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Abstract. This work shows that the we can improve the application speed-up curve up to a maximum
number of cores allocation according to two Ocean-Land-Atmosphere Model (OLAM) workload param-
eters on a multicore cluster environment. Previous experiments have shown that the scalability of the
system is limited by output operations performance. We show that one of the reasons for such output
operations overhead is the low aggregated I/O throughput capacity of the multicore system. A higher
capacity would be desirable to achieve better concurrent access rates. We show that, for a given atmo-
spheric model application configuration, there is an maximum number os cores allocation that improves
application speed-up curve.
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1 INTRODUCTION

While multicore processors offer computing power to improve the performance of applica-
tions by running multiple threads concurrently, it is the developers responsability to efficiently
employ them. In order to achieve the best performance of these processors, there are two popu-
lar models: Thread (or Task) Level Parallelism (TLP) and Data Level Parallelism (DLP). Both
models bring several design issues, data access latency being one of great importance.

On the other hand, over the next decade the degree of on-chip parallelism will significantly
increase and processors will contain tens and even hundreds of cores. This will increase the
impact of multiple levels of parallelism on clusters.

In previous works, (Osthoff et. all.(2010) and (Schepke et. al. (2010), we evaluated the per-
formance of the Ocean-Land-Atmosphere Model (OLAM) on a multicore cluster environment
and demonstrated that the scalability of the system is limited by output operations performance.
We have also shown that one of the reasons for the overhead in these operations is the low ag-
gregated I/O throughput capacity of the multicore system. A higher capacity would be desirable
to achieve better concurrent access rates

Therefore, we assume that we can improve the application speed-up curve up to a maximum
number of cores allocation for a given OLAM configuration that allows maximal use of the
cores of a multicore platform without causing output operations overhead. In order to validate
our assumptions, this work evaluates the maximum number of cores according to two typical
OLAM workload configurations.

The contribution of this work is to show that for given OLAM configuration there is an
maximum number of cores that improves the scalability of OLAM runs on a multicore cluster
platform.

The remainder of this paper is organized as follows. In the next section we present related
work. Section 3 presents atmospheric model performance problem and OLAM algorithm. The
performance evaluation, experimental results and experimental analysis are presented in section
4. The last section presents conclusions and future works.

2 RELATED WORK

Data access latency has been a problem even on single-core systems, as processors are much
faster than memory. With the emergence of multicore processors, data access bandwidth be-
comes a severe problem, due to concurrent access to shared resources in the memory hierarchy
(e.g. caches). When multiple cores are processing different sets of data, the shared resource
becomes a performance bottleneck, if the bandwidth is not high enough to support the multiple
cores. This has been already experienced in currently available processors (Shalf et. al. (2007).
In order to better use multicore resources, the work of (Sun et. al. (2009) introduces simple
analytical models for predicting the occurrence of data access contention and provides a guide-
line for choosing the optimum number of cores to avoid data access contention while running
an application.

Another work (Datta et. al. (2009) presents a set of effective optimizations and an auto-
tuning environment that searches over the optimization space to minimize runtime. The strategy
allows performance portability over multiple architectures, due to auto-tuning.

3 ATMOSPHERIC MODEL PERFORMANCE PROBLEM

High speed implementation of atmospheric models is fundamental to operational activities
on weather forecast and climate prediction, due to execution time constraints — there is a
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pre-defined, short time window to run the model. Model execution cannot begin before input
data arrives, and cannot end after the due time established by user contracts. Experience in
international weather forecast centers points to a two-hour window to predict the behavior of
the atmosphere in coming days.

In general, atmospheric and environmental models comprise a set of Partial Differential
Equations which include, among other features, the representation of transport phenomena (hy-
perbolic equations). Their numerical solution involves time and space discretization subject to
the Courant Friedrichs Lewy condition (CFL condition) for stability which imposes a certain
proportionality between the time and space resolutions (inverse of the distance between points
in the domain mesh). For a 1-dimensional mesh, the number of computing points, n, is given
by L/d, where "L" is the size of the domain to be solved and "d" is the distance between points
over this domain. In our case, the mesh is 4-dimensional (3 for space and 1 for time), therefore
the computational cost is of O(n4), where n is the number of latitude (or longitude) grid points
in the geographical domain of the model, if the number of vertical points also increases with n.
The spacing between consecutive points (called "resolution") strongly influences the accuracy
of results.

Operational models worldwide use the highest possible resolution that allow the model to
run at the established time window in the available computer system. New computer systems
are selected for their ability to run the model at even higher resolution during the available time
window. Given these limitations, the impact of multiple levels of parallelism and multicore
architectures in the execution time of operational models is indispensable research.

Numerical models have been used extensively in the last decades to understand and predict
the climate and weather phenomena. In general, there are two kinds of models, differing on
their domain: global (entire Earth) and regional (country, state, etc). Global models have spatial
resolution of about 0.2 to 1.5 degrees of latitude and therefore cannot represent very well the
scale of regional weather phenomena. The central limitation is computing power. Regional
models, on the other hand, have higher resolution but are restricted to limited area domains.
Forecasting the future on a limited domain demands the knowledge of future atmospheric con-
ditions at domain borders. Therefore, limited area models require previous execution of global
models.

A novel, interesting approach was recently developed at Duke University. The main feature
of this model called Ocean-Land Atmosphere Model (OLAM) is to provide a global grid that
can be locally refined, forming a single grid. That allows simultaneous representation (and
forecasting) of both the global scale and the local scale phenomena, as well as bi-directional
iterations among scales (Walko et. al. (2008).

3.1 Ocean-Land-Atmosphere Model

OLAM was developed to extend features of the Regional Atmospheric Modeling System
(RAMS) to the global domain (Pielke et. all.(1992). OLAM uses many functions of RAMS,
including physical parameterizations, data assimilation, initialization methods, logic and coding
structure and I/O formats (Walko et. al. (2008). OLAM introduces a new dynamic core based
on a global geodesic grid with triangular mesh cells. It also uses a finite volume discretization
of the full compressible Navier Stokes equations. Local refinement can be specified to cover
specific geographic areas with more resolution. Recursion may be applied to a local refinement.
The global grid and its refinements define a single grid, as opposed to the usual nested grids of
regional models. Grid refined cells do not overlap with the global grid cells - they substitute
them.
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Figure 1: OLAM subdivided icosahedral mesh and cartesian coordinate system with origin at Earth center (Walko
et. al. (2008)

The model consists essentially of a global triangular-cell grid mesh with local refinement
capability, the full compressible nonhydrostatic Navier-Stokes equations, a finite volume for-
mulation of conservation laws for mass, momentum, and potential temperature, and numerical
operators that include time splitting for acoustic terms. The global domain greatly expands the
range of atmospheric systems and scale interactions that can be represented in the model, which
was the primary motivation for developing OLAM.

OLAM was developed in FORTRAN 90 and recently parallelized with Message Passing
Interface (MPI) under the Single Program Multiple Data (SPMD) model.

3.2 OLAM Global Grid Structure

Figure 1 shows an example of the OLAM subdivided icosahedral mesh and cartesian coor-
dinate system with origin at Earth center. The projection causes most triangles to deviate from
equilateral shape, which is impossible to avoid (Walko et. al. (2008). OLAM’s global com-
putational mesh consists of spherical triangles, a type of geodesic grid that is a network of arcs
that follow great circles on the sphere.

The geodesic grid offers important advantages over the commonly used latitude-longitude
grid. It allows mesh size to be approximately uniform over the globe, and avoids singularities
and grid cells of very high aspect ratio near the poles. OLAM’s grid construction begins from
an icosahedron inscribed in the spherical earth, as is the case for most other atmospheric models
that use geodesic grids.

An icosahedron is a regular polyhedron that consists of 20 equilateral triangle faces, 30
triangle edges, and 12 vertices, with 5 edges meeting at each vertex. The icosahedron is oriented
such that one vertex is located at each geographic pole, which places the remaining 10 vertices
at latitudes of ±tan−1(1/2).

Uniform subdivision of each icosahedral triangle into N × N smaller triangles, where N is
the number of edge divisions, is performed in order to construct a mesh of higher resolution
to any degree desired. The subdivision adds 30(N2 − 1) new edges to the original 30 and
10(N2− 1) new vertices to the original 12, with 6 edges meeting at each new vertex. All newly
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constructed vertices and all edges are then projected radially outward to the sphere to form
geodesics.

3.3 OLAM Typical simulation Analysis

Our first case study replicates a typical global forecast with 200 km horizontal resolution,
requiring the subdivision of each icosahedron edge in 25 parts". So, the distance between
points on the globe was around 200 Km. The atmospheric layer (z dimension) was divided in 28
layers. We simulate 24 hours of integration of the equations of atmospheric dynamics without
any additional physical calculation (such as moisture and radiative processes) because we have
interest only in the impact on the cost of fluid dynamics executions and communications. Each
integration timestep simulates 60 seconds of the real time.

An OLAM typical simulation requires reading 0.5GB of input files and initial conditions.
OLAM input files are not partitioned for parallel processing. Typical input files are: global
initial conditions at a certain date and time and global maps describing topography, soil type,
ice covered areas, Olson Global Ecosystem (OGE) vegetation dataset, depth of the soil inter-
acting with the root zone, sea surface temperature and Normalized Difference Vegetation Index
(NDVI). Each client reads the whole input file, thus increasing the initialization time with larger
executions. After this phase, the processing and data output phases are executed alternately:
during each processing phase, OLAM simulates a number of timesteps, evolving the atmo-
spheric conditions on time-discrete units. After each timestep, processes exchange messages
with their neighbors to keep the atmospheric state consistent. This is done in an asynchronous
manner do hide the cost of message transmission in the time spent processing messages previ-
ously received.

After executing a number of timesteps, the variables representing the atmosphere are writ-
ten to a history file. During this phase, each process opens the history file for that superstep,
writes the atmospheric state and closes the history file. Each client executes these three opera-
tions independently, since there is no collective I/O implemented in OLAM. On the other hand,
there is an implicit barrier soon after generating the history files due to the aforementioned
communication. These history files are considered of small size for the standards of scientific
applications: each file size ranges from 100 to 600 KB, depending on the grid definition and
number of processes employed.

For the first case study problem size, OLAM application typically writes a 2 Mb output
history file, 200 Kb output plot files for each core and 500 Kb output results files for each core,
at the end of the simulation. Therefore, as we increase the number of cores, we increase the
number of independent output files. We divide OLAM algorithm in three parts: the parameter
initialization part, the atmospheric time state calculation part and the output write results part.
Figure 2 presents the OLAM algorithm fluxogram. Finally, we inserted timestamps barriers on
selected points of OLAM source (a few module boundaries) in order to correctly assing partial
execution times to OLAM main modules.

4 PERFORMANCE EVALUATION

The performance measurements were made on a multicore SUN cluster platform (denoted
SunHPC), located at the National Laboratory of Scientific Computing (LNCC) is composed of
72 dual node Intel Xeon E5440 Quad-Cores with 4 MB of cache and 16 GB of RAM memory
in each node, interconnected by an Infiniband network and is using MPICH version 2-1.2.p1
and Vtune Performance Analyzer version 9.1. The following sections present and discuss our
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Figure 2: OLAM algorithm fluxogram

results.

4.1 Experimental Results

From previous works, (Osthoff et. all.(2010) and (Schepke et. al. (2010), we know that
the OLAM scalability on SunHPC system is limited by the performance of the output opera-
tions and that using many cores in the same node of a multicore system further penalizes the
performance of these output operations. Therefore, there is an maximum number of cores that
each SunHPC platform machine can use for a given OLAM configuration that maximizes the
performance in face of a trade-off between the benefit due to parallel processing on a greater
number of cores and the penalization for having to use more cores in the same node.

This work presents two experimental analyses evaluating the maximum number of cores
per SunHPC node in two distinct OLAM workload configurations. In the first experiment we
performed a 200km OLAM configuration typical analysis. The details of this configuration
were presented in Section 3.3.

The second experiment performed a 40km OLAM configuration typical analysis. Therefore,
we decreased 5 times the horizontal distance between points in the globe while the others pa-
rameters were the same from the 200km configuration. For this simulation to cover the same
horizontal area as before (the globe), it is necessary 25 times the number of points, resulting
in 25 times more calculations per timestep. Furthermore, it implies a 10-fold increase in the
memory workload, thus increasing the dependency relationship between computing time and
workload transfers.

4.1.1 200km OLAM Experimental Results

Figure 3 presents optimum and measured speed-up from 1 to 64 cores for the 200km OLAM
configuration running 8 cores in each machine. In order to evaluate the maximum number of
cores in this setting, we investigate the speed-up curve from 1 to 8 cores, presented in Figure 4.
We observe that, for this configuration, the number of cores that keeps the curve closest to the
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Figure 3: SunHPC Cluster Multicore 200km OLAM Speed-up

ideal curve (at a distance of 10%) is 4 cores.

Figure 4: SunHPC 8 cores per machine 200km OLAM Speed-up

Figure 5 presents the 200km OLAM 4 core speed-up from 1 to 64 cores. By contrasting
Figures 3 and 5, one observes that running OLAM with 4 cores per node increases the scala-
bility of the system. Therefore, we observe that, for more than 64 cores, the scalability starts to
decrease. This indicates that there are other problems degrading system output performance.
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Figure 5: SunHPC 4 cores per machine 200km OLAM Speed-up

4.1.2 40km OLAM Experimental Results

In this section we search for the maximum number of cores per node for the 40km OLAM
configuration. Following the same procedure as before, we analyze the speed-up curve from 1
to 8 cores, presented in Figure 6, we observe that, for this configuration, the maximum number
of cores that improves the scalability of OLAM on this cluster platform is 2. Figure 7 presents
40km OLAM 2 core per machine speed-up from 1 to 64 cores on SunHPC platform. As we
expect, running with 2 cores per machine increases the scalability of the system, also for more
than 64 cores the scalability starts to decrease.

Figure 6: SunHPC 8 cores per machine 40km OLAM Speed-up
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Figure 7: SunHPC 2 cores per machine 40km OLAM Speed-up

Table 1: OLAM configuration speed-up for 64 cores run.

Olam Configuration Speed-up
200km - 8 cores per machine 53.62
200km - 4 cores per machine 59
200km - 2 cores per machine 59,6
40km - 8 cores per machine 40.64
40km - 4 cores per machine 49.85
40km - 2 cores per machine 52,89

4.2 Experimental Analysis

These two experiments show that for a given OLAM configuration there is an maximum
number of cores in order to improve the speed-up. Also, we observe that for more than 64
cores the scalability for both experiments starts to decrease, indicating the existence of other
problems degrading system output performance.

From previous work, we know that the overhead of I/O operations is aggravated by the
OLAM workload pattern which accesses a large number of distinct files. This pattern generates
simultaneous write operations in different files, overloading the I/O nodes system. We plan to
investigate this problem in future work.

Table 1 presents the speed-up for 64 cores run in three machine configurations for the two
OLAM settings. For a given number of cores per machine, we observe that the 200km OLAM
configuration performance is better than the 40km OLAM configuration performance indicating
that OLAM memory workload is the bottleneck on SunHPC platform multicore system. In order
to explain OLAM multicore memory contention, table 2 presents Vtune Analyzer parameters
for OLAM configuration running 8 cores in the same machine and running 8 cores in one
different machine each.

Table 2 presents Vtune L2 cache miss and Bus Transfer Memory percentage parameters
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Table 2: OLAM configuration Vtune percentage parameters

Olam Configuration L2 cache miss Bus Trans Memory
200km-8cores per machine 99,94 % 99,82 %
200km-1core per machine 70,16 % 71,325%

for the 200km OLAM configuration run with 8 cores per machine compared to 1 core per
machine in the SunHPC. We observe that as we increase from 1 core per machine to 8 cores
per machine the parameters L2 cache misses and Bus Transfers Memory increase, indicating
memory contention for 8 cores run.

Further Vtune investigation shows that the routines that dominate L2 cache misses are related
to timestep calculations. Therefore we need to investigate the timestep calculation algorithm for
memory data allocation in order to decrease L2 cache misses.

5 CONCLUSIONS

This work evaluates the maximum number of cores according to two Ocean-Land-Atmosphere
Model (OLAM) workload settings on a multicore cluster environment.

Our experiments show that for a given OLAM configuration there is an maximum number
of cores in order to improve a given multicore cluster platform speed-up. Also, we observe that
for more than 64 cores the scalability for both experiments starts to decrease, indicating the
existence of other problems degrading the system output performance.

From previous work, we know that the overhead of I/O operations is aggravated by the
OLAM workload pattern which accesses a large number of distinct files. This pattern generates
simultaneous write operations in different files, overloading the I/O nodes system.

For future works we envision several directions. For instance, we plan further investigating in
order to evaluate the relationship between maximum number of cores according to Atmospheric
Model application workload parameters.

In order to decrease OLAM multicore memory contention we plan to further investigate the
memory data allocation algorithms in the routines that dominate L2 cache misses.

We also intend to evaluate the parallel I/O library from (Marshall et. al. (2009) aiming
to reduce OLAM initialization file creation overhead and the work of (Nawab et. al.(2009)
aiming to improve output write operations performance. Besides, we plan to study the small
file I/O techniques from (Carns et. al. (2009). Another work that, we expect, will help us
improve OLAM I/O performance is (Ohta et. al. (2008). They present an approach to have
many simultaneous I/O requests gathered, buffered locally, reordered to reduce disk seek times
and then scattered to I/O nodes in parallel.
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