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Abstract. In this work, the computational performance of the Dynamic Diffusion methaddsessed
when the GMRES method is used to solve the resulting linear system. The DD meattroduced
by Arruda, Almeida and Dutra do Carmo (Dynamic Diffusion Formulations fdveéction Dominated
Transport Problems, to appear), is a two-scale model for transpubteon, obtained by adding to the
Galerkin formulation a nonlinear dissipative operator acting isotropically scales. The amount of the
artificial diffusion is determined by the solution of the resolved scale at tmeezitlevel yielding a self
adaptive free parameter method. The discrete problem is solved by usimgethknown element-by-
element and edge-based storage local data schemes to optimize the matmipraauct in the GMRES
algorithm. Comparisons between these two storage schemes are addivessedriety of numerical
experiments covering advection dominated regimes. Our experiments l@ave #at the edge-based
storage scheme leads to less CPU time and, since the resulting matrix is notnditioreed for some
problems, the GMRES algorithm might fail for some dimensions of restart secto
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1 INTRODUCTION

The aim of this work is to address and analyze the computtiparformance of the
Dynamic Diffusion method when the GMRES method is used toestie resulting linear
system. The DD is a finite element two-scale model for trarigoblems, obtained by adding
to the Galerkin formulation a nonlinear dissipative operaicting isotropically in all scales. It
was developed based on the general concept of eddy viseosttyods in which a dissipation
mechanism is introduced either on all scales or on the sdisgele. The methods developed in
Guermond200]); Kaya and Rivierg2009 are, for example, subgrid eddy viscosity methods
since they introduce eddy viscosity models only onto thellsetales. They are similar in
spirit to the spectral viscosity technique introducedaamor(1989 to approximate nonlinear
conservation equations by means of spectral methadsgnd Guermon@004)). However,
like most stabilized methods for transport problems, thehods developed irGuermond
(200)); Kaya and Rivierg(2005 require tunable parameters whose selection is a tricky tas
for actual problems.

The artificial diffusion introduced by the DD method, on thiher hand, is dynamically
determined by imposing some restrictions on the resolvatk solution at the macro element
level in the same spirit of the methods presente@amtos and Almeidé2007); Arruda et al.
(2010. These two nonlinear subgrid methods were attempts ta@aw®r-defined coefficients
by means of subgrid diffusion operators which are nonlineeal functionals of the resolved
scale solution. Following the multiscale concept of sipigtthe variable of interest into a
resolved coarse scale and an unresolved subgrid scaleefingidn of the subgrid diffusion
relies on the assumption that the velocity field may also lm®uigposed into these two scales
and the subgrid velocity field is then used to determine theushof diffusion that is able
to dissipate the kinetic energy at the smallest scales. elfree parameter methods present
good stability and convergence properties for singulatypleed transport problems, although
oscillations still remain in some situations, mainly whédw tvelocity field is not constant
and when external layers are present. To overcome theséachs; the DD method was
developed by Arruda, Almeida and Dutra do Carmo (to appeahe Underline idea still is
to control the resolved scale solution so that the spurioade® are confined to the subgrid
scales. This is done by adding to the Galerkin formulatioradiiicial diffusion nonlinear
operator that isotropically acts on all scales. The coest, stability and convergence
properties of the resulting methodology relies on the ddimiof the artificial diffusion. Like in
Santos and Almeid@007); Arruda et al (2010, the artificial diffusion is designed through the
definition of the subgrid velocity field. In order to reduce tomputational cost typical of two-
scale methods, the small scale space is defined using buinloltans whose degrees of freedom
are condensed onto the resolved scale degrees of freedoraoo, the final discrete setting is
implemented e evaluated into local data structure framlemayr using element-by-element and
edge-based storageSdutinho et al(2001); Catabriga and Coutinh(2002). They optimize
the matrix-vector products of the GMRES algorithBa@d(1999) that is ultimately used to
solve the resulting algebraic linear systems. These twagéostrategies are compared for a
variety of numerical experiments covering the advectiomihated regime.

The remainder of this work is organized as follows. Sectidmiefly addresses the transport
problem and introduces the DD method. The element-basectdge-based structures are
promptly described in section 3. Numerical experimentscareducted in Section 4 to show
the behavior of the proposed methodologies for a varietyarisport problems focusing in
advection dominated regime. Section 5 concludes this paper
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2 THE DYNAMIC DIFFUSION STABILIZATION METHOD
Consider the steady scalar advection-diffusion-reactroblpm whose solution satisfies

—eAu+pB3-Vu+ou = f inQy (1)
w = g onI?; (2)
eVu-n = ¢ onl?, 3)

where) C R? (the extension tR” is straightforward) is an open bounded domain with a
Lipschitz boundary’. As usual] is divided into two parts, denoted by’ eIV, such that'® N
'V = (). ' andI' are the part of the boundary on which Dirichlet boundary @doas and
Neumann boundary conditions are prescribed, respectiy®lg the divergence free velocity
field, o is the reaction coefficienf) < ¢ < 1 is the (constant) diffusion coefficienf, is the
source term, ana is the unit outward normal vector to the bound&ryThe outflow part of”
is defined ad’, = {z € T : B(z) - n < 0}. Itis assumed thaB € W>(Q), o € L®(Q),
g€ HY2(TP),qe HV2(TV) andf € L*(Q).

Let 7, be a triangulation of the domalin with elementsl”. A finite element formulation to
(1)-(3) can be written as:

Findu;, € U,(€2) such that (4)
a(up, vp) = F(vy), Vo, € Va(Q), (5)

whereU,, andV;, are finite dimensional subspacedbf= H'(Q) andV = H} (), respectively,
h is the characteristic element length and

a(up,vp) = /(EVuh -V, + B - Vuyu, + oupop)dQ, (6)
Q
F(v,) = fon,dQ + / qupdl. (7
Q N

One obtains the standard Galerkin formulation by using #reesfunction space for bott,
andV}, (except orl'P).

The standard Galerkin finite element method is not optimasédving advection dominated
problems Donea and Huertd2003). Stable solutions can be obtained using stabilized
or multiscale methods, as SUPG, GLS, RFB, VMS and subgrid sigcdechniques
(Brooks and Hughe$1982; Hughes et al(1989; Brezzi et al.(2003; Hughes et al(2004);
Guermond2001). Here, we use a two-scale method originally by Arruda, dila and Dutra
do Carmo (to appear).

Consider the following decomposition of the approximatipace

Upy=U,®Ugp,

where
U = {u € Hy(Q) such that|; € P, VT € Ty},

with P; denoting the space of linear polynomials andhhibblespace (see Figur®

Up = {vsuch thav|; € H}(T),VT € Tp}.
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e [/; nodes
o Ug nodes

Figure 1: Schematic representation of thébblespace

The Dynamic Diffusion method, proposed by Arruda, Almeida &utra do Carmo (to
appear), is given by

Finduy, = ur, + vy, € U, With uy, € Up,up € Up such that

alup,vp) + Z/ E(ur)Vuy, - VordQ = F(vy), Yoy € Uy, (8)
= Jr

where

Lo(R)BUDL i N7, | > tol;
E(us) = {QM( e ©)

0, otherwise
with (k) stands for the subgrid characteristic length and
R(up) =B-Vuy+our— fonT.

When|Vug| is small, there is no need of extra stabilization term simge®alerkin solution
is stable enough. The amount of artificial diffusion termviled in @) dynamically adapts
to this situation, yielding a self adaptive method. Theraheetol in (9) must only be small
enough to avoid division by zero. Here we set = 10-¢. This choice may lead to some
convergence difficulties, which are reported in this worksrAaller tolerance, such asl =
101, overcomes the convergence difficulties.

The method is solved by using an iterative procedure for ttie initial solution is obtained
usingé(uy,) = VmeasT. The iterative process is defined by: Givep ', we findu} satisfying

a(uf vn) + / S e Vi VodQ = (fo), Vo € Uy, (10)
T

with £(u?) = ctu(h), where

l'R(UTLFlN I n—1 .
= 2 Vup? i |VuL | > tol; (11)
0, otherwise
and
(h) = 2v'measT, if TNT, # 0; 12
= vVmeasT, otherwise
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To improve convergence, the following average rule to detee c; is used
(Santos and Almeidé007):

5(024'02_1)-

Sinceuy, is linear onT’, the Green’s theorem yields

no__
G, =

/§ HYWVu) - Vu,dQ = /5 Hwvup - VdeQ+/£ DV - Vu,dQ.

Testing @) usingv;, € Uy, andv, € Up and using the previous equality we obtain

a(uf,vr) —I—Z/f Hvu? - VordQ+a(uy,vy) = F(up),Yor, € Ug;  (13)
a(uy,vp) + aluy,vp) + Z / Euy VU - VodQ = F(v,), Vo, € Up. (24)

The local equation system associated with each eleifiemay be partitioned as
a5 ] a9

where the local matrices are given by

Arp - /T((e +&(up 1)) Vuy - Vo + B+ Vugur, + ougvg)dQ (16)
Arp /T (eVur - Vo, + B+ Vurvy + oupvy)dS (17)
Apr /T(eVub -Vour + B Vuyvr + oupvy,)dS (18)
App /T (6 + £ Vuy - Vo + B - Vagwy + ouyy)d2 (19)
Fr /T fordQ (20)
/ fupdQ2 (21)

T

Performing a static condensation of the unknowmnsat each element, the local problem
becomes
Ar Ur.T = Fr,

WhereAT = ALL — ALBAélgABL and]—"T = FL — ALBAEleB.
After assembling the contributions of &Il € 7, the following new global linear system is
obtained

AU = F, (22)
where
nel nel nel
A=A Az F=AF U=Aus. (23)
T=1 T=1 T=1

In this expressiomel is the total number of elements of the mégh
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3 ELEMENT-BASED AND EDGE-BASED STRUCTURES

Element-based and Edge-based structures have been weslgnsised in finite
element implementations, resulting in considerable iwm@moents comparing to standard
implementations. The success of this solution strategyires an efficient implementation
of matrix-vector products and the choice of a suitable mneditioner. Generally, the edge-
based data structure reduces processing time and requingsdaone half of the storage area
to hold the coefficient matrix when compared to an enhanceheht-based implementation
(Coutinho et al(2001); Catabriga and Coutinh@002). We perform an implementation of the
DD method using element-based and edge-based implenoerstati

Figure 2 shows a set of two adjacent elementsand f, and the associated edge The
conventional finite element data structure associated @dtih triangle is its connectivity (i.e.,
the mesh nodesg, J and K for elemente, and the mesh nodds L andJ for elementf). In
the edge-based data structure, each edgeassociated with the adjacent elementsnd f
and, thus, with the nodels J, K and L as shown in Figur€. So, each element matrix can

Figure 2: Elements adjacent to edgéormed by nodes e J.

be disassembled into its contributions, i.e., three edges;+ 1 ands + 2, with, respectively,
connectivities/ J, JK andK I, that is,

e o o x x 0 0 0 O x 0 X
e ¢ o|=| X X O0|+]0 x x|+]0 0 0], (24)
e o o 0O 0O 0 X x x 0 X
elemente edEes edgevs +1 edgevs +2

wheree and x are matrix coefficients defined frori). Thus, all the contributions belonging
to edges will be present in the adjacent elementand f.

The resulting edge matrix is the sum of the correspondingedeliment matrices containing
all the contributions of nodesand ./,

o o X X X X
\q,_/ - ~ / - ~ /
edges elemente elementf

Considering a conventional element wise description of &rgifinite element mesh, the
topological information can be manipulated to generateva e#ge-based mesh description.
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Thus, the assembled global matrices given in equagi8nrfay be written now as,

nedges nedges nedges

A= Sél As; F= él Fs: U= f\ UL (26)

wherenedges is the total number of edges of the megh. The edge matrix4s is obtained
from the contributions of all the element matricds (Eq. (23)) that share the edge.

In the element by element (EBE) implementation strategy,cthefficients of the global
matrix are stored in each macro element matrix as defined®8y (The global matrixA4 is
stored in a compact form of sizez/ x 9. On the other hand, in the edge-based (EDS) strategy
the coefficients of the global matrix, defined [6), are also stored in a compact form of size
nedges X 4.

4 NUMERICAL EXPERIMENTS

In this section we present numerical results in order to uatal the computational
performance of the Dynamic Diffusion method when the GMRE$hoe is used to solve the
resulting linear system. In the followindsmax is the number of Krylov vectors to restart the
GMRES method/terpp is the maximum number of iterations for the DD methd@y cirres
is the maximum number of GMRES iterations aniéU;,,,. is the computational time. We also
usetolpp andtolcy res 10 indicate the threshold tolerances of the DD and GMREStitera
processes.

4.1 Internal and external layers

This example simulates a two-dimensional advection dotathaadvection-diffusion
problem withe = 1072, f = ¢ = 0 andB3 = (0.5,1) (example 4.1-a) angg = (1,1)
(example 4.1-b). The Dirichlet boundary condition are

uw(0,y) =u(l,y) =u(z,1) =0

and

1, <0.3;
u(x’o):{o 2> 0.3

These conditions yield a solution with an internal layerhe tdirection of the velocity field
starting at(0.3,0.) and an exponential external layer at the outflow.

Figure 3 shows the EBE/EDS-based approximate solutiondor (0.5, 1), using a mesh
with 40 x 40 cells. Both solutions present some smearing behavior at imd¢hnal and
external layers. Figuré depicts the maximumniaX and minimum (in) values of the main
diagonal of global matrix at each non linear iteration of iieeative process solution, using
GMRES(60) and &0 x 80 mesh. The behavior of these values during the iterativegohae
may help to identify an eventual ill-conditioning of the mat Since the errors associated
with computations become significantly magnified due tadhditioning and the evaluation of
the condition of a matrix is usually computationally expeasan increase of the difference
betweenmaxandmin during the iterative procedure may indicate that the masirot well
conditioned. Hence, this heuristic measure may be usetuiderstanding unexpected solution
behaviors. In this case, Figudedoes not indicate ill-conditioning of the global matrix.

Tablel presents the computational performance of the elemerE(&BE) and edge-based
(EDS) data structures, respectively, usingfax 80 mesh. The” PUy;,,,. spent for solving the
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problem by using the edge-based approach is approxim22élysmaller than the element-
based one.

<)

S

e.————
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=

0.2

@) (b)

Figure 3: Example 4.1-a) - EBE (a) and EDS (b) solution)-x 40 mesh, GMRES(60)0lgrrEs =
1077, tolpp = 1072 — Internal and external layers fgr= (0.5,1).
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Figure 4: Example 4.1-a)og max andlog min versusnumber of iterations 80 x 80 mesh — Internal
and external layers fg8 = (0.5, 1).

80 x 80 mesh
Element Edge
Kmax | Iterpp ItercyrEs CPUipme | Iterpp ItergymrEs CPUime
10 9 2984 07.784 9 3005 07.597
30 9 4074 10.545 9 4105 09.079
60 9 5155 14.461 9 5243 11.949
80 9 5448 16.426 9 5567 13.525
100 9 5011 16.504 9 5016 13.915

Table 1: Computational Efforts - EBE and EDS structures erhrl and external layers fér= (0.5, 1).
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Figure5 shows the EBE/EDS-based approximate solution With (1, 1) obtained by using
a mesh with40 divisions in each direction. The internal layer is well reggnted while a
negligible oscillation appears in the neighborhood of thilow. Figure6 depicts the maximum
and minimum values of the main diagonal of global matrixngSbMRES(80) and &80 x 80
mesh. We may notice that the difference between these vimaesases after the sixth iteration
indicating an ill-conditioning of the global matrix, whigk expected to affect the convergence
of the non linear iterative process. This indeed happensaidtie DD iterative process does not
converge forkmax = 10, 30, 60, 80, yielding nonphysical solution by the end of the process.
By increasingKmax, the DD iterative process recovers its convergence prppeittthat can
be lost again by refining the mesh. To overcome this difficaltyre-conditioning strategy may
be introduced to prevent ill-conditioned matrices. We alstice that the lack of convergence
is related to the choice @bl (equation 9)), which has to be close to the machine epsilon.

() (b)

Figure 5: Example 4.1-b) - EBE (a) and EDS (b) solution#)-x 40 mesh, GMRES(100)plgrrrES =
1077, tolpp = 1072 — Internal and external layers fér= (1, 1).
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Figure 6: Example 4.1-bJog max andlog min versusnumber of iterations 80 x 80 mesh — Internal
and external layers fos = (1,1).
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4.2 Internal and external layers with source term

This example simulates a two-dimensional advection dotathaadvection-diffusion
problem withe = 1075, 8 = (1,0), 0 = 0 and a constant source terfn= 1. The Dirichlet
boundary conditions are given by

0, x<0.5;

u(0,y) = u(ly) = u(e,) =0 and u(z,0)=1 " "

The exact solution of this problem possesses paraboliedagter = 0 andz = 1 and an
exponential layer ay = 1. Also, an internal layer emanates from the discontinuitythef
inflow boundary data at = 0.5.

The element-based and edge-based solutions are shownurekig The approximate
solutions are practically free from numerical oscillaBpmexcept in the neighborhood of the
exponential layer, where a non-monotone behavior is pteden According to Figure8
the global matrix seems well-conditioned. Taldleoresent the computational performance
considering both data structures with a tolerance of the GBIRIEthod ofl0~". The non linear
iterative process converges for all valuesiofaz, except forkmax = 10. As expected, the
edge-based approach is approximatgly; faster than the element-based one.
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Figure 7: Example 4.2 - Element (a) and Edge (b) solutiod8 x 40 mesh, GMRES(60Yolan rESs =
1077, tolpp = 102 — Internal and external layers with source term.

4.3 Variable flow field with internal and external layers
In this problem, the domain is given By = (—1,1) x (0, 1) and the velocity field is
B =(2y(1 - 2*), —2z(1 - y*)).
The inflow and outflow boundary are the intervals
{(z,0)] =1 <z <0}and{(z,0)|0 < z < 1},
respectively. At the outflow the following natural boundaopndition is prescribed
Ju(z,0)

—_— = 1.
on 0, O<e<
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Figure 8: Example 4.2 dogmax andlog min versusiterations number, using & x 80 mesh and
GMRES(60) — Internal and external layers with source term.

80 x 80 mesh
Element Edge
Kmax | Iterpp | Itergyures | CPUime | Iterpp | Iteraymres | CPUiime
10 50 40412 92.539 50 40415| 42.026
30 18 25068 57.907 18 25081 30.513
60 18 21479 56.971 18 21510, 33.758
80 18 19347| 56.238 18 19269| 35.563
100 18 18735| 58.624 18 18733| 39.031
150 18 13656| 51.464 18 13656 38.095

Table 2: Computational Efforts — Internal and external tayeith source term 8 = (1,0), tolgy res = 1077.
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Dirichlet boundary conditions are set on the remainder ofoaryl’. At the inflow, there is a
discontinuity given by

0, -1 <z < —-0.5;
u(z,0) =
1, —0.5 <z <0.0.
On the remaining boundary, we set= 0 atx = —1,u = 0Oaty = 1 andu = 1 atz =

1. The inflow discontinuity is convected by the circular floowtrds the outflow boundary.
Moreover, an external layer appearscat 1. Figure9 shows the solutions obtained using the
element-based and edge-based data structures, reshedtheapproximate solutions are well
represented. In this example, in the neighborhood of thereat layer in: = 1, we used the
following new subgrid characteristic length

:u(h) = L.iv b= (VNT)/67
|br|

where the tensoW y.. is the Jacobian of the coordinate system anhddenotes the element
local coordinates. Figurg0 depicts the maximum and minimum values of the main diagonal
of global matrix, obtained by using GMRES(80) andé® x 80 mesh. In this case, although
the difference between these values increases with the ewofliterations, such difference is
not as large as that one observed in Example 4.1 when (1,1) is used. Table presents
the computational performance considering both datatstres, using &0 x 40 mesh. The
iterative process converges 18 iterations. The edge-based approach is approximately
faster than the element-based one. Tdtdhows the results obtained by usingta x 80 mesh.
The convergence of the iterative process is obtained feestkd values akK maz. As expected,
the edge-based approach is again approximatélyfaster than the element-based one.

@) (b)

Figure 9: Example 4.3 - Element (a) and Edge (b) solutioB8 x 40 mesh, GMRES(60Y0lar rES =
1077, tolpp = 102 — Variable flow field with internal and external layers.

4.4 The Burgers equation

In this example we consider the Burgers equation given by
—eAu + u@ =0
dy
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Figure 10: Example 4.3 log max andlog min versusnumber of iterations, using 80 x 80 mesh and
GMRES(60) — Variable flow field with internal and external layers.

80 x 40 mesh
Element Edge
Kmax | Iterpp | Itergyures | CPUiime | Iterpp | Iteraymrres | CPUiime
10 13 8998 11.044 13 8997 5413
30 13 16455 18.954 13 16458 9.672
60 13 16971 21.606 13 16957 12.339
80 13 16955| 23.774 13 17166 14.211
100 13 16695| 25.131 13 16389 15.366
150 13 15198 27.190 13 15157 18.954

Table 3: Computational Efforts — Variable flow field with imal and external layersolgy res = 1077.

160 x 80 mesh
Element Edge
Kmax | Iterpp [terGMRES CPUtime Iterpp ]terGMRES CPUn'me
10 41 36713 169.306 38 34064| 76.689
30 15 28784 137.046 17 34638 87.781
60 14 37069| 194.859 14 37217| 119.667
80 14 39355| 221.426 14 39287| 138.871
100 14 39688| 240.489 14 40112| 162.739
150 14 40009 290.768 14 39873 204.859

Table 4: Computational Efforts — Variable flow field with imal and external layersolgy res = 1077.
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and defined if2 = (0,1) x (—1,1), with e = 10~*. The Dirichlet boundary conditions are
prescribed as followsu = 1 aty = —1 andu = —1 aty = 1. Homogeneous Neumann
boundary conditions are prescribedzat= 0 andx = 1. The initial solution of the iterative
process is characterized by two frontsyat —0.2 andy = 0.2, which eventually collapse
at the end of the iterative procedure. The approximate isolsitare shown in Figurél. We
can observe that the discontinuity is accurately represemt both solutions. According to
Figurel2, there is an indication that the global matrix is not ill-d@ioned. The computational
performance of the DD method was evaluated consideringlément-based and edge-based
data structures. The numerical results are presented ile Badnd Table6. Using a40 x
80 mesh, the iterative process convergeséniterations, while using &0 x 160 mesh the
convergence is obtained 89 iterations. This amounts to a computational gain of al20t
when the edge-based structured is used.
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Figure 11: Example 4.4 - Element (a) and Edge (b) solutiofi8 x 40 mesh, GMRES(60YolcrrESs =
1077, tolpy = 10~2 — The Burgers equation.
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Figure 12: Example 4.4 log max andlog min versusnumber of iterations, using&) x 160 mesh and
GMRES(60) — The Burgers equation.
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40 x 80 mesh
Element Edge
Kmax | Iterpy [terGMRES CPUtime Iterpy [terGMRES CPUtime
10 38 8544 12.105 38 8776 7.269
30 38 10300 14.258 38 10274 8.767
60 38 11193| 16.848 38 11234 11.029
80 38 7262 12.792 38 7199 9.266
100 38 6297 12.292 38 6379 9.250
150 38 6143 13.525 38 6262 10.795

Table 5: Computational Efforts — The Burgers Equati@ig rps = 1077.

80 x 160 mesh

Element Edge

Kmax | Iterpy [terGMRES CPUtime IterDV [terngREs CPUtime

10 39 13028 69.856 39 12951| 48.126
30 39 17398 91.213 39 17573| 61.573
60 39 20992 121.960 39 21165| 84.177
80 39 24959 154.252 39 24983| 106.236
100 39 23555| 158.901 39 5637 18.627
150 39 5117 23.197 39 5250 20.670

Table 6: Computational Efforts — The Burgers Equati@igzzs = 1077.

Copyright © 2010 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

3879



3880 I. SANTOS, L. CATABRIGA, R. ALMEIDA

5 CONCLUSIONS

In this work, the computational performance of the DynamidfuSion method was
addressed when the GMRES method is used to solve the reslidigag system. The discrete
problem was solved by using the well known element-by-eldgraad edge-based storage local
data schemes to optimize the matrix-vector product in theREM algorithm. We addressed
comparisons between these two storage schemes for a vafiatymerical experiments
covering advection dominated regimes. Our experiments Bhown that in almost all cases
the edge-based storage scheme leads to less CPU time arelff@n@sulting matrix is not
well conditioned for some problems, the GMRES algorithm rhfgh for some dimensions of
restart vectors.
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