (x1000) 1221 246 166 
Amount of elements processed by all processors (x1000) 3932 2186 1958 
Redundancy in processing elements 162% 46% 30% 
Efficiency in processing elements 38% 69% 77% 
Data exchange index 449% 91% 61% 
Number of communication processes 240 32 70 

Table 1: Efficiency parameters of partition methods. 

6 RESULTS 

The methodology described above was applied in two realistic models, both under steady-
state supersonic flows: a generic Space Vehicle (SV) configuration shown in Fig.5 and a 
generic Canard-Wing-Body (CWB) configuration already shown in Fig. 3. Two meshes, 
relatively coarse and fine, were used for each configuration in order to evaluate de impact of 
mesh size in the parallelization efficiency. The characteristics of the meshes are shown in 
Tab. 2. 

 
Mesh Element Number of Elements Number of Nodes Degrees of Freedom 
SV1 Hexahedral 198750 211146 1.055.730 
SV2 Hexahedral 917700 949212 4.746.060 

CWB1 Tetrahedral 242979 45823 229115 
CWB2 Tetrahedral 1501912 271842 1359210 

Table 2: Meshes characteristics. 
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Figure 5: (a) Space Vehicle model. 

The four meshes were tested in a heterogeneous cluster formed by 12 quad-core single-
CPU Intel Core 2 nodes with core frequency of 3.7 GHz and 8 quad-core single-CPU Intel 
Core i7 nodes with core frequency of 3.5 GHz. The network used was Gigabit Ethernet and 
each node had a single network interface. 

For hexahedral meshes, the parallel algorithm scales quite well, as shown in Fig.6 (a) and 
(b) for SV1 and SV2 meshes, respectively. There are no significant differences between the 
results for SNR and RNR methods. The best result was obtained using MPI alone (as if each 
core was an independent computer) instead of using hybrid parallelization (OpenMP inside 
the node and MPI between cluster nodes). As expected, the solution for the larger mesh SV2 
scales better than for the smaller mesh SV1. Using 8 cluster nodes, 32 logical processors 
(cores), the speed-up curve for SV1 presents a slope reduction, pointing to a loss of parallel 
efficiency for increasing cluster sizes. 
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Figure 6: Obtained speed-up in (a) SV1 and (b) SV2 hexahedral meshes 
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The largest mesh scales well even when all available logical processors in the cluster were 
used, as shown in Fig. 7. The differences between partition methods and kind of 
parallelization became less visible here. For structured meshes, even a relatively simple 
partition algorithm as SNR can lead to good performance results, reaching a parallel 
efficiency of around 60% for a cluster size of 20 nodes / 80 cores. 
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Figure 7: Obtained speed-up in SV2 hexahedral mesh 

For tetrahedral meshes, the parallel algorithm scales considerably worse than for 
hexahedral ones, although significant speed-up values could be reached, as can be seen in Fig. 
8 (a) and (b) for CWB1 and CWB2 meshes, respectively. The elevated number of elements 
connected to each mesh node in tetrahedral meshes results in higher computational effort 
overlapping and data communication, explaining the worse results, when compared to 
hexahedral meshes. In a quad-core configuration cluster, the communication among 
processors through the network results in a severe performance penalty, since a single 
network interface must attend 4 cores in each cluster node. In this configuration, the use of 
hybrid parallelization (OpenMP inside de node and MPI between cluster nodes) led to better 
results than using MPI alone. For the same reason, the SNR method (minimum number of 
neighbor sub-domains or communication processes) led to better results than RNR (minimum 
amount of communicated data), since RNR tends to generate cross communications among all 
logical processors (sparser matrix than the SNR one, shown in Fig. 4). This effect is more 
evident in the smallest CWB1 mesh when the number of logical processors increases, 
resulting in a severe loss of parallel efficiency, as shown in Fig.9. 
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Figure 8: Obtained speed-up in (a) CWB1 and (b) CWB2 tetrahedral meshes 
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Figure 9: Obtained speed-up in CWB1 tetrahedral mesh 
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7 CONCLUSIONS 

The results obtained seem to indicate that it is possible to reach good computational 
performance in numerical flow simulations using inexpensive clusters of personal computers. 
Besides, the task division method must be adequate to the hardware configuration of the 
cluster. Multi-core nodes with a single network interface seem to require a partition method 
that minimizes the number of communication operations instead the amount of data being 
communicated between processors, especially in unstructured meshes were the number of 
elements connected to each mesh node is high. 
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