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Abstract. In this work, the computational performance of the Dynamic Diffusion method isaddressed
when the GMRES method is used to solve the resulting linear system. The DD method, introduced
by Arruda, Almeida and Dutra do Carmo (Dynamic Diffusion Formulations for Advection Dominated
Transport Problems, to appear), is a two-scale model for transport problem, obtained by adding to the
Galerkin formulation a nonlinear dissipative operator acting isotropically in allscales. The amount of the
artificial diffusion is determined by the solution of the resolved scale at the element level yielding a self
adaptive free parameter method. The discrete problem is solved by using the well known element-by-
element and edge-based storage local data schemes to optimize the matrix-vector product in the GMRES
algorithm. Comparisons between these two storage schemes are addressedfor a variety of numerical
experiments covering advection dominated regimes. Our experiments have shown that the edge-based
storage scheme leads to less CPU time and, since the resulting matrix is not well conditioned for some
problems, the GMRES algorithm might fail for some dimensions of restart vectors.
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1 INTRODUCTION

The aim of this work is to address and analyze the computational performance of the
Dynamic Diffusion method when the GMRES method is used to solve the resulting linear
system. The DD is a finite element two-scale model for transport problems, obtained by adding
to the Galerkin formulation a nonlinear dissipative operator acting isotropically in all scales. It
was developed based on the general concept of eddy viscositymethods in which a dissipation
mechanism is introduced either on all scales or on the subgrid scale. The methods developed in
Guermond(2001); Kaya and Rivière(2005) are, for example, subgrid eddy viscosity methods
since they introduce eddy viscosity models only onto the small scales. They are similar in
spirit to the spectral viscosity technique introduced inTadmor(1989) to approximate nonlinear
conservation equations by means of spectral methods (Ern and Guermond(2004)). However,
like most stabilized methods for transport problems, the methods developed inGuermond
(2001); Kaya and Rivière(2005) require tunable parameters whose selection is a tricky task
for actual problems.

The artificial diffusion introduced by the DD method, on the other hand, is dynamically
determined by imposing some restrictions on the resolved scale solution at the macro element
level in the same spirit of the methods presented inSantos and Almeida(2007); Arruda et al.
(2010). These two nonlinear subgrid methods were attempts to avoid user-defined coefficients
by means of subgrid diffusion operators which are nonlinearlocal functionals of the resolved
scale solution. Following the multiscale concept of splitting the variable of interest into a
resolved coarse scale and an unresolved subgrid scale, the definition of the subgrid diffusion
relies on the assumption that the velocity field may also be decomposed into these two scales
and the subgrid velocity field is then used to determine the amount of diffusion that is able
to dissipate the kinetic energy at the smallest scales. These free parameter methods present
good stability and convergence properties for singular perturbed transport problems, although
oscillations still remain in some situations, mainly when the velocity field is not constant
and when external layers are present. To overcome these drawbacks, the DD method was
developed by Arruda, Almeida and Dutra do Carmo (to appear). The underline idea still is
to control the resolved scale solution so that the spurious modes are confined to the subgrid
scales. This is done by adding to the Galerkin formulation anartificial diffusion nonlinear
operator that isotropically acts on all scales. The consistency, stability and convergence
properties of the resulting methodology relies on the definition of the artificial diffusion. Like in
Santos and Almeida(2007); Arruda et al.(2010), the artificial diffusion is designed through the
definition of the subgrid velocity field. In order to reduce the computational cost typical of two-
scale methods, the small scale space is defined using bubble functions whose degrees of freedom
are condensed onto the resolved scale degrees of freedom. Moreover, the final discrete setting is
implemented e evaluated into local data structure framework, by using element-by-element and
edge-based storages (Coutinho et al.(2001); Catabriga and Coutinho(2002)). They optimize
the matrix-vector products of the GMRES algorithm (Saad(1995)) that is ultimately used to
solve the resulting algebraic linear systems. These two storage strategies are compared for a
variety of numerical experiments covering the advection dominated regime.

The remainder of this work is organized as follows. Section 2briefly addresses the transport
problem and introduces the DD method. The element-based andedge-based structures are
promptly described in section 3. Numerical experiments areconducted in Section 4 to show
the behavior of the proposed methodologies for a variety of transport problems focusing in
advection dominated regime. Section 5 concludes this paper.
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2 THE DYNAMIC DIFFUSION STABILIZATION METHOD

Consider the steady scalar advection-diffusion-reaction problem whose solutionu satisfies

− ǫ∆u+ β ·∇u+ σu = f in Ω; (1)

u = g onΓD; (2)

ǫ∇u · n = q onΓN , (3)

whereΩ ⊂ R
2 (the extension toRn is straightforward) is an open bounded domain with a

Lipschitz boundaryΓ. As usual,Γ is divided into two parts, denoted byΓD eΓN , such thatΓD∩
ΓN = ∅. ΓD andΓN are the part of the boundary on which Dirichlet boundary conditions and
Neumann boundary conditions are prescribed, respectively. β is the divergence free velocity
field, σ is the reaction coefficient,0 < ǫ ≪ 1 is the (constant) diffusion coefficient,f is the
source term, andn is the unit outward normal vector to the boundaryΓ. The outflow part ofΓ
is defined asΓ+ = {x ∈ Γ : β(x) · n < 0}. It is assumed thatβ ∈ W 1,∞(Ω), σ ∈ L∞(Ω),
g ∈ H1/2(ΓD), q ∈ H−1/2(ΓN) andf ∈ L2(Ω).

Let Th be a triangulation of the domainΩ with elementsT . A finite element formulation to
(1)-(3) can be written as:

Finduh ∈ Uh(Ω) such that (4)

a(uh, vh) = F (vh), ∀vh ∈ Vh(Ω), (5)

whereUh andVh are finite dimensional subspaces ofU = H1(Ω) andV = H1
0 (Ω), respectively,

h is the characteristic element length and

a(uh, vh) =

∫

Ω

(ǫ∇uh ·∇vh + β ·∇uhvh + σuhvh)dΩ, (6)

F (vh) =

∫

Ω

fvhdΩ +

∫

ΓN

qvhdΓ. (7)

One obtains the standard Galerkin formulation by using the same function space for bothUh

andVh (except onΓD).
The standard Galerkin finite element method is not optimal for solving advection dominated

problems (Donea and Huerta(2003)). Stable solutions can be obtained using stabilized
or multiscale methods, as SUPG, GLS, RFB, VMS and subgrid viscosity techniques
(Brooks and Hughes(1982); Hughes et al.(1989); Brezzi et al.(2003); Hughes et al.(2004);
Guermond(2001)). Here, we use a two-scale method originally by Arruda, Almeida and Dutra
do Carmo (to appear).

Consider the following decomposition of the approximation space

Uh = UL ⊕ UB ,

where
UL = {u ∈ H1

0 (Ω) such thatu|T ∈ P1, ∀T ∈ Th},
with P1 denoting the space of linear polynomials and thebubblespace (see Figure1)

UB = {v such thatv|T ∈ H1
0 (T ), ∀T ∈ Th}.

Mecánica Computacional Vol XXIX, págs. 3865-3881 (2010) 3867

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



UL nodes

UB nodes

T

Figure 1: Schematic representation of thebubblespace

The Dynamic Diffusion method, proposed by Arruda, Almeida and Dutra do Carmo (to
appear), is given by

Finduh = uL + ub ∈ Uh with uL ∈ UL, ub ∈ UB such that

a(uh, vh) +
∑

T

∫

T

ξ(uL)∇uh ·∇vhdΩ = F (vh), ∀vh ∈ Uh, (8)

where

ξ(uL) =

{
1
2
µ(h) |R(uL)|

|∇uL|
, if |∇uL| > tol;

0, otherwise,
(9)

with µ(h) stands for the subgrid characteristic length and

R(uL) = β ·∇uL + σuL − f onT.

When |∇uL| is small, there is no need of extra stabilization term since the Galerkin solution
is stable enough. The amount of artificial diffusion term provided in (8) dynamically adapts
to this situation, yielding a self adaptive method. The tolerancetol in (9) must only be small
enough to avoid division by zero. Here we settol = 10−6. This choice may lead to some
convergence difficulties, which are reported in this work. Asmaller tolerance, such astol =
10−10, overcomes the convergence difficulties.

The method is solved by using an iterative procedure for which the initial solution is obtained
usingξ(uL) =

√
measT . The iterative process is defined by: Givenun−1

h , we findun
h satisfying

a(un
h, vh) +

∫

T

∑

T

ξ(un−1
L )∇un

h ·∇vhdΩ = (f, vh), ∀vh ∈ Uh, (10)

with ξ(un−1
L ) = cnbµ(h), where

cnb =

{
1
2

|R(un−1

L
)|

|∇un−1

L
|
, if |∇un−1

L | > tol;

0, otherwise,
(11)

and

µ(h) =

{

2
√
measT , if T ∩ Γ+ 6= ∅;√
measT , otherwise.

(12)
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To improve convergence, the following average rule to determine cnb is used
(Santos and Almeida(2007)):

cnb =
1

2
(cnb + cn−1

b ).

SinceuL is linear onT , the Green’s theorem yields
∫

T

ξ(un−1
L )∇un

h ·∇vhdΩ =

∫

T

ξ(un−1
L )∇un

L ·∇vLdΩ +

∫

T

ξ(un−1
L )∇un

b ·∇vbdΩ.

Testing (8) usingvL ∈ UL andvb ∈ UB and using the previous equality we obtain

a(un
L, vL) +

∑

T

∫

T

ξ(un−1
L )∇un

L ·∇vLdΩ + a(un
b , vL) = F (vL), ∀vL ∈ UL; (13)

a(un
L, vb) + a(un

b , vb) +
∑

T

∫

T

ξ(un−1
L )∇un

b ·∇vbdΩ = F (vb), ∀vb ∈ UB. (14)

The local equation system associated with each elementT may be partitioned as
[
ALL ALB

ABL ABB

] [
uL;T

ub;T

]

=

[
FL

FB

]

(15)

where the local matrices are given by

ALL :

∫

T

((ǫ+ ξ(un−1
L ))∇uL ·∇vL + β ·∇uLvL + σuLvL)dΩ (16)

ALB :

∫

T

(ǫ∇uL ·∇vb + β ·∇uLvb + σuLvb)dΩ (17)

ABL :

∫

T

(ǫ∇ub ·∇vL + β ·∇ubvL + σubvL)dΩ (18)

ABB :

∫

T

((ǫ+ ξ(un−1
L ))∇ub ·∇vb + β ·∇ubvb + σubvb)dΩ (19)

FL :

∫

T

fvLdΩ (20)

FB :

∫

T

fvbdΩ (21)

Performing a static condensation of the unknownsub at each element, the local problem
becomes

AT uL;T = FT ,

whereAT = ALL − ALBA
−1
BBABL andFT = FL − ALBA

−1
BBFB.

After assembling the contributions of allT ∈ Th, the following new global linear system is
obtained

AU = F , (22)

where

A =
nel

A
T=1

AT ; F =
nel

A
T=1

FT ; U =
nel

A
T=1

uL;T . (23)

In this expression,nel is the total number of elements of the meshTh.
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3 ELEMENT-BASED AND EDGE-BASED STRUCTURES

Element-based and Edge-based structures have been extensively used in finite
element implementations, resulting in considerable improvements comparing to standard
implementations. The success of this solution strategy requires an efficient implementation
of matrix-vector products and the choice of a suitable pre-conditioner. Generally, the edge-
based data structure reduces processing time and requires around one half of the storage area
to hold the coefficient matrix when compared to an enhanced element-based implementation
(Coutinho et al.(2001); Catabriga and Coutinho(2002)). We perform an implementation of the
DD method using element-based and edge-based implementations.

Figure2 shows a set of two adjacent elements,e andf , and the associated edges. The
conventional finite element data structure associated witheach triangle is its connectivity (i.e.,
the mesh nodesI, J andK for elemente, and the mesh nodesI, L andJ for elementf ). In
the edge-based data structure, each edges is associated with the adjacent elementse andf
and, thus, with the nodesI, J , K andL as shown in Figure2. So, each element matrix can

s

I

J

K

L
f

e

Figure 2: Elements adjacent to edges, formed by nodesI eJ.

be disassembled into its contributions, i.e., three edges,s, s + 1 ands + 2, with, respectively,
connectivitiesIJ , JK andKI, that is,





• • •
• • •
• • •





︸ ︷︷ ︸

elemente

=





× × 0

× × 0

0 0 0





︸ ︷︷ ︸

edges

+





0 0 0

0 × ×
0 × ×





︸ ︷︷ ︸

edges+ 1

+





× 0 ×
0 0 0

× 0 ×





︸ ︷︷ ︸

edges+ 2

, (24)

where• and× are matrix coefficients defined from (22). Thus, all the contributions belonging
to edges will be present in the adjacent elementse andf .

The resulting edge matrix is the sum of the corresponding sub-element matrices containing
all the contributions of nodesI andJ ,

[
◦ ◦
◦ ◦

]

︸ ︷︷ ︸

edges

=

[
× ×
× ×

]

︸ ︷︷ ︸

elemente

+

[
× ×
× ×

]

︸ ︷︷ ︸

elementf

. (25)

Considering a conventional element wise description of a given finite element mesh, the
topological information can be manipulated to generate a new edge-based mesh description.
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Thus, the assembled global matrices given in equation (23) may be written now as,

A =

nedges

A
S=1

AS; F =

nedges

A
S=1

FS; U =

nedges

A
S=1

uL;S. (26)

wherenedges is the total number of edges of the meshTH . The edge matrixAS is obtained
from the contributions of all the element matricesAT (Eq. (23)) that share the edgeS.

In the element by element (EBE) implementation strategy, thecoefficients of the global
matrix are stored in each macro element matrix as defined by (23). The global matrixA is
stored in a compact form of sizenel × 9. On the other hand, in the edge-based (EDS) strategy
the coefficients of the global matrix, defined by (26), are also stored in a compact form of size
nedges× 4.

4 NUMERICAL EXPERIMENTS

In this section we present numerical results in order to evaluate the computational
performance of the Dynamic Diffusion method when the GMRES method is used to solve the
resulting linear system. In the following,Kmax is the number of Krylov vectors to restart the
GMRES method,IterDD is the maximum number of iterations for the DD method,IterGMRES

is the maximum number of GMRES iterations andCPUtime is the computational time. We also
usetolDD andtolGMRES to indicate the threshold tolerances of the DD and GMRES iterative
processes.

4.1 Internal and external layers

This example simulates a two-dimensional advection dominated advection-diffusion
problem withǫ = 10−12, f = σ = 0 andβ = (0.5, 1) (example 4.1-a) andβ = (1, 1)
(example 4.1-b). The Dirichlet boundary condition are

u(0, y) = u(1, y) = u(x, 1) = 0

and

u(x, 0) =

{

1, x ≤ 0.3 ;

0, x > 0.3.

These conditions yield a solution with an internal layer in the direction of the velocity field
starting at(0.3, 0.) and an exponential external layer at the outflow.

Figure3 shows the EBE/EDS-based approximate solution forβ = (0.5, 1), using a mesh
with 40 × 40 cells. Both solutions present some smearing behavior at bothinternal and
external layers. Figure4 depicts the maximum (max) and minimum (min) values of the main
diagonal of global matrix at each non linear iteration of theiterative process solution, using
GMRES(60) and a80 × 80 mesh. The behavior of these values during the iterative procedure
may help to identify an eventual ill-conditioning of the matrix. Since the errors associated
with computations become significantly magnified due to ill-conditioning and the evaluation of
the condition of a matrix is usually computationally expensive, an increase of the difference
betweenmaxandmin during the iterative procedure may indicate that the matrixis not well
conditioned. Hence, this heuristic measure may be useful inunderstanding unexpected solution
behaviors. In this case, Figure4 does not indicate ill-conditioning of the global matrix.

Table1 presents the computational performance of the element-based (EBE) and edge-based
(EDS) data structures, respectively, using a80 × 80 mesh. TheCPUtime spent for solving the
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problem by using the edge-based approach is approximately22% smaller than the element-
based one.
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Figure 3: Example 4.1-a) - EBE (a) and EDS (b) solutions -40 × 40 mesh, GMRES(60),tolGMRES =
10−7, tolDD = 10−2 – Internal and external layers forβ = (0.5, 1).
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Figure 4: Example 4.1-a)logmax andlogmin versusnumber of iterations –80 × 80 mesh – Internal
and external layers forβ = (0.5, 1).

80× 80 mesh
Element Edge

Kmax IterDD IterGMRES CPUtime IterDD IterGMRES CPUtime

10 9 2984 07.784 9 3005 07.597
30 9 4074 10.545 9 4105 09.079
60 9 5155 14.461 9 5243 11.949
80 9 5448 16.426 9 5567 13.525
100 9 5011 16.504 9 5016 13.915

Table 1: Computational Efforts - EBE and EDS structures – Internal and external layers forβ = (0.5, 1).
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Figure5 shows the EBE/EDS-based approximate solution withβ = (1, 1) obtained by using
a mesh with40 divisions in each direction. The internal layer is well represented while a
negligible oscillation appears in the neighborhood of the outflow. Figure6 depicts the maximum
and minimum values of the main diagonal of global matrix, using GMRES(80) and a80 × 80
mesh. We may notice that the difference between these valuesincreases after the sixth iteration
indicating an ill-conditioning of the global matrix, whichis expected to affect the convergence
of the non linear iterative process. This indeed happens so that the DD iterative process does not
converge forKmax = 10, 30, 60, 80, yielding nonphysical solution by the end of the process.
By increasingKmax, the DD iterative process recovers its convergence property but that can
be lost again by refining the mesh. To overcome this difficulty, a pre-conditioning strategy may
be introduced to prevent ill-conditioned matrices. We alsonotice that the lack of convergence
is related to the choice oftol (equation (9)), which has to be close to the machine epsilon.
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Figure 5: Example 4.1-b) - EBE (a) and EDS (b) solutions -40× 40 mesh, GMRES(100),tolGMRES =
10−7, tolDD = 10−2 – Internal and external layers forβ = (1, 1).
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Figure 6: Example 4.1-b)logmax andlogmin versusnumber of iterations –80 × 80 mesh – Internal
and external layers forβ = (1, 1).
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4.2 Internal and external layers with source term

This example simulates a two-dimensional advection dominated advection-diffusion
problem withǫ = 10−6, β = (1, 0), σ = 0 and a constant source termf = 1. The Dirichlet
boundary conditions are given by

u(0, y) = u(1, y) = u(x, 1) = 0 and u(x, 0) =

{

0, x < 0.5 ;

1, x ≥ 0.5.

The exact solution of this problem possesses parabolic layers atx = 0 andx = 1 and an
exponential layer aty = 1. Also, an internal layer emanates from the discontinuity ofthe
inflow boundary data atx = 0.5.

The element-based and edge-based solutions are shown in Figure 7. The approximate
solutions are practically free from numerical oscillations, except in the neighborhood of the
exponential layer, where a non-monotone behavior is presented. According to Figure8
the global matrix seems well-conditioned. Table2 present the computational performance
considering both data structures with a tolerance of the GMRES method of10−7. The non linear
iterative process converges for all values ofKmax, except forKmax = 10. As expected, the
edge-based approach is approximately40% faster than the element-based one.
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Figure 7: Example 4.2 - Element (a) and Edge (b) solutions -40× 40 mesh, GMRES(60),tolGMRES =
10−7, tolDD = 10−2 – Internal and external layers with source term.

4.3 Variable flow field with internal and external layers

In this problem, the domain is given byΩ = (−1, 1)× (0, 1) and the velocity field is

β = (2y(1− x2),−2x(1− y2)).

The inflow and outflow boundary are the intervals

{(x, 0)| − 1 ≤ x ≤ 0} and{(x, 0)|0 < x < 1},
respectively. At the outflow the following natural boundarycondition is prescribed

∂u(x, 0)

∂n
= 0, 0 < x < 1.
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Figure 8: Example 4.2 -logmax and logmin versusiterations number, using a80 × 80 mesh and
GMRES(60) – Internal and external layers with source term.

80× 80 mesh
Element Edge

Kmax IterDD IterGMRES CPUtime IterDD IterGMRES CPUtime

10 50 40412 92.539 50 40415 42.026
30 18 25068 57.907 18 25081 30.513
60 18 21479 56.971 18 21510 33.758
80 18 19347 56.238 18 19269 35.563
100 18 18735 58.624 18 18733 39.031
150 18 13656 51.464 18 13656 38.095

Table 2: Computational Efforts – Internal and external layers with source term -β = (1, 0), tolGMRES = 10−7.
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Dirichlet boundary conditions are set on the remainder of boundaryΓ. At the inflow, there is a
discontinuity given by

u(x, 0) =

{

0, −1 ≤ x < −0.5;

1, −0.5 ≤ x ≤ 0.0.

On the remaining boundary, we setu = 0 at x = −1, u = 0 at y = 1 andu = 1 at x =
1. The inflow discontinuity is convected by the circular flow towards the outflow boundary.
Moreover, an external layer appears atx = 1. Figure9 shows the solutions obtained using the
element-based and edge-based data structures, respectively. The approximate solutions are well
represented. In this example, in the neighborhood of the external layer inx = 1, we used the
following new subgrid characteristic length

µ(h) =
|β|
|bT |

, b = (∇NT
)β,

where the tensor∇NT
is the Jacobian of the coordinate system andNT denotes the element

local coordinates. Figure10 depicts the maximum and minimum values of the main diagonal
of global matrix, obtained by using GMRES(80) and a160 × 80 mesh. In this case, although
the difference between these values increases with the number of iterations, such difference is
not as large as that one observed in Example 4.1 whenβ = (1, 1) is used. Table3 presents
the computational performance considering both data structures, using a80 × 40 mesh. The
iterative process converges in13 iterations. The edge-based approach is approximately30%
faster than the element-based one. Table4 shows the results obtained by using a160×80 mesh.
The convergence of the iterative process is obtained for alltested values ofKmax. As expected,
the edge-based approach is again approximately30% faster than the element-based one.
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Figure 9: Example 4.3 - Element (a) and Edge (b) solutions -80× 40 mesh, GMRES(60),tolGMRES =
10−7, tolDD = 10−2 – Variable flow field with internal and external layers.

4.4 The Burgers equation

In this example we consider the Burgers equation given by

−ǫ∆u+ u
∂u

∂y
= 0
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Figure 10: Example 4.3 -logmax andlogmin versusnumber of iterations, using a160× 80 mesh and
GMRES(60) – Variable flow field with internal and external layers.

80× 40 mesh
Element Edge

Kmax IterDD IterGMRES CPUtime IterDD IterGMRES CPUtime

10 13 8998 11.044 13 8997 5.413
30 13 16455 18.954 13 16458 9.672
60 13 16971 21.606 13 16957 12.339
80 13 16955 23.774 13 17166 14.211
100 13 16695 25.131 13 16389 15.366
150 13 15198 27.190 13 15157 18.954

Table 3: Computational Efforts – Variable flow field with internal and external layers,tolGMRES = 10−7.

160× 80 mesh
Element Edge

Kmax IterDD IterGMRES CPUtime IterDD IterGMRES CPUtime

10 41 36713 169.306 38 34064 76.689
30 15 28784 137.046 17 34638 87.781
60 14 37069 194.859 14 37217 119.667
80 14 39355 221.426 14 39287 138.871
100 14 39688 240.489 14 40112 162.739
150 14 40009 290.768 14 39873 204.859

Table 4: Computational Efforts – Variable flow field with internal and external layers,tolGMRES = 10−7.
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and defined inΩ = (0, 1) × (−1, 1), with ǫ = 10−4. The Dirichlet boundary conditions are
prescribed as follows:u = 1 at y = −1 andu = −1 at y = 1. Homogeneous Neumann
boundary conditions are prescribed atx = 0 andx = 1. The initial solution of the iterative
process is characterized by two fronts aty = −0.2 andy = 0.2, which eventually collapse
at the end of the iterative procedure. The approximate solutions are shown in Figure11. We
can observe that the discontinuity is accurately represented in both solutions. According to
Figure12, there is an indication that the global matrix is not ill-conditioned. The computational
performance of the DD method was evaluated considering the element-based and edge-based
data structures. The numerical results are presented in Table 5 and Table6. Using a40 ×
80 mesh, the iterative process converges in38 iterations, while using a80 × 160 mesh the
convergence is obtained in39 iterations. This amounts to a computational gain of about20%
when the edge-based structured is used.
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Figure 11: Example 4.4 - Element (a) and Edge (b) solutions -80×40 mesh, GMRES(60),tolGMRES =
10−7, tolDV = 10−2 – The Burgers equation.
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Figure 12: Example 4.4 -logmax andlogmin versusnumber of iterations, using a80× 160 mesh and
GMRES(60) – The Burgers equation.
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40× 80 mesh
Element Edge

Kmax IterDV IterGMRES CPUtime IterDV IterGMRES CPUtime

10 38 8544 12.105 38 8776 7.269
30 38 10300 14.258 38 10274 8.767
60 38 11193 16.848 38 11234 11.029
80 38 7262 12.792 38 7199 9.266
100 38 6297 12.292 38 6379 9.250
150 38 6143 13.525 38 6262 10.795

Table 5: Computational Efforts – The Burgers Equation,tolGMRES = 10−7.

80× 160 mesh
Element Edge

Kmax IterDV IterGMRES CPUtime IterDV IterGMRES CPUtime

10 39 13028 69.856 39 12951 48.126
30 39 17398 91.213 39 17573 61.573
60 39 20992 121.960 39 21165 84.177
80 39 24959 154.252 39 24983 106.236
100 39 23555 158.901 39 5637 18.627
150 39 5117 23.197 39 5250 20.670

Table 6: Computational Efforts – The Burgers Equation,tolGMRES = 10−7.
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5 CONCLUSIONS

In this work, the computational performance of the Dynamic Diffusion method was
addressed when the GMRES method is used to solve the resultinglinear system. The discrete
problem was solved by using the well known element-by-element and edge-based storage local
data schemes to optimize the matrix-vector product in the GMRES algorithm. We addressed
comparisons between these two storage schemes for a varietyof numerical experiments
covering advection dominated regimes. Our experiments have shown that in almost all cases
the edge-based storage scheme leads to less CPU time and, since the resulting matrix is not
well conditioned for some problems, the GMRES algorithm might fail for some dimensions of
restart vectors.
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