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Abstract. This work proposes a study on the XFEM method used to treat the conjoined interface 

between fluid and structure domains in two dimensional coupled Fluid-Structure Interaction (FSI) 

problems. The idea is based on [1], in which the FSI problem is solved adopting two non-matching 

overlapping meshes for the structural and fluid fields in an alternative to usual Arbitrary Lagrangian 

Eulerian (ALE) approaches. Using this formulation, the fluid can be solved by classical Eulerian 

approach where the mesh is fixed in space during all the computation. In order to illustrate the method 

applicability, steady and unsteady simulations of incompressible viscous flow past a cylinder were 

performed.   
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1 INTRODUCTION 

Fluid-structure interaction problems are of great importance for many engineering fields and 

thus the development of robust computational codes is desired by many research groups 

throughout the world. Most of the approaches to solve the problems, commercial or academic, 

lacks robustness or efficiency in some situations. Such situations are, for example, 

simulations in which the fluid and the structure have similar densities, like blood and tissues 

in problems of biomechanics [5]. Another situation difficult to overcome by standard 

approaches is that in which the structure surface exhibits large and complex motion. In this 

kind of problem, the fluid flow at the neighborhoods of the structure is strongly affected by its 

motion and most codes fail in simulating this behavior accurately. Methods based on ALE 

approach formulate and solve the fluid field on a deforming grid. This grid deforms with the 

structure at the interface and then the grid deformation is extended into some portion of the 

fluid field. As the fluid grid is attached to the structure interface, it is not possible to preserve 

the mesh under complex motion of the structure and thus this kind of problems cannot be 

solved by ALE approaches. 

Many different methods have been proposed as an alternative to classical ALE approaches. 

Some of them treat both the fluid and solid domains through a Lagrangian description as in 

[2] and [3]. Using a Lagrangian description for the fluid domain has the advantage of 

eliminating the non linear convective term from the Navier-Stokes equation but, by the other 

hand, one needs to pay the price of remeshing the fluid grid at each time step. 

This work proposed by the authors follows the trend that treat the FSI problem by two 

overlapping domains. The first domain, occupied by the fluid, is modeled by an unchanging 

fixed mesh that solves the Navier-Stokes equations for incompressible fluid flow in the 

traditional Eulerian approach. The second domain, in turn, occupied by the structure, is 

modeled using a Lagrangian description as usual. As the fluid and structure meshes are 

constructed in an independent manner, some special technique is required in order to impose 

the effects of the moving structure interface, which acts as essential boundary conditions for 

the fluid problem. The special technique to be adopted in this work will be the Extended 

Finite Element Method (XFEM) [1] with Lagrange multipliers to couple the interface 

conditions from both structural and fluid domains. 

This work is organized in what follows: section 2 presents the main issues regarding the fluid 

description. Section 3 explains the imposition of the interface condition between the fluid and 

the structure by XFEM and, in the sequence, the discrete system of algebraic equations 

obtained from the finite element method is derived in section 3.2. In section 4, the algorithm 

used to solve the fsi coupled problem is presented. To validate the formulation exposed, in 

section 5, we present some examples performed and, finally, the conclusions and new 

developments under conduction are addressed in section 6.  

2 FLUID DESCRIPTION 

In this section we describe the mathematical model adopted in our formulation, that is, the 

Navier-Stokes equations for incompressible fluid flow. The time integration scheme and 

stabilization techniques used in our computational code are also considered in this section. 

More details on this subject can be found in a previous work by the authors [4]. 

2.1 Navier-Stokes Equations 

The conservation of linear momentum of a fluid portion can be stated as 
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D

div
Dt
ρ ρ− =
u

T b , (1) 

 

where ρ is the fluid density and b the volumetric force per unit mass. Du/Dt is the material (or 

substantive) time derivative of the velocity and T the Cauchy stress tensor. The mass 

conservation equation for incompressible fluid is 

 div 0=u . (2) 

Adopting an Eulerian system of reference, the material time derivative will result in two 

terms: the local time derivative and the convective acceleration. Equation (1) is thus rewritten 

as 

 ( )( ) divρ ρ+ ∇ − =u u u T b� , (3) 

where the dot over the velocity means a partial time derivative with respect to time. The 

Cauchy stress tensor, using the Newtonian material law, is given by 

 ( )2p µ= − +T I uε . (4) 

In the previous equation, µ is the fluid dynamic viscosity, p is the pressure and ε is the strain 

rate tensor given by 

 ( ) ( )( )T1

2
= ∇ + ∇u u uε . (5) 

When deriving the stress tensor in order to obtain its divergent in Eq. (1), we have 

 ( )div div2p µ µ= −∇ + ∇ + ∇T u u , (6) 

in which the last term vanishes due to the divergence free condition of incompressible fluid 

flow. Substituting the last equation into Eq. (3) we finally obtain 

 
( )

div ,

2

0

pν+ ∇ − ∇ +∇ =
=

u u u u b

u

�

 (7) 

where the incompressibility condition was repeated here to clarify the exposition. Equations 

(7) are known as the Navier-Stokes equations for incompressible fluids. Note that all terms 

were divided by ρ in the first equation originating the fluid kinematic viscosity defined by 

ν=µ/ρ and the kinematic pressure p. 

The Navier-Stokes problem needs suitable initial and boundary conditions in order to become 

a well-posed initial boundary value problem. For that purpose, we define 
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where the bar over the variable indicates that its values are known or prescribed and n 

denotes the unit outer vector normal to the boundary. The initial condition must be divergence 

free and will be denoted by u0. 

2.2 Weak Form 

Choosing arbitrary functions w and q from special subspaces for the velocities and pressure 

test functions, we can write the system of partial differential equations described by Eqs. (7) 

in an equivalent manner as 

 ( ) ( )( ) ( ) ( ) ( ) ( )div2, , , ,p q
Ω Ω Ω ΩΩ Ω

ν+ ∇ − ∇ + ∇ + =w,u w u u w u w u w,b� . (9) 

Now, integrating by parts the viscous and pressure terms, the previous equation results in 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

div div

 

; , , , ,

, ,( ) .

c a p q

p
Ω Ω Ω

Γ Γ Ω
ν

+ + − +

+ ⋅ − ∇ =

w,u u w u w u w u

w n w u n w,b

�

 (10) 

The integral on Γ vanishes at Γu because of the test function. The Neumann boundary 

conditions are applied as usual using the second expression of Eqs. (8). Thus the previous 

equation can be rewritten as 

 
( ) ( ) ( ) ( ) ( )
( ) ( )

div div

 

; , , , ,

, ,
t

c a p q
Ω Ω Ω

Γ Ω

+ + − +
− =
w,u u w u w u w u

w t w,b

�

 (11) 

which is the weak form of the Navier-Stokes equation for incompressible fluid flow problems. 

The convective and viscous terms are written in the compact notation defined by the 

respective trilinear and bilinear forms 

 ( ) ( )    and    ; , ( ) , :c d a d

Ω Ω

Ω Ω= ⋅ ∇ = ∇ ∇∫ ∫u w u w u u w u w u . 

2.3 Time Integration 

The time integration scheme adopted here to solve the Navier-Stokes equations is the 

generalized midpoint rule (see [13]). In this method, the velocity is discretized in time as 

  ,     ,
1

1 (1 )
n n

n n n n

t

γ γ γ γ
∆

+
+ + +−
= = + −
u u

u u u u�  (12) 

where 0 1γ≤ ≤ . If γ is chosen to be equal to one, the backward Euler method is achieved. 

This is a very popular method and of easy implementation and, for simplicity, if we write the 

Navier-Stokes equation in (7) and its boundaries conditions in Eq.(8) using the backward 
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Euler time discretization scheme, we have 
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 (13) 

which is the semi-discrete system of equations for incompressible viscous fluid flow. The 

superscript 'n+1' is the time-step subsequent to 'n'.  

2.4 Stabilization of the Finite Element Formulation 

It is well known that incompressible fluid flow problems, when solved by the finite element 

method, have two sources of instabilities. The first arises from the Inf-Sup incompatibility 

condition and the second from convective dominated problems. There are several techniques 

to stabilize these problems and the one that was applied to this formulation is based on [8] for 

the Stokes problem. So we add the following stabilization terms to both the weak form of 

momentum conservation equation as well as to the incompressibility condition. 

 

( ) ( ) ( )
( ) ( )

( ) ( )

div

div

2 2

1

2

1
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, ,

, , 0 ,

e

t

e

nel
h h h h h h h h

e
e

h h h h

nel
h h h h h h

e
e
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Ω
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=

=

 − + − ∇ − ∇ + ∇ − = + − −∇ − ∇ + ∇ − =

∑

∑

w u w w u b

w b w t

u u b

 (14) 

where the indices 'h' means the discretized approximating or test functions. The value of τe 

depends on the kinematic viscosity and the element size. The stabilization of the transient 

Navier-Stokes problem is done based on the ideas by [9]. So the convection is stabilized by 

the addition of a SUPG term to the weak form as shown in Eq. (13). 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

div

                                    

div

1

, ; , , , ,

, ( ) , ( ) 0

, 0 .

t e

h h h h h h h h h h h

nel
h h h h h

SUPG
e

h h

c a p

q

Ω Ω Ω

Γ
Ω

Ω

τ
=

 + + + − − + ∇ = =

∑

w u u w u w u w w b

w t w u u

u

�

R  (15) 

Here, R(uh) is the residual of the momentum equation defined by 
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 ( ) 2( )h h h h h h hpν= + ∇ − ∇ + ∇ −u u u u u b�R . 

3 IMPOSING THE INTERFACE CONDITION BY XFEM 

Our idea here is to use the XFEM approach described in [1] to simulate a moving interface 

between the fluid and structural domains. This technique allows the computation of the fluid 

flow variables from an Eulerian fixed grid in which the elements intersected by the structural 

wet surface are enriched in order to account for the velocity and pressure discontinuities. Note 

also that, in general, the structural wet surface does not match the fluid grid nodes, so the fluid 

velocities at the interface must be weakly enforced. For that purpose, we define a domain Ω 

that contains the fluid domain Ωf and extends (for some portion) into the structural domain. 

So the interface Γ
i
, see Figure 1, between the fluid and the structure will divide the fluid 

domain in two subdomains Ω
+
 and Ω

-
 , the second having no physical meaning.  

 

Figure 1.  Decomposition of the fluid domain into Ω
+
 and Ω

-
. 

The elements belonging to Ω
-
 are deactivated during computation and so memory and time 

processing is saved. Now, to ensure the fluid velocity compatibility at the interface, we must 

have 

    i Γ+= ∀ ∈u u x  (16) 

and 

     .( ) 0p uν Γ−− + ∇ = ∀ ∈n n x  (17) 

Where the signal + or – at Γ refers from where we approximate to the interface, from Ω
+
 or 

Ω
-
, respectively. The interface condition between the fluid and the structure is weakly 

enforced by the product of the test function δλ  of the Lagrange multiplier and the condition 

in Eq. (16) along Γ
+
. This term must be added to Eq. (9) and the weak form needs to be 

recalculated. Thus, integrating by parts the viscous and pressure terms, a new term arises from 

the pseudo traction acting along the interface Γ
+
: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

div div; , , , ,

, , , .
t

i

c a p q
Ω Ω Ω

Γ Γ Γ Ω
δ+ +

+ + − +

− − − − =

w,u u w u w u w u

w t w u u w,bλ λ

�

 (18) 

Ω−

fΩ Ω+=
iΓ

Ω
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Here again the integral on Γ vanishes at Γu because of the test function. On Γ
+
, the pseudo 

traction corresponds to the Lagrange multiplier.  

3.1 Space Discretization by Finite Elements 

This work adopts a mixed formulation in the sense that the finite elements have two 

unknowns (velocity and pressure) as primitive variables. Thus the approximating and test 

functions for the velocities and pressures can be written as 

 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

ˆ, ( , ) ,

ˆ( , ) ,

ˆ( , ) ,

ˆ( , ) .

h
e e

h
e e

h
p e e

h
p e e

t H t

H t

p H t

q H t

= +

= +

= +

= +

u

u

u x N x u x u

w x N x w x w

x N x p x p

x N x q x q

 (19) 

where Nu and Np are the matrixes of element shape functions for the velocity and pressure 

and ue and pe the vectors of element standard nodal velocities and pressure, respectively. êu  

and êp  are the degrees of freedom belonging to the enhanced elements cut by Γ
i
. These 

degrees of freedom must be multiplied by special enrichment functions H(x,t) to account for 

velocities and pressure discontinuities across Γ
i
. As the velocities and pressure must be zero 

in Ω
-
, H(x,t) can be defined by 

 
   if  

  if  

1
( , )

0 .
H t

Ω

Ω

+

−

 ∈=  ∈

x
x

x
 (20) 

To discretize the interface, linear functions were used for the Lagrange multiplier field as well 

as for its test function. Thus, we have 

 ( ) ( )   and   , ,h h
e et tλ λλ δ δλ= =N x N xλ λ . (21) 

As already stated in [1] and [10], the choice of the Lagrange multiplier subspace cannot be 

taken arbitrary because of instabilities purposes. Here we use linear approximating functions 
for the Lagrange multiplier subspace together with Q2Q1 Taylor-Hood element and no 

instabilities were observed on the examples performed. 

3.2 Matrix Problem 

Now if we substitute the approximating and test functions from (19) and (21) into the weak 

form (18) and discretize in time using the backward Euler method, after some algebraic 

manipulation it results in the following system of algebraic equations 
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T n nn
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n
i

t t
λ

λ λ
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++

+

+

      + + −  +          =           − −         

M M
C K G M u fu

G 0 0 p 0

M 0 0 M uλ

 (22) 

where M, C and K are the usual mass, convective and viscous matrixes and G and G
T
 are the 

gradient and divergent operators, respectively. λM  is defined by 

 T
u
dλ λ

Γ
Γ

+

+= ∫M N N
.
 (23) 

To solve the nonlinear system of equations in (22), the Newton-Raphson method was used. 

4 COUPLED FSI PROBLEM 

The algorithm used to solve the coupled fsi problem is based on a staggered scheme and is 

resumed below 

 

Algorithm for the staggered scheme: 

 

1) Estimate a trial position for the structural interface displacements 1
,0
n
Γ
+d at the new time step 

n+1; 

2) Fluid Problem: compute Dirichlet b.c. at interface and solve fluid field, including interface 

traction , 1
,
f n
iΓ
+t  ; 

3) Structural Problem: use fluid traction at the interface computed from previous step and 

solve structural field. Obtain new position of the interface 1
,
n
iΓ
+d�  ; 

4) Relaxation of interface displacements: use Aitken relaxation parameter to predict the 

interface position for the next iteration 1 1 1
, , , 1(1 )n n n
i i i i iΓ Γ Γω ω+ + +

−= + −d d d� �  ; 

5) Check convergence. If not satisfied, go back to step 2). 

 

5 NUMERICAL RESULTS 

This section presents some simulations carried in order to validate the formulation. The 

graphical interface was built with the help of the Gid Pre and Postprocessor software [14]. 

5.1 Steady flow around a cylinder 

This example is a popular problem on incompressible viscous fluid flow simulation using the 

finite element method. Many references about this problem can easily be found in [9], [11], 

[12] and [13], for example. Here the inlet flow is uniform and the cylinder is placed at the 

centerline between two slip walls. The distances from the inlet wall and the slip walls to the 

center of the cylinder are 4.5D, where D is the diameter of the cylinder and takes the value of 

one. Total length of the domain is 20D. The inlet horizontal velocity was assumed to be unity 

and the vertical component was assumed zero all over top, bottom and left boundary. The 

right boundary was assumed to be open. The domain was discretized by 2000 Q2Q1 elements 
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and 8181 nodes, see Figure 2. The density and kinematic viscosity were defined as unity and 

1/100, respectively, thus resulting in Re=100. The cylinder will be considered as a rigid body, 

thus no mesh was built for it. 

 

Figure 2.  Mesh: 2000 Q2Q1 elements and 8181 nodes. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Velocity and pressure results for the steady flow past a cylinder and Re=100. (a) velocity contour 

fill; (b) velocity vectors; (c) pressure contour fill; (d) pressure contour fill detail. 

Figure 3 shows the results for velocity and pressure. Notice in (d) that the pressure 

interpolation for post processing purpose was not done using the enrichment functions defined 

in Eq. (20). It is possible, however, to interpolate the pressure using the enhanced shape 

functions in order to calculate its values on Γ
+
. Doing so, we could evaluate the pressure 

coefficient cp around the cylinder surface and it is shown in Figure 4 (a). The Lagrange 

multipliers, in turn, are displayed in Figure 4 (b). 
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(a)  

(b) 

Figure 4. (a) Pressure coefficient cp and (b) Lagrange multipliers. 

5.2 Unsteady flow around a moving cylinder 

This example was performed in two steps. On the first step, the cylinder was kept fixed and 

the simulation was carried until the vortex shedding gets stable. The parameters are the same 

form previous example but a coarser mesh with 1200 elements and 4941 nodes was adopted. 

The time step used was 0.05s. At least two iterations were performed for each time step. 

Figure 5 shows the results for the velocities and pressure contour fill for two different instants 

of time. At 26s, a symmetric solution can still be observed and it is displayed in (a) and (b). 

After 94s of simulation, the vortex shedding is stable and the results are displayed in (c) and 

(d). On the second step, it was imposed a vertical movement to the cylinder at a low speed 

compared to 10% of the inlet horizontal velocity. So the cylinder center was forced to 

undergo an upward movement until a distance of 1.5D from its original position and after that 

it was forced to go down the same amount. As we are using a relative coarse mesh, the results 

of velocity contour fill in Figure 6 are displayed for qualitative purposes only. The results 

were taken from several instants of time so the whole movement of the cylinder can be caught 

by the reader. The offset distance at the legend means the distance from the cylinder center to 

its original position. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 5. Velocity and pressure results for the unsteady flow past a cylinder and Re=100. (a) and (b) 

symmetric solutions for t=26s; (c) and (d) solutions after vortex shedding stabilization for t=94s. 

 
(a)  Offset +0.75D. T=102.5s 

 
(b)  Offset +1.5D. T=111.0s 

 
(c)  Offset +0.75D. T=119.5s 

 
(d)  Offset 0. T=127s 

 
(e)  Offset -0.75D. T=134.5s (f)  Offset -1.5D. T=142.0s 

Figure 6. Velocity contour fill for the moving cylinder. 

5.3 Stationary flow through a channel with elastic structure 

This example is very simple and consists of a stationary flow through a channel with an 

elastic structure as an obstacle. The top and the bottom of the channel have zero velocity 

prescribed while the outflow boundary is of zero traction type. Inflow horizontal velocity has 

a parabolic profile with unity value at the midheight. Inflow vertical velocity is zero. The fluid 

density and viscosity are equal to one and again the Taylor-Hood Q2Q1 element was adopted. 

The Kirchhof-St.Venant material in plane strain was used in the formulation of the structure 

problem with Young modulus E=5200 and Poisson coefficient equal to 0.48. In the 

discretization, 20 quadrilateral elements with 9 nodes were used. Figure 7 shows the the 

velocity and pressure contour fill for qualitative purposes. 
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Figure 7. Velocity and pressure contour fill. 

 

6 CONCLUSIONS 

This work presented a study on XFEM to treat the interface between fluid and structural 

domains on FSI problems. It was shown that the Q2Q1 Taylor-Hood finite element can be 

safely combined with linear interpolated Lagrange multipliers on Γ
i
 and thus can be used for 

2D FSI applications. The examples performed here had mostly qualitative purposes and more 

quantitative analyses are to be published in an upcoming paper. Even though the steady flow 

past the cylinder in section 5.1 shows very good agreement for the cp distribution when 

compared to similar simulations as in [12]. 
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