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Abstract. This work presents a study on strain and stress distributions in two-dimensional 

panels constituted by elastic composite materials considering effects of physical and 

geometrical nonlinearities. The analyses are carried out by a new nonlinear model which is 

based on the parametric finite-volume theory. The model is incremental and uses a total 

Lagragian formulation that employs the Second Piola-Kirchhoff tensor and Green-Lagrange 

tensor as stress and strain measurements, respectively. The composite material and its 

constituents are assumed as linear or nonlinear elastic. The analyzed examples include two-

dimensional panels with circular and elliptic inclusions presenting a large range of mismatch 

ratios for their Young’s moduli. In particular, stress concentrations in panels of functionally 

graded materials with circular and elliptic holes are analyzed. The study presents the 

distributions of stresses and strains over the matrices and inclusions of the composite 

materials. Results obtained by finite element method are also used for comparison. 
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1 INTRODUCTION 

Due to the technological importance of the advanced composite materials, many 

studies have been developed to understand the behavior of them under different 

loading conditions and, consequently, to improve the project procedures and their 

industrial applications. Among these advanced materials are the fiber reinforced 

composites consisting of high performance fibers embedded in a matrix and 

exhibiting high specific stiffness/strength as relevant features. Other important class 

of advanced composites is constituted by the functionally graded materials (FGMs). 

These later materials are new composites that present a graded microstructure 

obtained by gradual variations of the volume fractions of their constituent phases. 

The heterogeneous microstructures of such composites are responsible for a more 

complex mechanical behavior in comparison with that exhibited by the traditional 

homogeneous materials. Computational tools for the analysis of the mechanical 

behavior of composites demand larger processing times and, often, require the 

employ of especial numerical techniques. For complicated geometries, or in the 

presence of nonlinear effects, for which the problem cannot be tackled using 

analytical solutions, the finite element method has emerged as the more employed 

numerical approach for the description of the composite mechanical behavior. 

An attractive alternative for the analysis of structural problem involving 

heterogeneous materials is the finite-volume theory. Based on this framework, the 

well-known Finite-Volume Direct Averaging Micromechanics – FVDAM was 

formulated to the thermomechanical analysis of composite materials (Bansal and 

Pindera, 2003). The standard FVDAM employs rectangular subvolumes to mimic 

structural components with heterogeneous microstructure. This imposes limitations 

on the efficiency of the theory to model structural components that present curved 

boundaries or microstructure constituted by inclusions with curved cross sections. 

These limitations have been overcome by the recently developed parametric 

formulation of FVDAM (Cavalcante, 2006; Cavalcante et al. 2007a, b). This new 

formulation employs quadrilateral subvolumes for the microstructural discretization 

of a structural component what has allowed a much more efficient and accurate 

modeling of problem with arbitrarily-shaped external boundary or microstructure 

exhibiting inclusions with arbitrary cross sections. 

This work presents a study on strains and stresses in panels constituted by elastic 

composite materials, using a two-dimensional nonlinear parametric finite-volume 

formulation presented in Aquino (2010) and based on the linear model initially 

developed by Cavalcante (2006). The formulation is incremental and uses a total 

Lagrangian kinematic description. The material is considered as elastic and the 

displacements are assumed as arbitrarily large. As measures of stress and strain, the 

formulation employs the 2nd Piola-Kirchhoff stress tensor and Green-Lagrange strain 

tensor, respectively (Bathe, 1996). To verify the performance of the formulation, the 

results are compared with solutions obtained by finite element method. 
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2 THE NONLINEAR PARAMETRIC FINITE-VOLUME FORMULATION 

2.1 Local coordinate transformation  

Similar to the finite element method and linear parametric formulation of finite-

volume theory, the geometrically nonlinear formulation requires a generation of a 

mesh constituted by subvolumes. The position and geometry of each subvolume are 

defined by its four vertices and faces as illustrated in Figure 1. 

 

Figure 1: Mesh and parametric subvolume. 

 

The mapping of the point ( ) in the reference subvolume to the corresponding 

point  in the subvolume of the actual discretization is given by 

 

 (1) 

 

where 

 

 

 

 

(2) 

 

The derivatives of the displacement field  with respect to the parametric 

coordinates are given by the following expressions 

 

 

 

(3) 
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or, in matrix notation, in the form, 

 

 

(4) 

 

In Equation (4), the derivatives of the actual coordinates with respect to the 

parametric coordinates are the components of the Jacobian matrix : 

 

 

(5) 

 

where 

 

 

(6) 

 

 

(7) 

 

In the present formulation, by reason of simplification, the Jacobian matrix is 

considered constant for each subvolume and given by 

 

 
(8) 

 

Hence, the inverse of the Jacobian matrix for each subvolume can be writen as 

follows: 

 

 
(9) 

 

where 

 

 (10) 

 

Using the Equations (4) and (9), the following expression can be 
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(11) 

 

being 

 

 
(12) 

 

where  is a null square matrix with the same order of . 

2.2 Approximation of the displacement field 

Figure 2 shows the motion of a subvolume in the Cartesian coordinate system 

defined by the axes  e  through  the equilibrium configurations ,  e  

corresponding to the times  e , respectivamente. 

 

Figure 2: Motion of a subvolume in the Cartesian coordinate system. 

The displacement fields of the subvolume in a general configuration are 

approximated by the following quadratic expansions: 

 

 
(13) 

 

whereas the increments in the displacement fields are given 

 

 
(14) 
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In the Equations (13) and (14), the symbols  and  indicate the coefficients of 

the polynomial expansions. During the incremental procedure, for the analysis of the 

equilibrium configuration  it is supposed that the coefficients corresponding to 

the configuration  are known. 

Using the incremental relation , the following expression can be easily 

derived 

 

 (15) 

 

2.3 Incremental equations of continuum mechanics 

The incremental constitutive equation of a material can be written in the form 

 

 (16) 

 

where S and E stand for, respectively, the increments of the 2nd Piola-Kirchhoff stress 

tensor and of the Green-Lagrange strain tensor and  indicates the elastic 

constitutive tensor of the material. 

The increment of the traction vector associated with the tensor  is given by 

Cauchy’s stress theorem, as follows: 

 

 (17) 

 

being  the unit outward normal vector  referred to the initial configuration. 

The following decompositions can be derived involving the stress tensor and the 

traction vector corresponding to the configurations  and  

 

 (18) 

 

 (19) 

 

Neglecting the nonlinear part in the increment of the Green-Lagrange strain 

tensor, the incremental Equation (16) can be written in terms of surface-averaged 

values as follows: 
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(20) 

 

 

(21) 

 

where the bar is used to indicate average value on the subvolume faces. 

Hence, the surface-averaged 2nd Piola-Kirchhoff stress tensor on each face and 

corresponding to the configuratio  can be given in the form 

 

 (22) 

 

 (23) 

 

where  is the vector of coefficients of the incremental displacement field with 

transpose  

. The matrices , ,  e  are presented 

in the Appendix A. 

Equation (17) can be written in terms of surface-averaged values on the faces in 

the following form: 

 

Face 1-3: 

 

 

(24) 

 

Face 2-4: 

 

 

(25) 

 

where  and  are the components of the average 2nd Piola-Kirchhoff 

traction vector for the face  and configuration  

Equations (24) and (25) can be written together by the expression 
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(26) 

 

Substituting the Equations (22) and (23) into Equation (26), the following 

expression involving the average 2nd Piola-Kirchhoff traction vector and the 

coefficients of the incremental displacement field can be found: 

 

 (27) 

 

being the matrices , , , , ,  and  presented in Appendix A. From Equations 

(19) and (27), the following expressions can be written 

 

 (28) 

 

 (29) 

2.4 Local equilibrium equations  

Figure 3 shows a subvolume in the configuration  subjected to the average 

first Piola-Kirchhoff tractions  and body forces . 

The equilibrium equations for the subvolume can be written in the form 

 

 

(30) 

 

where  indicates the area of  subvolume face. 
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Figure 3: Piola-Kirchhoff tractions and body forces in a subvolume. 

Supposing that the strain gradient tensor of the subvolume is constant and given 

by  

 

 

(31) 

 

the following equation involving the tractions of the first Piola-Kirchhoff and 2nd 

Piola-Kirchhoff vectors is obtained: 

 

 (32) 

 

Using the Equations (32) and (30), it is possible to obtain the expression that 

connects the coefficients of the incremental displacement field to the surface-

averaged incremental displacements  as follows 

 

 

(33) 

 

where the matrices , , ,  e  are presented in Appendix A. 

Considering the Equation (33) in (29), the incremental expression relating the surface-

averaged tractions and displacements on the subvolume faces becomes 

 

 (34) 

Mecánica Computacional Vol XXIX, págs. 4105-4126 (2010) 4113

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 

where 

 

 (35) 

 

 (36) 

 

 (37) 

 

 represent the subvolume stiffness matrices and  is a vector of pseudo-stresses 

dependent on the increments of the body forces. 

The global incremental equation that relates increments of surface-averaged 

displacements  to increments of surface-averaged tractions  of the discretized 

model is obtained through the contribution of each subvolume using Equation (34) 

and interfacial compatibility conditions involving surface-averaged values of 

increments of displacements and tractions. This global incremental equation is given 

by 

 

 (38) 

 

where  and  are the global incremental stiffness matrix of the structure and the 

global incremental pseudo-stress vector, respectively. 
 

3 INCREMENTAL NONLINEAR ELASTIC CONSTITUTIVE RELATION 

The incremental nonlinear elastic constitutive relationship used in this work is 

derived in terms of the secant bulk and shear moduli which are assumed as 

functions of the infinitesimal octahedral strains  and , as follows: 

 

 
 

 
(39) 

 

Differentiation of the secant octahedral stress-strain relations yields the following 

expressions for the tangent bulk and shear moduli, respectively, 

 

 
 

 

(40) 
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Hence, considering the relationships between the increments of total and 

octahedral stresses and strains, the terms of the incremental tangent stiffness matrix 

C appearing in Equation (16) can be derived as 

 

 
(41) 

 

where . The symbols  and  indicate the Kronecker delta and infinitesimal 

total strain, respectively. 

4 NUMERICAL EXAMPLES 

4.1 Circular fiber embedded in a large matrix 

This example treats of a circular fiber immersed in a large matrix subjected to 

uniform far-field tensile loading  along the horizontal direction as shown in Figure 4. 

For the case of infinity matrix, this problem consists of a particular case of the well-

known Eshelby problem (Eshelby, 1957). Here, the fiber diameter and the matrix side 

were assumed as being  and , respectively. 

Due to the symmetry of the structure, only one-quarter of the domain was 

modeled, using 376 subvolumes (Figure 5). In the two initial cases, the materials were 

assumed as linear elastic with the properties showed in Table 1. The results are 

showed in Figures 6 and 7. 

Figure 6 presents the variation of the Cauchy normal stress with the mean 

horizontal displacement on the loaded end face. As observed, the results obtained by 

the presented formulation (FVT) are in an excellent agreement with those 

corresponding to the analytical solution and finite element method (FEM). 

Figure 7 shows the results for the case 2. The normal stresses in the fiber and 

matrix were obtained on the centers of the subvolumes near the fiber-matrix 

interface showed in Figure 5. The results corresponding to the FVT and FEM are in a 

very good agreement. 

 

Table 1: Material elastic properties of the inclusion problem. 

Case Material   

1 Fiber 10 0.25 

Matrix 10 0.25 

2 Fiberglass 64 0.20 

Matrix Epoxy 4.8 0.34 
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Figure 4: Circular fiber inside a large matrix. 

 

 

Figure 5: Discretization near the inclusion region. 

 

 

Figure 6: Normal stress  in function of the horizontal displacement for case 1. 
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Figure 7: Normal stress  in function of the horizontal displacement for case 2. 

In this last case, the elastic linear fiber is embedded in a nonlinear elastic matrix 

whose properties are presented in Table 2. The secant bulk modulus of the matrix  

is assumed as constant and the relation between the octahedral shear stress and the 

associated octahedral shear strain is given by 

 

 
(42) 

 

Figure 8 shows the results of  in function of the mean horizontal displacement 

on the end loaded face. The change of curvature observed in Figure 8 can be 

explained by the increasing material nonlinear effect with the displacement. 

 

Table 2: Material properties of the inclusion problem. 

Material     

Fiber 64 0.20 - - 

Matrix  4.8 0.34 5000 974.921 
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Figure 8: Variation of  with the horizontal displacement for nonlinear elastic matrix. 

 

4.2 Stress concentration in a panel of FGM with a circular hole 

This example present a study on stress concentration around a circular hole in a 

panel made of a functionally graded material subjected to a tensile loading, as 

showed in Figure 9. The material is assumed as isotropic and linear elastic, exhibiting 

a gradation for the Young’s modulus defined by the law 

 

 
(43) 

 

where  and  stand for Young’s moduli of the ceramic (Zirconia) and metal 

(NiCoCrAlY) phases, respectively.  indicates the gradation parameter. The panel is 

square with side  and the hole has a diameter . Table 3 shows the 

elastic properties of the phases. 

 

Table 3 – Material elastic properties – FGM panel. 

Material   

Ceramic ( ) 70 0.24 

Metal ( ) 170 0.24 

 

Figure 10 presents the discretization used to model one-quarter of the panel. The 

normal stress  is obtained on the point  showed in 

Figure 9. 
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Figure 9: FGM panel with a central hole. 

 

 

Figure 10: Discretization of one-quarter of the FGM panel (373 subvolumes). 

Figures 11 and 12 show, respectively, the variations of the normal stress in the 

point A and the associated stress concentration factor  in function of the 

horizontal displacement in the point ( ) for . The results obtained 

by the present formulation and finite element method are close. As expected,  

for small displacements, in agreement with the linear fracture mechanics theory. 

Figures 13 and 14 present the same results for the case . As observed, the 

FVT and FEM provide close results, particularly for the range of small displacements. 

As observed in Figure 14, the values of the SCF are reduced by the material gradation. 

Figure 15 shows the variation of the SCF in function of the gradation parameter  

together with results obtained by Santos Júnior et al. (2009) using graded finite 

elements. 
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Figure 11: Variation of the normal stress in A with the horizontal displacement for . 

 

 

 

Figure 12: Variation of the SCF with the horizontal displacement for . 
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Figure 13: Variation of the normal stress in A with the horizontal displacement for . 

 

 

Figure 14: Variation of the SCF with the horizontal displacement for . 
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Figure 15: Variation of the SCF with the parameter . 

5 CONCLUSIONS 

A two-dimensional nonlinear parametric formulation for the mechanical analysis of 

structures made of elastic heterogeneous materials has been presented and applied 

to the analysis of stresses and strains in composite panels. The model is incremental 

and based on the linear parametric formulation of FVDAM. A total Lagragian 

kinematic description is utilized by the formulation. The first analyzed example 

consists of a panel constituted by a circular linear elastic fiber embedded in a large 

matrix subjected to a tensile loading. For this example, the matrix has been 

considered as constituted by linear and nonlinear elastic materials. The second 

analyzed case consists of an FGM panel with a central circular hole under a tensile 

loading. For this example, the stress concentration around the hole has been studied. 

The results have been compared with others determined through a code based on 

the finite element method, exhibiting a very good agreement.  
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