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Abstract. A fully coupled simulation of three dimensional problems involving fluid structure interac-

tions is the most accurate way to predict the behavior of high aspect ratio cylinders in cross flows. The

main interest in this kind of flows are due the great number of applications in the oil and gas industry

(especially the ones related to the modeling of risers used for oil exploitation in deep seas), however there

are inherent difficulties in the simulation of the fluid structure interaction of long and thin cylinders, as

example the high computational cost due the fact that a cylinder is moving across the computational

domain associated with the necessity of the structural model be able to deal with high displacements.

In this work we circumvent these difficulties by the joint of two methodologies: the combination of the

Cosserat theory applied to slender beams, and the Immersed Boundary Methodology, which is used to

represent the interactions between the structural and fluid domains. The main features of the proposed

methodology are evaluated by means of a number of numerical simulations, both in static and dynamic

regimes, regarding the structural model, in a first step and the complete fluid-structure model, in a second

step. The results obtained permits to evaluate the accuracy and the main advantages and shortcomings of

the methodology, especially regarding the numerical aspects. The results also, allow to put in evidence

some relevant phenomenological aspects related to the dynamic behavior of cylindrical structures with

various levels of bending flexibility, subjected to transverse flows characterized by different values of the

Reynolds number.
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1 INTRODUCTION

The flow past a cylindrical structure can be the source of vibrations generated by vortex

shedding. Such vibrations can induce to an increase of the drag coefficient, thus leading to an

increase of the efforts over structure. The vibrations can lead also to the failure of a structure due

fatigue. This is especially important when these cylinders are risers of oil exploitation subject

to waves and/or maritime currents. According to Baarholm et al. (2006), two approaches have

been adopted for solving fluid-structure interactions (FSI): empirical models and methodolo-

gies based on numerical simulation of governing equations (for both fluid and structure).

The present work describes the research work carried-out with the aim of developing, imple-

menting and evaluating a three-dimensional modeling procedure of fluid-structure phenomena

involving slender structures, such as beams, bars and cables. The novel approach adopted con-

sists in the combination of the Cosserat theory, Argyris et al. (1978), applied to slender beams,

which accounts for geometrical nonlinearity, and the Immersed Boundary methodology, Lima e

Silva et al. (2003), which is used to represent the interactions between the structural and fluid

domains. The study is included in the scope of Vortex-Induced Vibrations, which is a topic of

great interest in the oil industry. According to the Cosserat theory, the deformed configuration

of the structure is described in terms of the displacement vector of the curved formed by the

cross-sections center of area, and the orientation of a vector basis fixed to each cross-section,

with respect to an inertial reference frame. The main advantage of this theory is that it is geo-

metrically exact. The finite element method is employed for discretization of the equations of

motion for the structure.

Through the Immersed Boundary methodology, the solid-fluid interface forces are evaluated

by enforcing momentum to the fluid particles over the interface fluid-solid. Such a method-

ology is particularly suitable for problems involving fluid-structure interactions, once the dif-

ficulty of re-meshing the computational grid is circumvented by the use of two independent

domains. The governing equations of fluid flow are solved in an Eulerian domain (fixed, carte-

sian for instance), while the immersed geometry (or geometries) is (are) represented by a set of

Lagrangian points. The coupling between both domains is made by the utilization of interpola-

tion/distribution functions, which are based on discrete versions of a Dirac delta function.

Regarding the structural model, its main features are evaluated by means of a number of nu-

merical simulations in dynamic regimes in a first step and in a second step the complete fluid-

structure model. The results obtained enable to evaluate the accuracy, and the main advantages

and shortcomings of the methodology. They allow also to put in evidence some relevant phe-

nomenological aspects related to the dynamic behavior of cylindrical structures with various

levels of bending flexibility, subjected to transverse flows characterized by different values of

the Reynolds number.

2 MATHEMATIC MODELING FOR FSI

The FSI numerical approach adopted is named partitioned, i.e. in the same time step (Δt)
the coupling between the fluid and the structure is separated in two parts, first it is solved the

transport and conservation equations of the fluid medium (Navier-Stokes equations), then the

structure motion equations are solved by the Cosserat theory, as is shown in Fig. 1.
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Figure 1: Partitioned approach for FSI.

The follow sections provide in details the formulation retained for the fluid, structure and the

coupling between.

2.1 Mathematic model for the fluid

The flow is governed by momentum equation (Eq. 1) and the continuity equation (Eq. 2).

The information of the fluid/solid interface (domain Γ) is passed to the eulerian domain (Ω)
where a term source is added to momentum equations. This term plays a role of a body force

that represents the boundary conditions of the immersed geometry. The equations that govern

the problem are presented in their tensorial form:

∂ρui

∂t
+

∂(ρuiuj)

∂xj

= − ∂p

∂xi

+
∂

∂xj

[
μ

(
∂ui

∂xj

+
∂uj

∂xi

)]
+ fi, (1)

∂uj

∂xj

= 0. (2)

where p is the static pressure; ui; i = 1, 2, 3 are the velocity, fi are the IB term source, ρ
is the density, μ is the kinematic viscosity; xi and t are the spatial component and the time,

respectively.

The algorithm under consideration for the simulation of the fluid motion is based on a clas-

sical predictor-corrector time integration scheme that employs a projection method for the mo-

mentum equations. The finite volume spatial discretization of the Navier-Stokes equations (N-S

equations henceforth) is based on a staggered framework with velocity and scalar quantities

evaluated in different grids to avoid the rise of checkerboard pressure patterns.

Regarding the temporal integration of the N-S equations, the schemes retained are essentially

controlled by the Courant criterion . Explicit schemes exhibit numerical stability issues when

using Courant number values larger than unity. However, such a numerical limitation does not

apply to implicit or semi-implicit discretizations. The temporal integration schemes retained

in the present work are fully implicit, in such a manner that it is possible to reach statistically

steady regimes faster than by resorting to explicit time integration techniques, Vedovoto (2009).

To ensure robustness of a numerical method for solving the problems of interest, another im-

portant aspect analyzed in the present work is the choice of the temporal integration scheme.

Here, besides the use of an fully implicit scheme permitting the use that allows to reach statis-

tically steady regimes faster than by resorting to explicit time integration techniques, we adopt

a formulation that allows the use of different methods of temporal integration, e.g. the Crank

Nicolson method, a modified Crank Nicolson method, the Leap Frog and the backward differ-

ence formula methods.
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The source term, fi, defined in all domain Ω, is null, excepting the regions where the con-

trol volumes coincide with the immersed geometry, enabling the Eulerian field to perceive the

presence of solid interface. Eq. 3 displays such a behavior.

fi(�x, t) =

{
Fi(�xk, t) if �x = �xk

0 if �x �= �xk
(3)

Where �x is the position of the particle in the fluid and �xk is the position of a point in solid

interface, Mariano et al. (2010). Through Eq. 3 it is possible to conclude that the field fi(�x, t) is
discontinuous, and hence can be evaluated only when there is a coincidence between the points

that compose the interface immersed boundary-fluid domain. It is rarely the case when there is a

coincidence between the Lagrangian points and the control volumes. If a staggered framework

of discretization is retained for the fluid equations, such a coincidence never happens once the

primary variables of the fluid are positioned in different locations. When the flows of interest

have complex geometries within the computational domain (Ω) it is necessary to distribute the

function fi(�x, t) on its neighborhoods. This is achieved by replacing the Dirac delta function

by a discrete interpolation/distribution function. There are numerous forms of such a function.

A detailed study of the form and efficiency of then can be found in Griffith and Peskin (2005).

2.2 Mathematic model for the immersed interface

The lagrangian force field is evaluated by the direct forcing methodology, which was pro-

posed by Uhlmann (2005). One of the characteristics of this model is that ad-hoc constants are

not necessary, therefore the modeling of non-slip condition on immersed interface is physically

consistent. The Lagrangian force on the point k is evaluated by a balance of momentum over a

particle of fluid coincident with the fluid-solid interface:

Fi (�xk, t) =
∂ρui

∂t
(�xk, t) +

∂

∂xj

(ρuiuj) (�xk, t) +
∂p

∂xi

(�xk, t)− ∂

∂xj

[
μ

(
∂ui

∂xj

+
∂uj

∂xi

)]
(�xk, t)

(4)

The values of ui(�xk, t) and p(�xk, t) are provided by the interpolation of the respective veloc-

ities and pressure from the Eulerian field near the immersed interface. For the Lagrangian point

�xk at the immersed boundary, one has:

Fi

(
�Xk, t

)
=

ui (�xk, t+Δt)− u∗
i (�xk, t) + u∗

i (�xk, t)− ui (�xk, t)

Δt
+RHSi (�xk, t) , (5)

where u∗ is a temporary parameter, Wang et al. (2008), and RHSi(�xk, t). Is the sum of the

advective, pressure and diffusive contributions of Eq. 5. The latter equation is decomposed and

solved by Eqs. 6 and 7 in same time step:

u∗
i (�xk, t)− ui (�xk, t)

Δt
+RHSi (�xk, t) = 0, (6)

Fi (�xk, t) =
u (�xk, t+Δt)− u∗

i (�xk, t)

Δt
, (7)

where u(�xk, t+Δt) = UFI is the immersed boundary velocity at the interface.

Equation 6 is solved on the Eulerian domain by the methods described in the section of math-

ematical and numerical methods for solving the fluid governing equations. u∗ is interpolated
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for Lagrangian domain, becoming u∗
i and it is computed on Eq. 7. Then the force Fi is smeared

on the Eulerian grid. Finally, the velocity is updated by Eq. 8:

ui (�x, t+Δt) = u∗
i (�x, t) + Δt.fi. (8)

2.3 Mathematic model for structure

2.3.1 Basic definitions and kinematic assumptions

One of the most important features of this theory is how the beam is spatially defined in

terms of movement of the line passing through their cross sections centroids, defined by the

vector r(s, t) in a Cartesian fixed (inertial) base represented by F = {e1, e2, e3} with unit vec-

tors ei, and a set of orthogonal unit vectors attached to the cross section, forming the basis

S = {d1(s, t),d2(s, t),d3(s, t)}, where the variable S represents the position of the cross sec-

tion along the line of centroids. Therefore, for each point on the curve formed by the centroids

there is a orthonormal moving frame, formed by the unit vector di(s, t), that are defined exter-

nally to the position vector r(s, t). In Fig. 2 shows a schematic representation of a segment of

Cosserat beam, with the two vector basis mentioned above placed in it.

Figure 2: Schematic model of an element of Cosserat.

For convenience, d1(s) and d2(s) are adopted as contained in the plane of the cross-section

and, as a consequence, the resulting d3(s) is perpendicular to that plane. It is important to

emphasize that such definition implies: a) in the condition of pure bending, the vector normal

to the cross section, d3(s), in each point of the curve of centroids, is coincident with the tangent

of this curve, determined by the direction of the vector
∂r(s,t)

∂s
= ∂Sr; b) in the condition of

pure shear, the same does not occur, in other words, the vector d3(s) does not coincide with the

direction of the spatial derivative the curve of centroids due to the distortion caused by shear. It

is admitted, in both cases, that the cross section remains plane.

The line of centroids r(s, t) can be described in the inertial basis F as:

r (s, t) = x (s, t) e1 + y (s, t) e2 + z (s, t) e3. (9)

The strains can be defined as: linear deformations, denoted by v (s, t), and angular deforma-

tions, indicated by u (s, t). The linear deformations components v1 (s, t) and v2 (s, t) represent
shear deformations, and the component v3 (s, t) corresponds to elongation. In the same way, the

components u1 (s, t) and u2 (s, t) represent the bending deformations, while the u3 (s, t) com-

ponent represents the torsion of the cross-section. As follows, those two classes of deformations

will be defined.
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In the first place, the linear deformation vector v (s, t), can be define from the variation of

the centroids line along the s coordinate:

v (s, t) =
∂r (s, t)

∂s
. (10)

In respect to the Eq. 10 it is important to emphasize that, due to the shear strain of the beam,

the deformed cross section does not remains perpendicular to the line of centroids. However,

for slender beams, the effect of shear can be neglected (Wang et al., 2004). Consequently, the

element cross section is assumed to be perpendicular to the tangent of the centroids line, that is:

v (s, t) =
∂r (s, t)

∂s
= |r′ (s, t)|d3 (s, t) , (11)

where the apostrophe indicates the derivative with respect to coordinate.

Hence, as demonstrated in Wang et al. (2004), the components of the normalized linear

deformation are given by:

d3 (s, t) =
∂r(s,t)

∂s

|r′ (s, t)|
Δ
= v1 (s, t) e1 + v2 (s, t) e2 + v3 (s, t) e3. (12)

In addition, it can be established the following relationship:

v2
1 (s, t) + v2

2 (s, t) + v2
3 (s, t) = 1. (13)

Thus, the linear deformation can be written from Eq. 12 as follows:

v1 (s, t) =
x′ (s, t)
|r′ (s, t)| , v2 (s, t) =

y′ (s, t)
|r′ (s, t)| , v3 (s, t) =

z′ (s, t)
|r′ (s, t)| . (14)

The vector of angular deformations u (s, t) is defined form the spatial derivative of the mov-

ing frame di (s, t):

∂di (s, t)

∂s
= u (s, t)× di (s, t) . (15)

From Eq. 15 it is possible to find the following relationship (Cao et al., 2006):

3∑
i=1

(
di × ∂di

∂s

)
=

3∑
i=1

(di × (u× di)) =
3∑

i=1

(u (di · di)− di (di · u)) = 2u. (16)

By rearranging the Eq.16 it is possible to obtain the following expression:

u =
3∑

i=1

(
1

2
di × ∂di

∂s

)
. (17)

In order to completely describe the kinematics of the Cosserat beam segment, besides the

definition of the two classes of deformations acting on it, it is also necessary to determine the

field of the cross sections rotations. Thus, the objective is to relate the components of the

linear deformation vector with the rotation of the cross section. Such a procedure may be ac-

complished using two different parametrization methods. In literature, several parametrization
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methods may be adopted for this end, among them, some may be listed: Euler angles; rota-

tional vector (Euler’s vector), quaternion parameters and Cayley transform, that can be found

in Alamo (2006), Cao et al. (2006) and Rubin and Brand (2007). However, considering that the

most usual are the Euler vectors and Euler angles, these methods were applied in this work, a

better description can be found in Borges (2010). In the end of this procedure it is possible to

establish a relationship between the rotation angles of the frame moving, ϕx, ϕy e ϕz around

the e1, e2 e e3 axis respectively, and the torsion angle of the cross section φ and the linear

deformation vector v, given by:

v1(s, t) =
x′ (s, t)
|r′ (s, t)| = ϕy(s, t)+

1

2
ϕx(s, t)ϕz(s, t)− 1

6

(
ϕ2

x(s, t) + ϕ2
y(s, t) + ϕ2

z(s, t)
)
ϕy(s, t),

(18)

v2(s, t) =
y′ (s, t)
|r′ (s, t)| = −ϕx(s, t)+

1

2
ϕy(s, t)ϕz(s, t)+

1

6

(
ϕ2

x(s, t) + ϕ2
y(s, t) + ϕ2

z(s, t)
)
ϕx(s, t),

(19)

φ(s, t) = ϕz(s, t) +
1

12

(
ϕ2

x(s, t) + ϕ2
y(s, t)

)
ϕz(s, t). (20)

It is necessary to emphasize that the Eqs. 19 - 20 will be of great importance to obtain the

shape functions of the Cosserat beam element, for the finite element discretization purpose.

2.3.2 Equations of Movement

The local dynamic behavior of a beam element of Cosserat with density ρ(s) and cross-

sectional area A(s), as shown by Antman (1995), is given by partial differential equations:

∂h (s, t)

∂t
=

∂m (s, t)

∂s
+ v (s, t)× n (s, t) + l (s, t) , (21)

ρ (s)A (s)
∂2r (s, t)

∂t2
=

∂n (s, t)

∂s
+ f (s, t) , (22)

It is observed that Eqs. 21 - 22 are results of the application of the principles of Newton-

Euler differential element of the beam. In these equations, n(s, t), m(s, t), h(s, t), f(s, t) and
I(s, t) are respectively the contact force, the contact moment (internal), the angular momentum,

the external force and external moment, all per unit of length.

One great concern associated to the finite element method is the choice of the shape func-

tions. These functions are responsible for determining the displacement field inside the element

from the nodal displacements. In the classic methods, they are usually approximated using low

order polynomials. In the other hand, in the Cosserat beam theory, the shape functions can

be obtained from the differential equations of static equilibrium, and so, they can take into ac-

count the system nonlinearities. Consequently, the precision of the dynamic response can be

improved by dividing the structure in a few elements, which number is usually much lower than

the amount required in the traditional finite element approach. However, the proceeds returned

by using Cosserat theory are obtained in expense of a higher analytical and numeric complexity.

The beam displacement functions, given in function of nodal displacements and rotations, are

obtained from the solution of the equations of static equilibrium. Nevertheless, for the static
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equilibrium, the equations of the movement become ordinary differential equations, where s is

the only independent variable. In literature, the static equilibrium is understood as the absence

of external forces, and from Eq. 21, the forces of contact must satisfy the expression:

dn (s)

ds
= 0, (23)

and, yet from Eq.22, the contact torque density satisfies:

dm (s)

ds
+ v (s)× n (s) = 0. (24)

Once defined the main vectors quantities involved in Eqs.23 - 24, it is necessary now to

obtain the m (s) and n (s) in terms of deformations u (s) and v (s). That can be obtained from

the constitutive relations of the material. It must be pointed that, in this work, it was used

a constitutive model where the characteristics of a linear and elastic material were adopted,

based on the constitutive relations of Kirchhoff (Cao et al., 2005). Thus, in this modeling it is

assumed that Young Modulus E, the shear modulus G and the specific mass along the Cosserat

beam element are only function of the spatial variable s, and the center of mass coincides with

the centroid of the cross-section in s.
Therefore, using these relations, the forces and torque of contact are given as a function of

linear and angular deformations, respectively (Borges, 2010) and, because of this, the Eqs.23 -

24 can be written in terms of the forces and contact momentum in the form of a highly nonlinear

system given by:

n′
1 (s) = u3 (s)n2 (s)− u2 (s)n3 (s) , (25)

n′
2 (s) = u1 (s)n3 (s)− u3 (s)n1 (s) , (26)

n′
3 (s) = u2 (s)n1 (s)− u1 (s)n2 (s) , (27)

m′
3 (s) = u2 (s)m1 (s)− u1 (s)m2 (s) . (28)

In order to find the shape functions, it is necessary to solve the nonlinear system given by

Eq. 25 - 28. It can be noted that those equations cannot be solved bay direct integration.

Therefore, the perturbation method will be used in order to obtain an approximated solution.

For this purpose, it was used a perturbation method oriented to this nature of solution and,

among several available methods in literature, it was chosen the method of Frobenius (Arfken

et al., 2000).

According to the Frobenius’s method, the following approximations for the shape functions

can be obtained:

x(s) = x̄(s̄)L = εx1(s) + ε2x2(s) + ε3x3(s), (29)

y(s) = ȳ(s̄)L = εy1(s) + ε2y2(s) + ε3y3(s), (30)

z(s) = z̄(s̄)L = s+ εz1(s) + ε2z2(s) + ε3z3(s), (31)
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φ(s) = φ̄(s̄)L = εφ1(s) + ε2φ2(s) + ε3φ3(s). (32)

The solutions presented here were obtained from a program of symbolic solution an due to

the size of these solutions, they were intentionally omitted in this work, more information can

be found in the work of Borges (2010).

It is important to emphasize that these displacement functions obtained with the from static

equilibrium will later be used in the dynamic analysis, which eliminates on of the main prob-

lems usually found in the classic finite element theory, that is to define conveniently the shape

functions.

2.3.3 Dynamic analysis by the finite element method

From the extended Hamilton’s principle, it is possible to achieve the Lagrange equations,

which constitutes a very elegant form to obtain the equations of movement of dynamic systems

(Bathe, 2007). In this section, the equations of Lagrange are used to formulate the differential

equations of movement of the Cosserat beam element.

The extended Hamilton principle is given by the following variational equation:

δ

t2∫
t1

(T− V)dt+

t2∫
t1

δW F
NCdt = 0, (33)

where T is the total kinetic energy of the system, V is the potential energy associated to the

conservative forces and torque imposed, δ represents the variational operator and δW F
NC is the

work realized by the non conservative forces and torque imposed.

2.3.4 Kinetic and potential energies of the beam

Observing the Fig. 2 it is possible to note that the movement of the beam involves two types

of velocities: the velocity of the centroids of the cross sections,
∂r(s,t)

∂t
, and the angular velocities

of the cross sections, ω (s, t). Therefore, the kinetic energy for unit of length is given by the

following relation:

T ∗ =
1

2

[
∂r (s, t)

∂t

]T

ρ (s)A (s)
∂r (s, t)

∂t
+
1

2
[ω (s, t)]T I (s)ω (s, t) , (34)

where I (s) is the matrix of inertia of mass, in relation to a set of baricentric orthogonal axis.

In the other hand, considering small deformations, the elastic potential energy for unity of

length can be expressed in terms of the deformations vectors v (s, t) and u (s, t) as follows:

U∗ =
1

2
[v (s, t)]T K (s)v (s, t) +

1

2
[u (s, t)]T J (s)u (s, t) (35)

given that K (s) e J (s) are determined by the association of the principal inertia of area of

the cross section and the Kirchhoff constitutive relations for linear material. Thus, it is defined

that J1 and J2 represents the shear stiffness and K3 is the resistance to the elongation.

As can be noted, either the density of kinetic energy as the density of potential energy are

functions of the variables time (t) and space (s). Hence, to find the discretized equations of

movement, from the Hamilton principle and the equations of Lagrange, it is necessary to use

the dimensional shape functions presented previously, Eq. 29 - 32. The complete description of
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that procedure can be found in Borges (2010). In few words, the described procedure leads to

the density of kinetic energy, Eq.34, and to the density of potential energy, Eq.35, as follows:

T ∗ = T ∗ (s, q̇(e) (t)
)
, U∗ = U∗ (s,q(e) (t)

)
, (36)

where q(e) represents the vector of generalized displacements for Cosserat beam element. So,

the quantity known as lagrangian can be defined:

L
(
q(e), q̇(e)

)
= T

(
q̇(e)

)− U
(
q(e)

)
=

L∫
0

[
T ∗ (s, q̇(e)

)− U∗ (s,q(e)
)]

ds (37)

2.3.5 Virtual work realized by non conservative forces and momentum

At this moment, it is necessary to develop the term
t2∫
t1

δW F
NCdt presented in Eq. 33 as a

function of generalized coordinates. It is important to emphasize that this term is related to the

virtual work performed by forces and torque non derivable from any potential function. It is

assumed that the forces acting on the element are composed by three additive parts: the first

one is proceeding from the interaction with surrounding elements; the second one is due to the

action of external forces concentrated in nodal points; and, finally, the third one represents the

external distributed forces with fixed directions and prescribed intensity. Therefore, the total

virtual work realized by additive forces is given by:

δW F
NC =

(
f i(e) + f c(e) + fd(e)

)T · δq(e), (38)

where, f i(e), f c(e) e fd(e) represent the internal forces and momentum, the external forces and

momentum and, finally, the element distributed loading, respectively.

Substituting the Eqs. 37 and 38 in Eq. 33, using the chain rule and integrating by parts, it is

obtained the equation of Lagrange for movement of a Cosserat element (Cao et al., 2006):

d

dt

(
∂L

∂q̇
(e)
j

)
− ∂L

∂q
(e)
j

= f
i(e)
j + f

c(e)
j + f

d(e)
j . (39)

Performing some mathematical manipulations in Eq. 39 is possible to find the equations of

movement with nonlinearities of same order of displacement functions, represented in Eq. 40.

In the present study, such operations has been realized with the use of programs of symbolic

manipulation.

M(e)q̈(e)(t) +K(e)q(e)(t) + g(e)
(
q(e)(t)

)
= f i(e) (t) + f c(e) (t) + fd(e)

(
t,q(e)

)
, (40)

where M(e) is the element mass (linear), K(e) is the linear stiffness matrix, g(e)
(
q(e)

)
is the

non-linear vector which contains the quadratic and cubic terms of q(e).

Once determined the matrix of mass, stiffness and nodal equivalent forces for each Cosserat

beam element, the mechanical connection among the different elements should be established,

which is performed by the process of assembling of global equations of movement for the

system. Such a procedure is a standard in finite element modeling, so, they will not be presented

the present work.
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It is important to emphasize that those set of equations are highly nonlinear and require the

use of robust integrator in order to determine the displacement and velocity fields, whose will

be approached later. As presented by Borges (2010), several solution methods were tested,

such as Newmark with imposed conservation of mechanical energy, proposed by Bathe (2007);

the Newmark method combined with the Newton-Raphson algorithm, suggested by Géradin

and Rixen (2001); and the Runge-Kutta of forth order method with variable step. The most

efficient and robust was the Newmark with imposed conservation of mechanical energy, so, it

was retained in all simulated cases.

2.4 Fluid-structure interaction

This section defines the methodology used to coupled the fluid and structural domains. Note

that the mesh in these two domains are different, as illustrated in Fig. 4, which states that the

surface mesh of the immersed body is composed by rectangular elements; the discretization of

the structural domain, according to the theory of Cosserat, is formed by nodes positioned about

a central line.

A major issue faced in this stage is how to transfer forces and moments applied by the fluid on

the surface of the cylinder, calculated by immersed boundary method, to the nodes of the mesh

structure, and backwards, from the structure to the finite element nodes, thus transferring the

displacements, velocities and accelerations are calculated using the theory of Cosserat beam to

the surface of the cylinder that will be in contact with the fluid.

Figure 3: Sketch of cylinder slice and reference axes.

The procedure adopted is to consider "slices" of the cylindrical surface mesh in the direction

“z” composing a row of elements and attach it to a given nodal point of the mesh structure,

so that the forces as well as the moments applied on the node of the structure mesh, are the

result of demands imposed on all nodes in the mesh of fluid on the surface of the "slice" of

the cylinder. In Fig. 4, the red point represents the Lagrangian point of the immersed structure

and the green point represents the node of the mesh structure. To accomplish the transfer of

information between the two domains becomes necessary to use auxiliary axis of references.

In this modeling were used three axes, which are shown in Fig. 3, two of them mobile (Axyz)
and (Ax1y1z1) and a fixed (OXY Z). Thus using the concepts of kinematics and dynamics

of three-dimensional motion of a rigid body, forces and moments can be transferred from the

surface of the cylinder immersed into the structure nodal point, and in reverse, transferring
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the displacement and velocity of the structural nodal point to surface immersed. Note that the

solution algorithm for the fluid-structure coupling is made using a partitioned method, thus

solving one of the domains separately, and then using its results as input in subsequent domain.

The Cosserat theory beans is coupled with immersed boundary method to obtain the struc-

tural dynamic reaction support by excitation forced for the flow. For understand the fluid-

structure interaction using the partitioned algorithm it is proposed the following steps:

1. Transport Eulerian equations of momentum are solved (Eq. 6), yielding the temporary

parameter (u∗
i );

2. The temporary parameter (u∗
i ) is interpolated to the Lagrangian domain;

3. The Lagrangian force, F (�xk, t) is evaluated (Eq. 7). It is noteworthy that in this case the

velocity UFI is the structure velocity given also by the Cosserat theory;

4. As commented before, the displacements, velocity and acceleration of the structure are

evaluated over a line positioned at the centroid of the immersed body, therefore it is nec-

essary to evaluate the sum of the Lagrangian forces,
∑

nl F (�xk, t) and torque,
∑

nl
�T =

�r × �F , (being �r is the distance between lagrangian point and a node of structure center

line) at such a line (Fig. 4) exemplifies this procedure;

Figure 4: Coupling between the fluid and structural meshes.

5. The force evaluated at each Lagrangian point if Fi(�xk, t) smeared over the Eulerian do-

main, yielding the Eulerian force, fi(�x, t);

6. The Eulerian velocity field is updated (Eq. 8);

7. The Poisson equation is solved and the velocity field is updated with the pressure correc-

tion, finalizing the pressure-velocity coupling;

8. The sum of the Lagrangian forces and torque (calculated in forth step) is evaluated and a

new position and velocity of center line structure, consequently the new positions of the

Lagrangian points, are given;

9. Return to step (1).
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3 RESULTS

3.1 Structural methodology evaluation and validation

An initial requirement to envisage simulating fluid structure problem is to validate the numer-

ical methods implemented in canonical tests. In this section we validate the structural modulus

in a dynamic regime. One of the main difficulties in simulating nonlinear structures in dynamic

regime is to find an integrator sufficiently precise and stable for long simulation periods of time.

Hence, the test structure was also used for validation of the integration method adopted. The

tested structure, which will be used for validating the numeric algorithm presented here, is the

free cantilever beam illustrated in Fig. 5.

Figure 5: Testing structure.

This model, was firstly implemented by Cao et al. (2005), with the following dimensions:

0.3 m of length, cross section of 0.01 m of width and 0.05 m of thickness. The values of Young

modulus and density adopted were 2.08108 Pa e 3.00103 kg/m, respectively. The excitation

forces in x and y directions were f c
x(t) = 0, 01 cos(8t) and f c

y(t) = 0, 005 sin(8t), applied in

free end of the beam. It must be pointed that in the work presented by Cao et al. (2005) the

testing structure was evaluated using Cosserat beam element obtained from third order approx-

imation of shape functions. The same approach is used to validate the methodology proposed

in the present work.

Figure 6: Comparison between structure displacement in x direction. (ref: presented by Cao et al. (2005); sim:

present work).

Figure 6 presents the displacements obtained for the free end of the beam in x direction, with

the corresponding values obtained by Cao et al. (2005). In the same way, the Fig. 7 shows a
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comparison between the results obtained in y direction. Both methods discretized the structure

in 10 equally spaced elements. The integration method used was the Newmark with imposed

conservation of mechanical energy, suggested by Bathe (2007), and the step used was 0.01 s.

Figure 7: Comparison between structure displacement in y direction. (ref: presented by Cao et al. (2005); sim:

present work).

Observing Figs. 6 and 7 is possible to note small differences between the two sets of results,

which can be due to the using of different methods of numeric integration for the equations of

the movement. However, as the deviations found were negligible, the implementation of the

Cosserat beam theory can be considered validated.

3.2 Fluid Methodology evaluation and validation

In this section we present the results of the simulations carried out for both validation of the

numerical code, and of the simulation of flexible structures subject to cross flow. The effects

of different Reynolds numbers (Re = ρUD/μ, where U is the uniform velocity imposed inlet

and D is diameter of cylinder) are assessed. The eulerian domain has dimensions 30x20x10 in

directions X , Y and Z, respectively, the base of cylinder is positioned in 10x10x0, in relation

to coordinate axes OXY Z. For all simulations carried in this work the cylinder has a diameter

D = 1.0 and a length L = 10.0, as show in Fig. 8.

Figure 8: Eulerian and lagrangian domains.

The boundary conditions for the Eulerian domain flow in the plane X = 0 is a uniform inlet

profile U = 1.0 [m/s] and at plane X = 30 the advective boundary condition is imposed. For
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other boundary conditions (planes Y = 0, Y = 20, Z = 0 and Z = 10) no-slip boundary

conditions is imposed. All simulations used a cartesian uniform mesh divided in three parallels

sub domains, Vedovoto (2009).

3.3 Rigid structure

In order to validate the flow solver, the first simulations are performed without move the

cylinder i.e. EI = ∞ at different Reynolds numbers. Drag (Cd) coefficient and Strouhal

numbers (St) are compared with the data provided by White (1991) and shown in Tab. 1.

The differences between Strouhal number present in Tab. 1 is probably due the proximity of

boundary conditions of the cylinder and the length of cylinder.

Re=100 Re=500 Re=1000

Authors Cd St Cd St Cd St

White (1991) 1.40 0.18 1.30 0.21 1.10 0.21

Present work 1.51 0.14 1.31 0.16 1.30 0.16

Table 1: Comparison among different Reynolds numbers for drag coefficient and Strouhal number.

3.4 Flexible structure

The flexible structure is modeled by the Cosserat theory for slender beams. The hydrody-

namic forces required by such a methodology are provided by the immersed boundary method.

Three different values of Reynolds number were studied (Re = 100, 500 and 1000). The phys-

ical and geometrical properties of the flexible cylinder are given in Tab. 2.

Properties Values

Aspect ratio (L/D) 10
Density 7850 [Kg/m3]

Axial stiffness(EA) 501.39 [N ]

Bending stiffness(EI) 9.07 [Nm2]

Torsion stiffness (GJ) 6.82 [Nm2/rad]

Table 2: Physical and geometrical properties of the flexible cylinder.

As boundary conditions for the structure model, revolute joints are adopted and hence dis-

placements both the extremities and the torsional degrees-of-freedom were eliminated, allow-

ing however, rotation in the directions x and y. The immersed structure is discretized using 50
Cosserat elements equally spaced, with 51 nodes and 6 degrees of freedom by node.

Figure 9 displays the temporal evolution of the flow past a flexible cylinder at different

times at Re = 1000. Due to structural stiffness, and the magnitude of hydrodynamic forces

imposed by flow, was observed a deformation of the structure. It is observed in Fig. 9 the Von

Karman wake, characterized by the periodic vortex shedding (which is responsible for exciting

the structure in the direction transverse to the flow). It is notable the deformation of the structure

and its effects in the fluid wake. The shedding of the coherent fluid structures are affected in

the sense that when the structure moves towards the flow there is a decreasing in the number of

vortex liberated, the opposite effect is present when the structure tries to recuperate its initial

form and goes against the flow. In this case it is possible to note a higher number of coherent

structures.
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Figure 9: Temporal evolution de isosurface of (Q = 0.25) at Re = 1000.

For a quantitative evaluation of the flows here simulated Fig. 10 shows the drag and lift

coefficients for simulations at different Reynolds numbers. Even tough for the simulations at

Re = 100, there is not a great difference in the wake, the vibration of the cylinder is sufficient

to alter the patterns of the drag and lift coefficients. Such a phenomena is intensified as the
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Reynolds number increases.

Figure 10: Temporal evolution of drag and lift coefficients at different Reynolds Numbers.

In Fig. 10 is noteworthy the effect of the Reynolds number in the quantitative coefficients.

Since a higher Reynolds number implies in higher efforts over the structure is natural an increase

in the values of displacements of the flexible body. This phenomena promotes thus a higher

oscillation of the signals, especially for Reynolds number higher than 500.

Figure 11: Instantaneous position of the immersed structure at Re = 1000.

In order to demonstrate the real dimension of the structure displacement Fig. 11 demonstrate

that at Reynolds 1000 the lateral deformation of the structure achieves 20% of the total length.

At t = 450[s] for example, it is possible to note that the lateral displacement achieves 2 m in Y

direction near the half length of the cylinder.
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It is important to point-out that only the immersed boundary and structural meshes are

shifted. The Eulerian cartesian grid stands still, so even with great deformations the compu-

tational cost associated with the simulations remains

Figure 12: Displacement of a point positioned at the central line of the cylinder at z=5 [m]; Re=1000.

In Fig. 12 one notices the differences between the structural shifts in the longitudinal and

transverse direction. Due to the complexes patterns of deformation of the structure, and its

low stiffness, the computational showed itself insufficient for the simulation at Reynolds 1000.

However, the magnitude of the displacements which the immersed geometry is subject demon-

strate the capacity of the Cosserat theory in dealing with the great shifts imposed by the hydro-

dynamic forces.

4 CONCLUSIONS

We present a new approach for FSI problems applied to flexible cylinders. This promising

approach is better detailed in work of Borges (2010) and Vedovoto (2009), allowing to solve

problems with large deformations. It is a major area of interest of the oil industry. The Cosserat

theory and immersed boundary method enabled to simulate a full FSI problem, which the struc-

ture movement is produced just by fluid flow forces. While all characteristics of flow, laminar

or turbulent, are preserved. New simulations are been performed to obtain large aspect ratios,

for this aspects as code parallelism are being implemented.
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