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Abstract. In addition to gravitational compaction, tectonic processes represent a major component 

of deformation in sedimentary basins during diagenesis.  The aim of this contribution is to provide 

theoretical elements for the modeling of  these phenomena, together with numerical aspects for 

basin simulators.  

A comprehensive constitutive model for the sediment material is first formulated within the 

framework of finite poroplasticity.  Particular emphasis is put on the effects of large strains on the 

poromechanical properties of the sediment material. 

As regards the numerical assessment of sedimentary basin evolution, an original finite element 

procedure has been developed, specifically devised for simulating the processes of sediment 

accretion/erosion. 

After the numerical simulation of the whole phases of sediments deposition, the loading originating 

from tectonic sequences is simulated by imposing horizontal prescribed displacement at the lateral 

boundaries of the basin. Two-Dimensional (2D) finite element analyses are performed in either 

compressive tectonics situation. 
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1 INTRODUCTION 

      

     Simulation of sedimentary basins with tectonic activity is a complex multidisciplinary      

problem involving geological, chemical and mechanical aspects. Reconstructing the stress 

and the deformation history of a sedimentary basin is a challenging and an important 

problem in geoscience. The potential applications include petroleum exploration, reserve 

assessment and production. 

     Many efforts have been done during the past decades as regards the integration of 

geological data and the simulation of hydrocarbon generation, primary migration, 

secondary migration and accumulation processes. However, progress in this field has been 

hampered by the absence of a comprehensive mechanical description of the geological 

material, which accounts for the strongly coupled nature of the deformation problem.             

Sedimentary basins form when waterborne sediments in shallow seas are deposited over 

periods of tens of millions years. The deposited material then compacts under its own 

weight, causing a reduction of porosity and hence the expulsion of pore fluid. Eventually, 

as depth increases, chemical reactions occur, such as cementation of granular aggregates 

and pressure solution. Purely mechanical phenomena prevail in the upper layers, whereas 

chemical compaction dominates for deeper burial as stress and temperature increase 

(Schmidt and McDonald, 1979). 

     Disregarding chemical aspects, the paper will focus on the modeling of purely 

mechanical compaction with tectonic activity. 

    The basic models of mechanical compaction are still based on phenomenological 

relationships relating porosity to effective vertical stress. The concept of porosity versus 

Terzaghi’s effective stress dependence has been early introduced by Hubert and Rubey 

(1959) and later by Smith (1971). These ideas have been widely adopted and implemented 

in numerical finite element models that have yielded valuable contributions to the 

understanding of the evolution of sedimentary basins. 

    Still, a more comprehensive description of the mechanics involved in basin simulation 

should be achieved within the tensorial formalism of the constitutive model. This is 

necessary for addressing the boundary conditions encountered in the case of tectonic 

activity, or for the determination of the horizontal stresses induced by the compaction 

phenomenon. The main difficulty rises from the large porosity changes involved in 

compaction probem. This requires that the poromechanical constitutive law be formulated 

in the framework of finite irreversible strains (see for example Tuncay et al. (2000); 

Bourgeois and Dormieux (1997); Deudé et al. (2004) or Barnichon and Charlier (1996)). 

     The coupled nature of the deformation problem may be understood as follows. Large 

D. BERNAUD, S. MAGHOUS, L. DORMIEUX4128

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



strains modify the microstructure, microstrucutre modifications lead to a change in the 

poromechanical properties of the sediment material, which in turn affect the basin response. 

Theoretical formulation accounting for the effects of the porosity changes on the elastic and 

plastic properties of the porous material have been proposed in Dormieux and Maghous 

(2000); Bernaud et al. (2002); Barthélémy et al. (2003) and Deudé et al. (2004). It is shown 

in particular that the time dependence of poroelastic parameters with large plastic strains 

leads to additional terms in the constitutive equations. 

    In Bernaud et al. (2006), the problem of purely gravitational compaction, including 

explicit simulation of distinct phases of sediments depositions,  has been addressed within 

the framework of finite element method in finite poroplasticity.  The main objective of this 

contribution is to extend the analysis to account for tectonic-induced deformation in 

sedimentary basins during diagenesis.  

    It is well established that the deformation evolution and associated poromechanical state 

of sedimentary basins are significantly affected by all the tectonic processes occurring 

during their life-cycle. For instance, extensional sedimentary basins that are subjected to 

shortening may experience uplift of basin sediments and reverse reactivation of faults in a 

process which is referred to as basin inversion. 

Few works are dedicated in the recent literature to theoretical or numerical modeling of 

these phenomena. A numerical simulation was proposed in Hutton and Syvitski (2003) 

making use the computer 2D program SedFlux which was modified to simulate the 

distribution of seafloor geotechnical parameters during the growth of a seismically active 

continental margin. The mechanics of tectonic inversion of the Pannomian has been 

investigated by Jarosinki et al. (2009) using the FEM code ANSYS. The authors modeled 

the sediments behavior by a means of a Mohr-Coulomb law which is capable to couple 

elasticity, viscous and plastic strains and temperature. Buiter et al. (2009) studied the 

inversion of extensional sedimentary basins through a numerical evaluation of the 

localization of shortening; the modeling consists of a thermo-mechanical constitutive law 

with a Drucker-Prager criterion. Zhao et al. (2000) developed a finite element model to 

simulate the fluid rock interaction in pore-fluid saturated hydrothermal sedimentary basins. 

    Three-dimensional basin modeling software is now routinely used in commercial 

petroleum exploration. However, very little has been published about the formulation, 

discretization and solution of these models. Mello et al. (2009) describe a 3D control-

volume finite-element method to solve numerically the coupled partial differential 

equations governing geological processes involved in the evolution of sedimentary basins. 

Theses processes include sediment deposition and deformation, hydrocarbon generation, 

multiphase fluid flow and heat transfer in deforming porous media.  
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    The analysis is focused in this paper on the modeling of tectonic activity within the 

theoretical framework of large poroplastic strains previously formulated in Bernaud et al. 

(2006).  After the entire phase of sediment accretion, the sedimentary basin is submitted to 

extensional /compressive tectonic which are superposed to gravitational compaction and 

pore pressure dissipation processes. 

 

 

2 THEORETICAL ASPECTS 

 

    During compaction process, the particles of the porous material (i.e. sediment material) 

are subjected to large volumetric strains: the porosity change may reach 50% as the burial 

goes on. Appropriate prediction of the basins response should thus take into account both 

the constitutive non linearities and the geometric non linearities induced by large strains. 

 

2.1 State equations and complementary relations 

 

    At the scale of pores and solid grains, large strains modify the microstructure of the 

sediment material. In turn, these microstructural changes are responsible for the evolution 

of elastic and plastic mechanical properties. 

    The sedimentary rock is modeled as a fully saturated poroelastoplastic material 

undergoing large strains.The anisotropy of the mechanical properties of the sedimentary 

material induced by compaction is disregarded. The elastic part of the deformation gradient 

of the skeleton particles is assumed to remain infinitesimal. This means that large strains 

involved during compaction process are of irreversible (plastic) nature. 

    In the framework of finite poroplasticity, the constitutive behavior comprises two state 

equations in rate-type formulation together with complementary relations specifying the 

flow rule (Dormieux and Maghous, 2000; Bernaud et al., 2002; Bernaud et al., 2006). Let 
σ  denotes the Cauchy stress tensor and p  the pore pressure. The first state equation relates 

the stress rate σɺ , the pore pressure rate pɺ , and the strain rate tensor d  defined as the 

symmetric part of the velocity gradient: 

 

                            1'
' '. . ' : ( ) : : '

e
e e p eJ e

D
c d d c c

Dt

σ
σ σ σ σ−= + Ω − Ω = − + ɺ

ɶ ɶ ɶ
                   (1)  

 

where pd  denotes the plastic strain rate while Ω is the rotation (spin) rate tensor which 
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aims at taking the large rotation of the elementary volume into account. This equation 

involves: 

- a rotational time derivative of the Biot effective stress tensor ' 1e bpσ σ= +  where b is the 

Biot coefficient; 
- a term related to the particulate derivative cɺ

ɶ
of the tensor of drained elastic moduli c

ɶ
. 

    The evolution of the elastic properties is related to those of the microstructure which 

cannot be neglected in the domain of large strains. Relationship (1) extends classical rate 

form formulations (Meroi et al.,1995; Bourgeois and Dormieux, 1997; Dormieux and 

Maghous, 1999) to the case of variable elastic properties. 

    The second state equation relates the pore volume change to the rate 
.

p  of the pore 

pressure and to the strain rate d . Let J  and pJ  denote the jacobian of the transformation 

of the elementary volume and its plastic part, respectively. The rates Jɺ and pJɺ are given by: 

 

                                           J J trd=ɺ     and  pp pJ J trd=ɺ                                                  (2) 

 

    With these notations, the rate form of the second state equation reads (Bernaud et al., 

2002): 

                           ( ) ( )1tr tr : '
p

p e

p

M
p M b d d p M b c

J M

φ φ σ− −= − − + + − 
 

ɺ ɺ ɺ
ɺɺ                  (3) 

 
φ  is the lagrangian porosity, pφ  the corresponding plastic part and M is the Biot modulus. 

The terms involving 
.

M  and  
.

b  in (3) are related to the influence of large plastic strains on 

the poroelastic properties. 

    The complementary equations prescribe the plastic flow rule. Generalizing the concept of 
plastic potential, we therefore introduce the function ( , )g pσ  which derivatives yield the 

sought plastic rates: 

                                                  ;p p pg g
d J

p
χ φ χ

σ
∂ ∂= =
∂ ∂

ɺɺ ɺ                                         (4) 

where χɺ  is a non-negative plastic multiplier. 

    The plastic incompressibility of the solid phase is assumed in the sequel. This implies 

that the plastic part of the pore volume change is identical to the plastic part of the total 

volume change and yields p pJφ =ɺ ɺ . Owing to (20), it is further obtained that pp pJ trdφ =ɺ . 

    Combining this equation with (4) reveals that the plastic potential depends on σ  and  

through the so-called Terzaghi effective stress ' 1pσ σ= +  (e.g. Bourgeois et al., 1995): 
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                                          '( , ) ( ) ;
'

pg p dσ σ χ
σ

∂Ψ= Ψ =
∂
ɺ                                             (5) 

    The relevancy of the above model depends on the capability to specify: 
• the elastic-plastic coupling characterized by the dependence of tensor c

ɶ
 as well as 

poroelastic coefficients b and M on large plastic strains; 

• the influence of large plastic strains on the evolution of the yield surface as well as 

on the hardening rule. 

 

2.2 Influence of microstructural changes on poroelastic and hardening properties 

 

    In the case of plastic incompressibility of the solid matrix, large plastic strains of porous 

material are expected to induce significant porosity and pore shape changes. In order to 

capture the influence of the plastic strains on the poroelastic properties, the idea is to resort 

to micromechanical estimates of the latter. For the sake of simplicity, the anisotropy 

induced during the loading process is disregarded in this study. The pore space is therefore 
entirely characterized by its volume fraction, namely the eulerian porosity / Jϕ φ= . We 

herein adopt the Hashin-Shtrikman upper bounds which are known to reasonably model the 

elastic properties of isotropic porous media (see for instance Zaoui, 2002).Accordingly, the 
bulk moduli K and the shear moduli µ of the porous medium now appear as functions of 

the porosity as well as of the elastic properties of the solid phase (that are assumed to be 

constant): 

                      
4 (1 ) (1 )(9 8 )

( ) ; ( )
3 4 (9 6 ) (8 12 )

s s s s s

s s s s

k k
K

k k

µ ϕ µ ϕ µϕ µ ϕ
ϕ µ ϕ µ ϕ

− − += =
+ + + +

                           (6) 

 
where sk and sµ  are the bulk and the shear moduli of the solid phase. It is recalled that the 

Biot coefficient and modulus are connected to K through: 

 

                                      
( )

( ) 1
s

K
b

k

ϕϕ = −   and 
1 ( )

( ) s

b

M k

ϕ ϕ
ϕ

−=                                         (7) 

    We now need to relate the porosity change to the plastic strains undergone by the porous 

material. To do so, we first observe that the condition of plastic incompressibility of the 

solid constituent reads: 
                                                                 01p pJ φ ϕ− = −                                                   (8) 

 
where 0ϕ denotes the initial value of the porosity. In the framework of infinitesimal elastic 
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strains, it is possible to neglect the variation of the pore volume and that of the total volume 

between the loaded and unloaded configurations of the elementary volume, since these 

variations are reversible by definition. This justifies the following approximations: 

 
                                                  p pJ J φ φ≈ ≈                                                                (9) 

 

    Introducing (9) into (8) yields: 

                                                0 01 1
1 1

pJ J

ϕ ϕϕ − −≈ − ≈ −                                                     (10) 

    In view of (10), equation (6) shows that the macroscopic stiffness tensor c
ɶ
 is a function 

of the (total or plastic) jacobian: ( )pc c J=
ɶ ɶ

. The same conclusion holds for the poroelastic 

coefficients b and M. Neglecting the induced anisotropy therefore amounts to the fact that 

the elastic-plastic coupling properties are only governed by the plastic volumetric strains. 

    As regards the evolution of the plastic properties of the porous medium, it is first 

assumed that the yield surface f is that of the standard modified Cam-Clay (Muir Wood, 

1990): 

                                     23
( ' 1, ) : ' ( ' )

2c cs cf p p s s M p p pσ σ= + = + +                                (11) 

where 
1

3
s trσ σ= −  is the deviatoric stress tensor and 

1
' '

3
p trσ=  is the mean effective 

stress. cp is the consolidation pressure and represents the hardening parameter of the 

model. The constant csM  is the slope of the critical state line. The plastic flow rule is 

associated, i.e. g f= . 

    The hardening law, that is the influence of large plastic strains on the consolidation 

pressure, is a crucial feature of the model. In the framework of the Cam-clay model, the 

standard hardening law may be written in the domain of large strains 

 

                                                               ( 1)
0( )

pp J
c cp J p eα− −=                                            (12) 

 

where α  is a material constant. 
    However, such a hardening law does not enforce the condition 01pJ ϕ> − , 

corresponding to total pore closure (see (10)). It is therefore expected that a simple 

extension of the classical Cam-Clay hardening law in the form (12) might yield negative 

porosities under high isotropic compression. That is of course not satisfactory. Instead of 

(12), we shall hereafter resort to a micromechanical approach to the hardening law which 
overcomes the above difficulty. The idea is to identify ( )p

cp J  to the limit load of a hollow 
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sphere subjected to isotropic compression in the domain of large strains. In fact, as early 

noticed by Hashin, the hollow sphere is the simplest conceptual model for an isotropic 

porous medium. Considering the case of a solid phase of the Tresca type, the limit load 
appears to be a function of the current porosity ϕ  (pore volume fraction): 

 

                                                  0 0

0

1
( ) ln(1 )

ln
p c

c p

p
p J

J

ϕ
ϕ

−= −                                              (13) 

 

     As opposed to (12), we note that the consolidation pressure predicted by (13) tends 

towards infinity when the pore space vanishes. This is the way that this micromechanics-

based hardening law avoids the development of negative porosities. 

 

2.3 Finite element analysis 

 

      Consider a material system defined by porous medium which occupy a geometrical 

domain Ω . Within the framework of finite poroplasticity, the quasi-static boundary value 

problem is defined on Ω  by: 

 

• the momentum balance equation: 

 
                                                            0div gσ ρ+ =                                                         (14) 

• the fluid mass balance equation: 

                                                           0f fJ div qρ φ ρ+ =
i

                                                 (15) 

 
where fρ  is the fluid density and q  is the filtration vector. The latter is connected to the 

fluid pressure through the Darcy’s law: 

 
                                                         .( )fq k p gρ= −∇ +                                                     (16) 

 
k  denotes the permeability tensor. In the case of isotropy (i.e. 1k k=  ), effects of 

microstructural changes on the evolution of k  may be modeled by means of Kozeny-

Carman formula: 

                                                         
0

23
0

0 3 2

(1 )

(1 )
k k

ϕϕ
ϕ ϕ

−=
−

                                                     (17) 

0 0( )k k ϕ=  is the initial value of the permeability. 
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• the constitutive equations. 

 

      Within the framework of finite poroplasticity, the latter are given by (1) and (3) 

together with the plastic flow rules (5). The elastic moduli, the yield surface and the 

hardening law are described by (6-7), (11) and (13), respectively. In addition, the initial 

conditions must be specified as well as the mechanical and hydraulic boundary conditions. 

     It must be emphasized that all equations defining the boundary value problem refer to 

the mechanical system in its current configuration, which is a priori unknown. 

    The finite element analysis will be outlined hereafter. Fully details are given in Bernaud 

et al. (2002). 

    The updated Lagrangian scheme (Bathe, 1996) is used in order to analyze the large strain 

behaviour of the structure under consideration. In this approach, all static and kinematic 

variables are referred to an updated configuration in each step timet∆ . Denoting by t x  the 

coordinates of any skeleton particle in the configuration of the mechanical system at time t, 

it is convenient to reformulate the problem in terms of the displacement between t  and 

t t+ ∆ : 

                                                                   t t tU x x+= −△                                                   (18) 

 

and of the pore pressure values difference P at points similar within the skeleton 

transformation  at times t  and t t+ ∆ : 

 
                                                              ( ) ( )t t tP p x p x+= −△                                              (19) 

 

    The weak forms of the equilibrium and fluid mass balance equations, expressed at time 

t t+ ∆ , are derived. A standard 2D finite element formulation employing 6-nodes triangle 
elements is used. The components of the displacement U are approximated by a quadratic 

polynom function of the 6 nodal values. The approximation of the pressure P is linear with 

corresponding nodes located at the three summits of the triangle. This procedure yields to 

the following matrix equation: 

 

                                                     UUU PU

PUP PP

uK K F

pK K F

    =    
    

                                             (20) 

 
where IJK  and IF  are the global stiffness sub-matrices and force sub-vectors, respectively. 

u  and p are the global vectors whose components are node values of the displacement 
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U and the pressure P , respectively. 

    Consequently, the above system of equations is nonlinear because of the dependence of 

UF  and PF  on u  and p . For this reason, at each time, it is necessary to solve (20) by an 

iterative algorithm until (20) is satisfied up to a required tolerance. 
    Explicit expression for matrices IJK  and vectors IF  together with the description of the 

iteration procedure are given in Bernaud et al. (2002). 

 

 

 

3 NUMERICAL PROCEDURE 

 

    The specificity of the numerical simulation of sedimentary basins lies in the fact that the 

system under consideration is an open system. Consequently, appropriate numerical 

approaches such as finite element one must implement appropriate procedures to model 

continuous sediment supply. 

    The numerical approach used in this study, which is aimed to simulate the time evolution 

of the basin boundary, is based upon a technique directly inspired from tunnel engineering. 

It is explained in Bernaud et al. (2006). 

    The basin undergoing compaction is modeled as an horizontal infinite layer (Fig. 1). The 

basement rock is located at 0z = . Assuming it remains horizontal, the upper boundary is 
defined by the time dependent plane equation ( )z H t= , where ( )H t  refers to the total 

thickness of the basin at time t . Besides, the sea level is located at the plane 0z L= . 

    These geometrical assumptions are adopted for simplicity. Nevertheless, more complex 

2D basin geometries can also be handled by means of our numerical code. 
    In absence of tectonic activity, the gravity forces zge−  and the fluid pressure at the top 

of the basin constitute the loading parameters in the compaction process. If ( , )z tρ  denotes 

the mass density of the sediment material, the mass sediments supplied per unit area from 

the initial time 0t =  is equal to that of the vertical column with unit cross section: 

 

                                                              
( )

0

( ) ( , )
H t

dM t z t dzρ= ∫                                             (21) 

 
    The boundary conditions consist in prescribing the values of the stress vector . zT eσ= , 

displacement vector ξ , fluid pressure p and the fluid flux . zq e : 

* ( )z H t=  (upper surface) 

D. BERNAUD, S. MAGHOUS, L. DORMIEUX4136

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
                                0( ( ))f

zT g L H t eρ= − −    ,   0( ( ))fp g L H tρ= −                               (22) 

 

* 0z =  (basin basement) 

 
                                 0ξ =   ,    . 0zq e =   (impermeability condition)                                (23) 

 

    The numerical technique (for more details see Bernaud et al. (2006)) to simulate the 

sedimentary basin consists in transforming the real open material system (the basin) into a 

fictitious closed system. The evolution in time of the latter must of course correspond to 

that of the real system. The main advantage of this procedure lies in the fact that the finite 

element approach briefly described in section 2.3 is applicable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic geometry of the basin. 

 

 

4 GRAVITATIONAL COMPACTION SIMULATIONS 

 

     The basin deformation model described in the previous sections has been implemented 

in a two-dimensional finite code. 

     Before studying the basin under tectonic activity, we first proceed to the simulation of 

the sedimentary basin formation (i.e., construction of the basin). This is achieved by means 

z=L0 
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of the numerical technique briefly explained in section 3. 

     The first step of basin simulation (prior to tectonic loading application) is carried out 

within a 2D setting. Oedometric conditions are assumed for the modeling. Even a 1D 

setting would be sufficient for this task, a 2D modeling of the basin geometry proves to be 

necessary in the perspective to proceed, sequentially to the construction of the basin, to the 

analysis of basin tectonics induced-deformation.  The initial geometry of the fictitious 

system considered for calculations is displayed in Fig. 2. It is defined by a rectangular 
block of 24kmlong by 6kmH = thick. Owing to the symmetry with respect to the vertical 

plane, only the half part 0 x≤  of the initial geometrical domain is descritized into finite 

elements. The finite element mesh consists  in 7200 triangular elements  (each triangle is 

viewed as T6 for displacement interpolation and as T3 for pore pressure interpolation) 

regularly distributed along 120 horizontal layers, each layer being divided into 60 elements. 

The mesh corresponds to 14701 total nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Initial geometry model: dimensions and boundary conditions. 
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     The simulations carried out in the subsequent analysis assume the following 

characteristics: 

(a) The yield surface is that of the standard modified Cam-Clay (11). 

(b) The sediment material supplied at the top of the basin is assumed to have constant 

mechanical and hydraulic properties at the geologic time scale. 
(c) The accretion rate dMɺ  is constant at the geologic time scale. 

(d) The basin is made up of an amount of material supply which would correspond to a 

vertical column of thickness H = 6000 m in absence of compaction or in other words if the 

sediment material were rigid. The sea level is 2000 m higher at the top of the basin, which 

means that the column of sea water has L0 = 8000 m. 

    In addition, the following material parameters have been adopted for the calculations: 
Initial material density 3

0 1.37 10xρ = kg/m3, initial porosity 0 0.72ϕ = (data taken from 

Hamilton, 1959), fluid density 310fρ = kg/m3, initial Young modulus E0 = 103 MPa , initial 

Poisson’s ratio ν0=0.33, initial Biot coefficient b0 = 0.9715, initial Biot moduls M0 = 1.392 

105 MPa, coefficient slope of the critical state line Mcs = 1.2, permeability k0 = 10-10 MPa-1 x 

m2 x s-1, initial consolidation pressure pc0 = 1.5 MPa. The rate of sediments supply 

corresponds to an increase in the layer thickness of 100 m per million years (Myr), if no 

deformation occurs. 

    Figure 3 illustrates the compaction curve of the basin versus the time. The entire 

construction of the sedimentary basin takes 60 millions years when the column presents the 
height of ( ) 4212H t = m, instead of ( ) 6000H t = m if no deformation occurs. During the 

phase of basin formation (phase of accretion 60 Myrt ≤ ) the deformation of the basin is 

mainly controlled by gravity compaction. After its total construction (i.e., after the process 
of sediment accretion has stopped 60 Myrt > ), the deformation is mainly due to the 

process of pore pressure dissipation. The complete stabilisation of deformations is reached 

after approximately 1600 millions years, and the corresponding final height of the basin is 
( ) 2690H t = m. 

    The numerical results of the basin simulation at t=60 millions years will be the initial 

state for the tectonic numerical calculations. It means that for the tectonic calculation 

activated at  t=60Myr, the initial Young’s modulus take the values given in figure 3, the 

initial hardening parameter is given by the values of figure 4 and the initial porosity is 

given by the values of figure 5. It means that several parameters of the problem are function 

of the depth of the layer. 

    For the time 60t = Myr, figure 4 illustrates the variation of the Young’s Modulus with 

the layer depth. We can observe that as expected the Young’s modulus presents its 

maximum value E=4800 MPa at the basement of the basin; at the top of the model the 
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Young’s modulus presents the value of the initial calculation 1000E =  MPa. 

    The variation of the consolidation pressure (Fig. 5), which represents the hardening 

parameter of our model, has the same form of the curve of the Young’s modulus: the 
maximum value 0 4.5cp MPa=  occurs at 0z = , and the minimum 0 1.5cp MPa=   is in the 

zone near the top of the basin. 
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Figure 3: Compaction law of the sedimentary basin. 

 

    The fluid pressure predicted by the numerical model at 60t = Myr is reported in Fig. 6. 
During sediments deposition ( 60 Myrt ≤ ), the pore pressure is a decreasing function with a 

maximum value reached at the bottom. 

    The porosity decreases with the depth of the layers as it is illustrated in figure 7: the 

porosity is equal to about 0.17 at the basement of the basin and it is equal to 0.72 near the 

top of the basin. 

 

 

5 FINITE ELEMENT SIMULATIONS OF TECTONIC SEQUENCES 

 

    A simplified 2D framework is adopted herein to simulate tectonic sequences acting on 

the sedimentary basin during the process of compaction. As often made (see for instance 

Mantovani et al. (2000); Strayer et al. (2001); Frederiksen et al. (2001) or Babeyko (2002)), 

the tectonic regime is modeled by means of prescribed velocity boundary conditions.  The 
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numerical calculations are performed using the fully poroplastic coupled constitutive model 
presented in section 2 under plane strains conditions parallel to the plane( , )x z .  
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Figure 4: Young’s modulus versus layer depth at t=60Myr. 

 

 

                   

Hardening parameter: Consolidation 
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Figure 5: Consolidation pressure versus layer depth at t=60Myr. 

 

5.1 Model geometry and boundary conditions 

 
     We proceed as follows. Once the phase of sediment deposition 0 60 Myrt≤ ≤  is 

simulated, the tectonic loading is applied from time 60 MyrT =  and increasing the value of 

the horizontal displacement imposed at the lateral sides of the basin as the time increases.  
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     The geometry and hydromechanical fields (stress, pore pressure, porosity and associated 
poromechanical parameters) at 60 Myrt =  are considered as initial configuration and state 

of the basin when starting the tectonic loading.  This means in particular that application of 

the initial configuration for tectonic loading is characterized by basin thickness  
( 60 Myr)=4212mH T =  (Fig. 8) resulting from deformation during sediments accretion 

phase  a highly pre-stressed state and a pore pressure profile which is far from hydrostatic 

distribution. 
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Figure 6: Pore pressure profile along the basin at t=60Myr. 

 

                  

Porosity at t=60Myr
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Figure 7: Porosity versus layer depth at t=60Myr. 

 

The   hydromechanical boundary conditions are showed in Fig. 8.  The lateral right-hand 
side (resp. left-side) is subjected to a constant horizontal velocity  xV e  (resp. xV e− ) . Only 

the results related to contractional motion will be provided in the sequel (i.e., 0V < ). Two 
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typical values for the prescribed velocity magnitude are considered: 1cm / yearV = −  (fast 

tectonics) and 0.5 mm / yearV = − (slow tectonics). 

    It is recalled that the mesh for tectonic simulations is the deformed mesh of that 

described in section 4 and considered for the simulation of basin during sediments 
deposition  0 60 Myrt≤ ≤ . 

    The fluid boundary conditions maintain the sediments in a fully saturated condition 

everywhere. The sides and the bottom of the model are impermeable. The upper surface of 

the model is infinitely permeable: water may enter or leave in this frontier. 

The tectonic loading starts at t T=  and the results will conveniently given in terms of 
displacement increment U  of the skeleton particles between the initial configuration at 

time T  and the current configuration at time T t+ ∆ , and pore pressure difference P  at 

points similar within the skeleton transformation between T  and  T t+ ∆ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Initial geometry model and  boundary conditions for tectonic simulations.  

 

It is worth noting that the objective of this first approach is only to investigate the 

feasibility of the 2D modeling and not to provide quantitative insights in the basin 

deformation under tectonic loading. 

At this stage, two fundamental questions can be already raised as regards the numerical 

modeling. Firstly, the boundary condition of frictionless at the basin basement is not very 

realistic and thus results in a more deformable block. Secondly, the shape quality of the 
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mesh elements resulting from compaction (vertical stretching) between 0t =  and t T=  is 

rather low: due to oedometric contraction, the elements become thin with high aspect ratio.  

This is clearly the source of numerical inaccuracies and can lead to non numerical 

convergence.  

 

 

5.2 Numerical results  

 

5.2.1 Fast compressive tectonic motion  

 

    This situation corresponds to a lateral compression of the basin with velocity 
1cm / yearV = − .  The tectonic loading process is applied by increasing in time the 

prescribed horizontal displacement. The study was restricted to total duration 
1495yearst∆ = , which corresponds to a total prescribed displacement of 14.95m− . This 

corresponds of course to a moderate amount of lateral extension.  Actually, numerical 

convergence of the procedure is not obtained for further values of prescribed displacement. 
The configuration reached after 1495yearst∆ =  will be referred to as failure configuration.  

In its current state of development, the numerical procedure is not able to simulate the 
evolution of the basin for times 1495yearst∆ > . It is likely that two phenomena contribute 

to ‘the appearance’ of this failure configuration. First, as a consequence of the numerical 

shortcomings emphasized at the end of section 5.1 and it would be the expression of  rather  

a ‘numerical failure’ than a physical failure. Secondly, this failure can be explained as 

follows. Fast contractional tectonic induces high pore pressure in undrained-like conditions, 

which in turn lead rapidly to substantial increase in the effective stresses controlling the 

yield failure. 

Increment of displacement, pore pressure and earth pressure coefficient induced by tectonic 

motion are showed in the sequel (Figs. 9-13). While gravitational compaction does not 

induce any horizontal displacement (oedometric conditions), that induced by tectonic 

loading is as expected is of decreasing magnitude as moving toward the symmetry plane 

0x =  of the basin.  As regards the vertical displacement, Fig. 10 shows that tectonic 

loading slightly affects this component which is mainly due to pore pressure dissipation 

process. The velocity field in the basin reported in Fig. 11 is typical of a failure mechanism 

defined by a localized failure zone developing from the basin basement to the symmetry 

plane.   The final thickness of the basin at failure is about H=3554m, which corresponds to 

a compaction level of 658m has occurred. It is worth observing that the magnitude of the 

considered fast tectonic motion is not enough to cause uplift of the basin. 

D. BERNAUD, S. MAGHOUS, L. DORMIEUX4144

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



-500

-480

-460

-440

-420

-400

0.0 3000.0 6000.0 9000.0 12000.0

x(m)

U
z(

m
)

-500

-400

-300

-200

-100

0

0 1000 2000 3000 4000

layer depth (m)

U
z(

m
)

fast tectonic (t=T+1450years) no tectonic loading (t=T+1450 years)

 

In classical analyses, the coefficient of earth pressure is an important parameter in basin 

engineering. It is defined as the ratio between the horizontal and vertical effective stresses 
'

'
h

p
v

K
σ
σ

= .  Based on heuristic elastic reasoning, a usual assumption in the field consists in 

considering the value of this parameter as constant in the basin at a given age.  The profile 
of pK  along the mid-plane obtained from the numerical simulation is showed in Fig. 12.  It 

turns out that, except in a thin crust near the upper surface of the basin, this parameter is 

quasi-constant. This result confirms thus the common practice which is to characterize a 
given basin by a single value ofpK . The distribution along the basin of the increment in 

pore pressure between T  and 1495yearsT +  is reported in Fig. 13. 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

Figure 9: Contours fill of horizontal total horizontal displacement at failure 1495yearst∆ = . 
 

 

 

                   

                        

 

 

 

 

 

 

Figure 10: Vertical displacement along the basin plane 6kmx =  and at to top of basin z H=   

after 1495yearst∆ = . 
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Figure 11: Velocity field at failure after 1495yearst∆ = . 

                               

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Coefficient of earth pressurepK  along the mid-plane 6kmx = . 

 

 

 

  

  

 

  

 

 

 

 

 
Figure 13: Pore pressure increment along the mid-plane 6kmx =  at failure 1495yearst∆ = . 
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5.2.2 Slow compressive tectonic motion  

 

     This situation corresponds to a contractional tectonic defined by a horizontal velocity 
equal to 0.5 mm / yearV = − . Unlike the situation of fast tectonic motion, the basin deforms 

under drained-like conditions. This explains why failure only occurs after a significant 

amount of lateral extension. Failure, expressed herein by the non convergence of the 
numerical procedure, is after a total duration 126000 yearst∆ =  corresponding to a total 

prescribed displacement of 63m− .  Two opposite mechanisms control the basin 

deformation: that resulting from pore pressure dissipation due to gravitational compaction 

which causes downward displacement and that induced by horizontal forces due tectonic 

loading which causes upward displacement. The net result in the present case is an uplift of 

the basin. Increment of displacement, pore pressure and earth pressure coefficient induced 

by tectonic motion are showed in the sequel (Figs. 14-18).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Contours fill of  total horizontal displacement at failure 126000yearst∆ = . 

 

 

6  CONCLUSIONS 

 

    A constitutive model has been formulated for the sedimentary basin. It aims at 

incorporating some of the fundamentals coupled phenomena involved in the process of 

basin compaction and tectonic activity by means of a simplified micro-to-macro 

framework. The magnitude of porosity changes induced by compaction imposes to adopt 

the framework of finite poroplasticity. The derived model is able to account for the stiffness 
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increase and for the corresponding variation of pore volume. An important feature of this 

model is that the expression of the hardening law avoids development of negative porosities 

that are encountered with classical models of the Clam-Clay type. 

 

 

 

 

 

 

 

 

 

 

Figure 15: Velocity field at failure after 126000yearst∆ = . 

 

    From numerical point of view, a finite element formulation using updated Lagrangian 

scheme is implemented in order to analyze the time dependent large deformation of the 

poroplastic basin. 

    A numerical approach to the process of sediment accretion has been proposed: its 

principle consists in replacing the open material system (i.e., the basin) into a fictitious 

closed one, and to model the phases of sediments deposit-erosion by activating-deactivating 

the sub-layers. These theoretical and numerical developments have been implemented in a 

finite element code. 

                        

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Vertical displacement at the top of the basin. 
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Figure 17: Coefficient of earth pressurepK  along the mid-plane 6kmx = . 

 

    The tectonic calculations have been performed with a 2D model taking as configuration 

that obtained after phase of sediments deposition (i.e., end of the basin construction), which 

means that the porosity, Young’s modulus and hardening parameter varies with the layer 

depth. The tectonic modeling is performed with an imposed displacement at the right side 

of the basin and we studied here only a tectonic compression. For the parameters used in 

the tectonic calculations, the maximum displacement is always the vertical one (due to 

compaction), the horizontal displacement are quite small compared with the vertical ones. 

Nevertheless, it is found that in case of slow tectonic motion, the basin can undergo an 

uplift induced by the horizontal forces. 

   Conceptually, the numerical tool under its current form can be adopted to simulate basins 

undergoing three-dimensional evolutions of the type induced by a tectonic loading. 

However, the increase of the number of degrees of freedom requires to develop more 

efficient numerical strategies including parallel computing. 

 

 

 

 

 

 

 

 

 

 

Figure 18: Pore pressure increment along the mid-plane 6kmx =  at failure 126000yearst∆ = . 
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