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Abstract.
This work presents a numerical scheme to improve the velocity field used to transport the level set

function in two phase liquid–gas flows. Since the material properties (density and viscosity) are discon-
tinuous at the moving interface, the velocity field that results from the Navier-Stokes solver is inaccurate
close to the interface, leading to non negligible errors in the transport of the level set function. The
methodology is based on the resolution of an elasticity-like partial differential equation to compute an
improved velocity field, being thus much easier to implement in standard finite element codes than other
geometrical extrapolation methodologies. In the computation, only the physical velocity on the liquid
side is considered, since it governs the dynamics. The improved velocity field is then exclusively used
for the transport of the level set function. Though no incompressibility constraint is imposed to the ex-
trapolated velocity, numerical evidence shows that the method improves the accuracy of computations
and, in particular, the mass conservation.
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1 INTRODUCTION

The simulation of two phase liquid–gas flows presents several challenges in computational
fluid dynamics. Theses challenges are of different type depending on the numerical method
adopted to follow the moving interface that separates both fluids. For instance, in front tracking
methods (Tryggvason et al., 2001) the interface is transported by means of Lagrangian tech-
niques, thus giving very accurate results in terms of mass conservation, but implementations
become difficult if the fluid domains suffer topological changes. On the other hand, in level
set methods (Osher and Sethian, 1988), which are relatively easy to implement, topological
changes are automatically handled without any explicit treatment, but the transport of the level
set function in which the interface is embedded lacks the property of mass conservation, for
which reason these methods are often thought to be more diffusive and less accurate.

In the case of level set methods, which are of interest in this work, several remedies have been
proposed over the years to improve accuracy and stability of numerical simulations: first, a large
amount of work has been done to improve the numerical algorithms used to solve the level set
equation (see for instance (Harten and Osher, 1987; Harten et al., 1987; Shu and Osher, 1988,
1989; Jiang and Peng, 2000; Marchandise et al., 2006). Second, hybrid techniques have also
been proposed, in which the level set method is combined with other computational techniques,
such as the volume–of–fluid method (Sussman, 2003), or the particle level set method Enright
et al. (2005, 2002) and Zhaorui et al. (2007), in which Lagrangian particles are used to fix the
level set function with a certain periodicity. Third, the redistancing or reinitialization procedures
are also very popular in the framework of level set methods (see e.g. Sussman and Fatemi
(1999); Sussman et al. (1994); Mut et al. (2006); Ausas et al. (2010b, 2008); Battaglia et al.
(2010)). They allow to keep the distortion of the level set function under control near the
interface so as to exploit the high order accuracy of the aforementioned transport schemes.

Though necessary, all these methods may end up being useless if additional errors are in-
troduced during the resolution of the Navier–Stokes equations. Both, Lagrangian and Eulerian
methods are affected, to some extent, by the errors made in the computation of the velocity field
with which the interface is transported. These errors are usually concentrated near the interface
as happens for instance in the case of capillary flows, in which the presence of a singular force
(the surface tension) introduces a jump in the pressure field, for which improved finite element
spaces are necessary to avoid suboptimal convergence of the numerical formulations (see for
instance Belytschko et al. (2001); Gross and Reusken (2007); Ausas et al. (2010a); Sousa et al.
(2009)). Additionally, the material properties (density and viscosity) are discontinuous at the
interface (for typical applications, involving water and air, the ratio between densities is ∼ 103

and the ratio between viscosities is ∼ 102). In these cases, specially in liquid–gas flows, where
the interface motion is mainly governed by the denser and more viscous fluid, the velocity field
in the gas side exhibits large errors due to unresolved boundary layers. In such cases, it would
be desirable to disregard in some way the velocity field on the gas side and only use the values
of the velocity field computed on the liquid side, which is not an easy task since the interface
does not conform to the mesh. In order to solve this, two extrapolation methodologies can be
found in the literature. The first one is introduced in Löhner et al. (2006) in a finite element
framework and the second one is used in Tahara et al. (2006) in a finite difference framework
in the so called Single–Phase level set method. Though effective, these methodologies may
be difficult to implement in standard finite element codes since they require manipulation of
intricate data structures within the code.

In this paper we adopt a methodology based on the resolution of an elasticity-like partial
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differential equation to compute an improved velocity field. The methodology extrapolates
the velocity field from the liquid side to the gas side and is much easier to implement in any
standard finite element code than other geometrical extrapolation methodologies. This new field
is exclusively used to transport the level set function. Since no incompressibility constraint is
considered for this new velocity, concerns may arise as to its accuracy, however, numerical
evidence shows that the method improves the accuracy of computations in particular regarding
the mass conservation.

The outline of the article is the following: in the next section, a motivating example is shown
to appreciate the necessity of computing an improved velocity field to transport the interface.
The third section introduces the governing equations for the PDE–based methodology as well
as for the finite element discretization used. In the results section, three numerical examples are
shown to illustrate the effect of the velocity extrapolation: the classical dam break problem in
two spatial dimensions, the filling of a tank also in the two dimensional case and the sloshing
of a tank in 3D. Finally, some conclusions are drawn.

2 MOTIVATION

In the following, the interface S that separates both phases present in the system is defined
as the zero set of the so called level set function φ : Ω→ R, i.e.

S(t) =
{
x ∈ Rd, φ(x, t) = 0

}
. (1)

If we consider a finite element partition Th of the computational domain, the discrete interface
Sh will not in general conform with such mesh, meaning that the interface crosses the elements
as shown for instance in figure 1. This is what introduces most of the difficulties arising in
level set methods. In a level set formulation the scalar function φ is transported by means of the
following hyperbolic equation

∂φ

∂t
+ u · ∇φ = 0, (2)

where u is the velocity field resulting from the resolution of the Navier–Stokes equations. The
methodology that is presented in this work aims to compute an improved velocity field U by
means of an extension or extrapolation procedure with which to replace u in the transport equa-
tion (2) so as to attain better results regarding mass conservation during its numerical resolution.
The details about the methodology are all given in the next section. Here, by means of a simple
example, we motivate the necessity of using such velocity procedure.

Consider the typical problem of the dam break. This problem consists of a water column
falling under the effect of a gravitational field. Figure 2 shows the interface and contours of
the velocity field u at different times. Also, details of the velocity vectors near the interface
are shown in the figure. The boundary layers formed on the gas side and the complex behavior
of the velocity field in this region (green arrows above the interface) are remarkable. An ac-
curate resolution of these boundary layers would require the use of adaptive mesh refinement
techniques that are difficult to implement and also time consuming. Additionally, in some cases
the dynamics is mainly governed by the liquid phase, i.e. the influence of the gas phase is
negligible, being thus possible to simply disregard it in the transport step.

The underlying idea behind the methodology that is presented consists in extrapolating the
velocity field from the liquid side to the gas side so as to eliminate the information computed
in the gas side just at the moment of solving the level set transport equation (2). As previously
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Ω1(t)→ (ρ1, µ1), φ(x, t) > 0

Ω2(t)→ (ρ2, µ2), φ(x, t) < 0

g nS(t)→ φ(x, t) = 0

Partition→ Th

Sh

Figure 1: Computational domain Ω and interface S separating both fluids. Also included a detail showing the finite
element mesh and the discrete interface Sh not conforming with it.

mentioned, this can be done by means of a geometrical methodology (Löhner et al., 2006;
Tahara et al., 2006) or by means of a PDE–based methodology. The latter approach is much
simpler to implement and is the one adopted in this work. It basically consists in solving an
elasticity–like problem for the velocity field. The result of using such operators is well known
and can be illustrated by solving the following one dimensional problem

−d
2U(x)

dx2
+ σU(x) = σf(x) (3)

Now, supposse the following form for the function f appearing in the right hand side of (3)

f(x) =


1 if x ≥ 0

0 if x < 0
, (4)

In this case, it can be easily found that solution to problem (3) is given by the following expres-
sion

U(x) =


1− 1

2
e−x
√
σ if x ≥ 0

1
2
ex
√
σ if x < 0

, (5)

which is plotted in figure 3 for a value of σ equal to 100. Notice that a bigger value of the
parameter σ makes the transition region sharper as indicated in the figure. In the next section
we use precisely this simple idea to extend in a 2D/3D level set finite element framework, a
velocity field from one side to the other of a moving interface in which the fluid properties are
discontinuous.

3 PROBLEM FORMULATION

The ideas outlined in the preeceding section are now explained with more detail and gen-
eralized. First, we write the governing equations for the Navier–Stokes problem and for the
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Water

Air
Air

Water

Figure 2: Water column under the effect of a gravitational field showing details of the velocity field and the
boundary layers formed near the interface.

elasticity–like problem. Then, the discrete variational formulation for both problems is pre-
sented. Finally, we write the complete procedure.

3.1 Governing equations

Consider two immiscible fluids separated through a material interface S in the computational
domain Ω ⊂ Rd (d = 2 or 3). The domain Ω is divided into two disjoints subdomains Ω1 and
Ω2, such that Ω = Ω1(t) ∪ Ω2(t) and S(t) = Ω1(t) ∩ Ω2(t). The mathematical formulation of
the Navier–Stokes problem reads

Find (u(x, t), p(x, t)) such that
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Figure 3: Solution of the one dimensional motivating problem (3) for a value of σ equal to 100.

ρi(∂tu+ u · ∇u)− µi∇2u+∇p = ρig in Ωi, t ∈ (0, T ),

∇ · u = 0 in Ωi, t ∈ (0, T ), (6)

u = u0 in Ω, t = 0,

where [0, T ] is the time interval of interest, ρi and µi are the density and viscosity respectively
for fluid i, g is the gravity and u0 is the initial condition for the velocity field. The equations
are suplemented with appropiate boundary conditions and with the following jump conditions
at the interface

[u]S = 0, [τ · n]S = 0, (7)

where the [·]S indicates the jump of a quantity across the interface S, τ is the stress tensor
(= −pI + 2µ∇Su) and n is the interface normal. The first condition in (7) simply implies the
continuity of the velocity field at the interface while the second one corresponds to the jump in
the normal stresses which is zero in this case since no surface tension effects are considered in
the simulations presented herein.

Now, for the velocity extrapolation, a generalization of the ideas presented in the previous
section consists in solving the following elasticity–like problem for the improved velocity field
U (to be used just in the resolution of the level set equation)

Find U (x, t) such that

−µe∇2U − (µe + λe)∇ (∇ ·U) + σ(x, t)U = σ(x, t)u (8)

where u results from the Navier–Stokes problem (6) and µe and λe are the “Lamé constants”
that in our case play the role of algorithmic parameters to be tuned. Note that the case with
µe = −λe corresponds to uncoupling the velocity components, i.e., solving an independent
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problem for each one of the components of U . Now, for the coefficient σ the following form is
proposed

σ(x, t) =


1
ε

if x ∈ Ω1(t)

0 if x ∈ Ω2(t)
, (9)

i.e., σ(x, t) = 1/ε if φ(x, t) > 0 and 0 otherwise . By choosing σ in this form, we extrapolate
the velocity field from the liquid side to the gas side and eliminate the information of the gas
side which we assume is less accurate due for instance to unresolved boundary layers near the
interface. At the same time, the parameter ε has to be appropiately choosen so as to extrapolate
only the values of the velocity field from a band of liquid close to the interface.

3.2 Discrete variational formulation of the Navier–Stokes problem

We begin by writing the discrete variational formulation for the Navier–Stokes problem.
We adopt a standard finite element method with linear interpolation for all fields (velocity,
pressure and level set function). The temporal discretization is based on a trapezoidal rule and
the ASGS (Algebraic Subgrid Scale) method is used for stabilization (see e.g. Codina (2001)).
The formulation reads

Find (un+1
h , pn+1

h , φn+1
h ) ∈ Vh ×Qh ×Wh such that

R1 = (Gu,vh) +
(
2µ(φn+θ)∇Sun+θ

h ,∇vh
)
− (pn+1

h ,∇ · vh) + fn+θ
Sh

(vh) +

+
∑
K∈Th

τK(Gu +∇pn+1
h , cup u

n+θ
h · ∇vh)K +

∑
K∈Th

(δK ∇ · un+θ
h ,∇ · vh)K = 0 (10)

R2 = (qh,∇ · un+θ
h ) +

∑
K∈Th

τK
ρ(φn+θ)

(Gu +∇pn+1
h , ces∇qh)K = 0 (11)

R3 =
∑
K∈Th

(Gφ, wh + τKu
n+θ
h · ∇wh)K = 0 (12)

∀(vh, qh, wh) ∈ Vh ×Qh ×Wh.

with Gu y Gφ given by

Gu = ρ(φn+θ)

(
un+1
h − unh
δt

+ un+θ
h · ∇un+θ

h − gn+θ

)
, (13)

Gφ =
φn+1
h − U(φnh)

δt
+ un+θ

h · ∇
[
θ φn+1

h + (1− θ) U(φnh)
]
, (14)

where δt is the time step. A quantity such as un+θ
h at time level n+ θ is given by

un+θ
h = θ un+1

h + (1− θ) unh, (15)

with similar expresions for other variables. The elementwise stabilization parameters are given
by

τK =

[
c1
ν

h2
K

+ c2
|uh|∞,K
hK

]−1

δK = 2µ+ ρ |uh|∞,K hK , (16)
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with hK the diameter of element K, |uh|∞,K the supremum of the norm of the velocity on
K and c1 and c2 constants that for linear elements are taken as 4 and 2 respectively. Finally,
in equation (14) we have introduced the mapping U : Wh → Wh to include the geometrical
redistancing procedure described in (Ausas et al., 2010b, 2008). As mentioned, the purpose
of such procedure is to keep the distorsion of the level set function under control during the
simulation.

Remark: Special care has to be taken to compute all the integrals in (10)–(11) so as to account
for discontinuities in the material properties (density and viscosity) which are given by

(ρ(x, t), µ(x, t)) =


(ρ1, µ1) if φ(x, t) > 0

(ρ2, µ2) if φ(x, t) < 0
(17)

In this work as in others that can be found in the literature (Marchandise and Remacle, 2006;
Marchandise et al., 2007; Minev et al., 2003; Storti et al., 2009), we perform exact integration
in those elements of Th that are crossed by the interface. This can be simply done by redefining
the quadrature rule at those elements. This is in turn rather simple since the level set function is
inWh which is made up of piecewise linear continuous functions, thus giving a reconstructed
interface which is formed by straight segments in the two dimensional case or by planar facets
in the three dimensional one.

For all the cases presented herein the parameter θ that appears in (10)–(11) is set to 1 such
that the resulting numerical scheme is implicit, leading to a non–linear problem that has to be
solved at each time step. The non–linearities are dealt by means of a standard Newton–Raphson
method. The tangent matrix is computed exactly, except at those elements of Th crossed by the
interface, in which derivatives of the residues with respect to the level set function are computed
by means of numerical differentiation as explained in Ausas (2010); Ausas et al. (2009). The
problem to be solved in matrix form is the following. If we denote by X the global vector of
nodal unknowns (U, P, Φ)T , then

X = lim
k→∞

Xk, Xk = Xk−1 + δXk, (18)

with δXk solution of the linear problem A(Xk−1) δXk = −R(Xk−1), with R the global residue
and A the tangent matrix which is computed by differentiation of the residues with respect to
the unknown fields.

Remark: When the extrapolation methodology is used the algorithm is divided into two different
fractional steps at each non–linear iteration, one for the Navier–Stokes problem and the other for
the elasticity–like problem (see subsection 3.4). In this case, the convection velocity appearing
in equation (14) is replaced by Uh (whose computation is explained in the next section) with
its last computed value. In this case, the contribution of the tangent matrix containing the
derivatives ofR3 with respect to u are obviously disregarded.

3.3 Discrete variational formulation of the elasticity–like problem

The discrete variational formulation of this problem is standard. We use also in this case
linear interpolation for the new field Uh. Now, assume the discrete velocity field uh ∈ Vh and
level set function φh ∈ Wh are known. The variational form of the elasticity–like problem reads

Find Uh ∈ Vh such that
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∑
K∈Th

∫
K

εKµe
(
∇Uh +∇TUh

)
: ∇vh dx+

∫
K

εKλe(∇ ·Uh)(∇ · vh) dx+

+

∫
Ω

H(φh) (Uh − uh) · vh dx = 0 (19)

∀vh ∈ Vh.

In equation (19) we have used the Heaviside function (H(s) = 1 if s > 0,H(s) = 0 otherwise).
Also, in (19) we remark that the integral over Ω is split into its sum over the elements, since the
coefficient ε introduced in equation (9) has to be choosen elementwise. To suitably define its
value, remember that the idea consists in extrapolating the information from a band of “liquid”
elements close to the interface, for which in this work we choose

εK = h2
K (20)

where again hK is the diameter of element K. In this form, the only tunable parameters in the
numerical algorithm are µe and λe. The examples presented in section 4 show that numerical
results depend to some extent on the choice made for these two parameters.

Now, denoting by UE the global vector of nodal unknowns for the extrapolated velocity, the
matrix problem to be solved reads

B(Φ)UE = F(U,Φ) (21)

Note that the system matrix B just depends on the location of the interface and the right hand
side F also depends on the velocity obtained from the Navier–Stokes problem.

3.4 Summary of the numerical procedure

We finally write the complete numerical scheme used for the computation of the two phase
incompressible flow problem including the velocity extrapolation methodology. As previously
mentioned, the algorithm is divided into two different fractional steps that are performed at each
non–linear iteration. The algorithm is presented in Table 1.

4 NUMERICAL RESULTS

Three examples are included in this section. First, we present the classical dam break prob-
lem in two spatial dimensions. Next, we study the more challenging problem of a tank being
filled with liquid also in 2D. This last problem involves more severe deformations of the inter-
face as well as topological changes of the fluid domains. Finally, we study the sloshing of a
tank partially filled with liquid in three dimensions.

4.1 Dam break problem - 2D

The problem of the dam break is quite popular for the evaluation of numerical schemes in
the simulation of free surface flows (see for instance Löhner et al. (2006); Marchandise and
Remacle (2006); Hansbo (1992)). We study the evolution of a water column falling under a
gravitational field in the rectangular domain [0, 0.25]× [0, 0.1]. The following physical proper-
ties (in any consistent system of units) are considered for the simulations

ρ1 = 1000, ρ2 = 1.2, µ1 = 10−3, µ2 = 2× 10−5, g = −9.8 ez
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Table 1: Complete numerical algorithm for the Navier–Stokes two phase with velocity extrapolation.

1: • Set n = 0, Xn = X0 ! Initial condition
2: do while (t < T ) ! Loop over time steps
3: • Set k = 0, Xn+1,k = Xn ! Initial guess
4: do while (not converged) ! Non–linear iterations loop

________________________________________
5: Step 1:: Velocity extrapolation
6: • Build up matrix B(Φn+1,k)

7: • Solve B(Φn+1,k)Un+1,k
E = F(Un+1,k,Φn+1,k)

________________________________________
8: Step 2:: Navier–Stokes + Transport
9: • Build up matrix A(Xn+1,k,Un+1,k

E )

10: • Solve A(Xn+1,k,Un+1,k
E ) δXk+1 = −R(Xn+1,k)

11: • Set Xn+1,k+1 ← Xn+1,k + δXk+1

________________________________________
12: • Set k ← k + 1
13: end do
14: • Set n← n+ 1
15: end do

An uniform mesh with 32000 triangular elements and a time step δt = 5 × 10−4 are used for
the simulation. The redistancing procedure is applied every 5 time steps. The initial condition
corresponds to a water column with dimensions 0.035×0.07. Free slip boundary conditions are
assumed at all walls of the computational domain. To illustrate the effect of the extrapolation
methodology, in figure 4 a comparison of the contours of the velocity field u (left side) and the
extrapolated velocity field U (right side) are shown. Figure 5 shows the evolution of the liquid
mass as a function of time adopting different values for the algorithmic parameters µe and λe.
Also included in the figure is the case without using the velocity extrapolation. The case with
µe = −λe = 0.1 that corresponds to uncouple the components of U exhibits also good results,
giving a maximum change of mass approximately equal to −1%. The corresponding curve,
which lies in between the case with (µe, λe) = (0.1, 1) and the case with (µe, λe) = (0.01, 1) is
not shown in figure 5 for the sake of clarity.
Regarding the incompressibility of the resulting velocity field U , one may be tempted to in-
crease the value of the parameter λe. Remember that a value of the Poisson ratio approaching
0.5 characterizes such incompressibility, which means taking h2

Kλe � 1 in our numerical al-
gorithm. In this case, we have noticed that the value of λe can be significantly increased, but,
the numerical results in terms of mass conservation are almost the same than in the best cases
shown for instance in figure 5.

4.2 Filling of a tank - 2D

The problem of mould filling has been extensively studied in the literature because of its
relevance in many industrial processes (see Coppola-Owen and Codina (2010) and references
therein). In this article, we consider a 2D domain with the shape of an inverted “L”. The base
length as well as the total height are 0.1, the inlet height H is equal to 0.02308 and the inlet
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Figure 4: Comparison of the contours of the velocity field u (left) and the extrapolated velocity fieldU (right) for
the dam break problem.

length 0.03077. At the inlet (plane x = 0) a velocity with the following parabolic shape is
imposed

vin =
2y

H
− 2y2

H2
(22)

In this case the volume of liquid present in the system as a function of time is given by

V (t) = V0 +
1

3
H t (23)

where V0 is the volume at t = 0. The following properties are considered for the liquid and gas
phases

ρ1 = 1000, ρ2 = 1.2, µ1 = 5× 10−3, µ2 = 2.5× 10−5, g = −9.8 ez

The computational domain is discretized with 16512 triangular elements and a time step δt =
0.005 is used for the simulations. The initial condition corresponds to a vertical interface placed
at x = 0.0302 (see figure 6) with which the initial volume of liquid V0 is equal to 0.000697.
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Figure 5: Evolution of the liquid mass as a function of time showing the effect of the velocity extrapolation on the
conservation of mass.

Figure 6 shows the interface at different times for the case without using the extrapolation
methodology (red lines) and the case using it with (µe, λe) = (0.1, 1) (blue lines). Notice that
the deformations in this case are more important than in the previous example. The mesh used is
too coarse to accurately capture all the topological changes happening in the system. However,
we still appreciate in this case a beneficial effect of the velocity extrapolation as seen in figure
(7) where the volume as a function of time is plotted. The results begin to deteriorate faster in
both cases at t ∼ 0.24 due to the very thin liquid filament formed close to the right wall which is
poorly resolved by the mesh and also due to the subsequent topological changes. Until that time
the results considering the extrapolation are much better than in the case without extrapolation.
At the end of the simulation the mass loss considering the extrapolation is 6.4% while without
using it is equal to 13%.

4.3 Sloshing of a tank - 3D

This problem has also been studied in the literature (see e.g. Löhner et al. (2006)). The
domain for this case is the region [0, 1]× [0, 1]× [0, 1] which at the beginning of the simulation
is partially filled with a uniform liquid level equal to 0.35. The following force along the
direction (1, 1, 0) is applied on the system

f = a sin(2πt/T ) (24)

where a = 1.1563 and T = 1.3. We also consider the presence of the gravity g which is set to
a value of 10. Also, the following material properties are used for the simulation

ρ1 = 1000, µ1 = 0.5, ρ2 = 1.2, µ2 = 0.025

The computational domain is discretized with 6× 106 uniform tetrahedra and a time step δt =
0.005 is used for the simulations. Again, the redistancing procedure is applied every 5 time
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extrapolation
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t = 0.0 t = 0.08 t = 0.16

vinH

Figure 6: Interface at different times for the filling of a tank. The case without using the extrapolation procedure is
shown at the top of each series of frames (red lines) while the case using the extrapolation is shown at the bottom
of each series (blue line).

steps. The algorithmic constants adopted for the velocity extrapolation in this case are µe = 5
and λe = 0. Free slip boundary conditions are used at all walls except at the top (z = 1) where
open boundary conditions are imposed.
First, to illustrate the dynamics of the free surface, in figure 8 we show sections of the velocity
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Figure 7: Volume of liquid as a function of time V (t). The exact result (black line) is compared with the numerical
simulations in the cases without using the extrapolation procedure (red line) and using it (blue line).

magnitude and the interface (drawn with a black line) separating the liquid phase from the gas.
Notice the boundary layer formed close to the interface on the gas side. Figure 9 shows the 3D
reconstructed interface at different times for the case without using the velocity extrapolation
methodology, although qualitatively similar results are observed when the procedure is consid-
ered. However, if we measure the mass of liquid present in the system, we clearly appreciate
the effect of the velocity extrapolation procedure as shown in figure 10 where the liquid mass is
plotted as a function of time. The case without using the velocity extrapolation exhibits a mass
change equal to 15% while the case with the extrapolation a much smaller value of 1.4%.

5 CONCLUSIONS

A methodology to extrapolate the velocity field in two phase liquid–gas flows has been de-
scribed. The basic idea behind the method is to solve an elasticity–like problem taking into
account the presence of an embedded interface which does not conform to the finite element
mesh and disregard the information computed on the gas side which is assumed less accurate
due for instance to unresolved boundary layers. The new velocity is only used to move the
interface. The method is much simpler to implement in standard finite element codes than other
geometrically–based methodologies.

Through numerical tests it was shown that the use of the extrapolation methodology has
beneficial effects with respect to the mass conservation for different choices made for the al-
gorithmic parameters (i.e. the “Lamé constants” µe and λe of the elasticity–like problem to
be solved), though no incompressibility constraint has been considered. However, is was ob-
served that these benefits depend to some extent on this choice of parameters, making it difficult
to provide a general recommendation: this probably depends on the specific problem and the
discretization considered. For the examples presented in the results section significant improve-
ments were observed, in particular, the values µe = 0.1 and λe = 1 worked well for the classical
dam break problem. The possibility of uncoupling the velocity components of U , which is at-
tractive due to its simplicity, was considered and also gave good results. The robustness of the
numerical formulation was tested by means of a more challenging problem consisting in the

R. AUSAS, G. BUSCAGLIA3202

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



t = 0.5 t = 1.0

t = 2.0

Figure 8: Sections of the velocity field at different times to show the boundary layer on the gas side (above the
interface in black line).

filling of a tank involving large deformations of the interface as well as topological changes.
Finally, for the 3D simulation of the sloshing of a tank good results were also attained in terms
of mass conservation.
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