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Abstract.
This study reviews the elements of incremental plasticity theory in an elastoplastic formulation of the

behaviour at the material point and its implementation. It is also computed the analytical derivatives of
the principal invariants and eigenvalues, due its importance in plastic flow rules. The constitutive models
of Drucker-Prager and Mohr-Coulomb are presented. It is also exposed the class framework behind the
object oriented code, and, finally, some uniaxial tests results are presented.
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1 INTRODUCTION

The plasticity theory describes the behaviour of solid materials that, after being subjected to a
loading cycle, maintains permanent deformation even after fully discharged (Souza Neto et al.
(2008)). Current approach to the development and implementation of elastoplastic material
models according to the theory of incremental plasticity in computational mechanics relies in
the definition of yield functions, flow potential rules and evolution laws.

The yield functions are usually based on a set of already existing stress envelope shapes.
When it comes to frictional materials such as soil, concrete and rock, the shear yielding en-
velopes are confining-dependent. This paper mentions two of the most prominent examples of
yield functions for frictional materials: Drucker–Prager and Mohr–Coulomb.

The object oriented philosophy has been recently extensively used in computational mechan-
ics. To this end we mention early experimental developments and implementations of (Devloo
(1997)),(Devloo and Santos (2003)),(Jeremic and Yang (2001)),(Jeremic et al. (2008)),(Devloo
et al. (2006)). In this paper the authors take advantage of these computational tools to imple-
ment an elastoplastic strain decomposition code and to evaluate the corresponding consistent
stress-strain constitutive tensor.

The paper is organized as follows: Section 2 presents an overview of the basis of elastoplastic
mathematical theory. In Section 3 it is exposed the numerical approximation of the elastoplas-
tic problem. The models of Mohr-Coulomb and Drucker-Prager are presented in section 4. In
Section 5 it is reviewed the definition of the principal invariants, Lode Angle and the analytical
calculation of the eigenvalues. Section 6 introduces the object-oriented design and implemen-
tation. The results are presented in Section 7 and the conclusions in Section 8.

2 ELASTO-PLASTICITY

The plasticity theory represents a mathematical modelling for materials which may present
permanent deformations after a loading cycle. The material response is time-independent and
thus the strain rate is not considered in the formulation. This mechanical behaviour may be
applied to a wide range of materials to some extent.

The basic components of an elastoplastic constitutive model are:

• Decomposition of the strain tensor;

• Elastic stress-strain law;

• Definition of a yield function;

• Definition of plastic flow rule;

• Definition of a hardening rule.
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2.1 Decomposition of deformation tensor

The total strain ε can be splited into two parts, one linear and elastic εe, and the other, non-
linear and plastic εp. The plastic part is a consequence of the history of irreversible dissipative
processes which the material underwent and measured under a unstressed condition. The math-
ematical representation is,

ε = εe + εp.

2.2 An elastic law

The stress-strain isotropic infinitesimal relation is function of the elastic strain tensor εe only:

σ = λtr (εe)I + 2µεe,

where the scalars λ and µ are the Lamé constants and are defined as:

λ =
νE

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)
.

2.3 Yield criterion

The yield criterion is a potential function Ψ in the stress space that defines the elastic and the
plastic domains. By definition, it assumes non-positives values in elastic regime and null values
under plastic straining. A is defined as a thermodynamic force related to the hardening/softening
behaviour.

Ψ(σ, A)

2.4 Plastic flow rule

In a loading cycle the stress state shall not violate the elastoplastic domain. When the stress
state reaches a plastic regime, the material yields and the plastic strain evolutes according to the
plastic flow rule or yield direction N(σ,A).

N =
∂Ψ

∂σ
,

The plastic strain increment is then ruled by:

.

εp =
.
γN,

where
.
γ is a scalar.

2.5 Hardening rule

When the material yields, the yield criterion shape and therefore the elastoplastic domain
may change reflecting a hardening or softening material behaviour. In this paper the special
case of an isotropic hardening rule is handled. The isotropic hardening rule is characterized by
an expansion of the yield surface as the material yield and is represented by the rate of change
of the potential function with respect to the thermodynamic force,
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H =
∂Ψ

∂A
.

The evolution of the damage internal variables is given by:

.
α =

.
γH

where α(Ψ, A) is the set of damage internal variables.

3 ELASTOPLASTIC PROBLEM

The numerical approximation of the elastoplastic problem can be given by computing the
stress increment as the solution of system of nonlinear equations. Given a deformation state εn,
and the corresponding plastic strain εpn, and internal variables αn, the plastic strain and internal
variables corresponding to εn+1 are obtained as the solution system of nonlinear equations:

∆γ ≥ 0,Φ(σn+1, An+1) ≤ 0,∆γΦ(σn+1, An+1) = 0
εpn+1 − εpn = ∆γN(σn+1, An+1)
αn+1 − αn = ∆γH(σn+1, An+1)

(1)

The number of equations of this system is equal to the number of yield functions plus the
number of components of the plastic strain 6, plus the number of internal variables. The depen-
dent variables of the system are the values of ∆γ, the value of the plastic strain εpn+1 and the
internal variables αn+1. The residual of the system of equations is computed as

Res(εpn+1, αn+1,∆γ) =


∆γΦ(σn+1, An+1)

εpn+1 − εpn −∆γN(σn+1, An+1)
αn+1 − αn −∆γH(σn+1, An+1)

(2)

If any function Φ(σn+1, An+1) < 0, then the corresponding ∆γ = 0 and the corresponding
residual is set to zero. This is the particular case where the material is still in the elastic domain
with εpn+1 = εpn and αn+1 = αn. On the other hand, if this condition is not met at the elastic
predictor the material may present plastic behavior and the above system is solved using the
Newton method for the variable:

(εpn+1, αn+1,∆γ).

The tangent matrix T (εpn+1, αn+1,∆γ). is computed using numerical differentiation as

T (εpn+1, αn+1,∆γ) =


∂Res(εp

n+1,αn+1,∆γ)

∂εp
n+1

∂Res(εp
n+1,αn+1,∆γ)

∂αn+1
∂Res(εp

n+1,αn+1,∆γ)

∂∆γn+1


T

(3)

There are some elastoplastic models for which analytic elastoplastic decompostition are avail-
able. However, the proposed code aims to implement a generic code able to handle a wide
variety of constitutive models and thus the numerical approach is preferred. In order to as-
semble a Newton’s scheme for the solution of this initial value problem in a versatile manner,
automatic differentiation tools are employed to evaluated the residual derivatives.
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4 ELASTOPLASTIC CONSTITUTIVE MODELS OF MOHR-COULOMB AND DRUCKER-
PRAGER

4.1 Mohr-Coulomb

4.1.1 Mohr-Coulomb yield function

This criterion is for frictional materials sensible to the hydrostatic pressure, such as soil, rock
and concrete. The Mohr-Coulomb yield criterion consider that the phenomenon of plastic yield
occurs due to shear forces in internal interfaces. Generalizing the friction law of Coulomb, for
any direction in continuum media the plastic flow begin when, in a arbitrary plane of the body,
the shear stress and the normal stress reach a critical combination.

The Mohr-Coulomb yield criterion in the principal stress space is represented in terms of the
eigenvalues and assumes the shape of Figure 1.

166 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

− σ3 p
Φ = 0

− σ1

− σ2A

√3

3 c cot φ

√

Figure 6.13. The Mohr–Coulomb yield surface in principal stress space.

The definition of the elastic domain and the yield surface in the multisurface representation
is completely analogous to that of the Tresca criterion.

Invariant representation

Analogously to the invariant representation (6.94) of the Tresca criterion, the Mohr–Coulomb
yield function can be expressed as (Owen and Hinton 1980, and Crisfield 1997):

Φ =
(

cos θ − 1√
3

sin θ sin φ

)√
J2(s) + p(σ) sin φ− c cos φ, (6.119)

where the Lode angle, θ, is defined in (6.97). As for the Tresca model, in spite of its
frequent use in computational plasticity, the invariant representation of the Mohr–Coulomb
surface renders more complex numerical algorithms so that the multisurface representation is
preferred in the computational implementation of the model described in Chapter 8.

6.4.4. THE DRUCKER–PRAGER YIELD CRITERION

This criterion has been proposed by Drucker and Prager (1952) as a smooth approximation to
the Mohr–Coulomb law. It consists of a modification of the von Mises criterion in which an
extra term is included to introduce pressure-sensitivity. The Drucker–Prager criterion states
that plastic yielding begins when the J2 invariant of the deviatoric stress and the hydrostatic
stress, p, reach a critical combination. The onset of plastic yielding occurs when the equation√

J2(s) + η p = c̄, (6.120)

is satisfied, where η and c̄ are material parameters. Represented in the principal stress space,
the yield locus of this criterion is a circular cone whose axis is the hydrostatic line. For η = 0,
the von Mises cylinder is recovered. The Drucker–Prager cone is illustrated in Figure 6.14.

Figure 1: The Mohr-Coulomb yield surface in principal stress space Souza Neto et al. (2008)

As the surface of these criterion has some singularities, it is usual the use of multiple yield
functions to represent it(Chen and Han (1988)). By ordering the principal stresses as σ1 ≥ σ2 ≥
σ3 the criterion simplifies to the following three expressions:

Φ1(σ) = −
(

(σ1 + σ3)

2
+

(σ1 − σ3)

2

)
tan(φ)− 1

2
cos(φ)(σ1 − σ3) + c,

Φ2(σ) = −
(

(σ1 + σ2)

2
+

(σ1 − σ2)

2

)
tan(φ)− 1

2
cos(φ)(σ1 − σ2) + c,

Φ3(σ) = −
(

(σ2 + σ3)

2
+

(σ2 − σ3)

2

)
tan(φ)− 1

2
cos(φ)(σ2 − σ3) + c,

where c is the material cohesion and φ is internal friction angle.

4.1.2 Mohr-Coulomb flow rule

The plastic flow rule considering associativity, is defined as,
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∂Φ1

∂σ
= N1 = −

(
sin(φ)(∇σ1 −∇σ3)

2
+

(∇σ1 +∇σ3)

2

)
tan(φ)− 1

2
cos(φ)(∇σ1 −∇σ3),

∂Φ2

∂σ
= N2 = −

(
sin(φ)(∇σ1 −∇σ2)

2
+

(∇σ1 +∇σ2)

2

)
tan(φ)− 1

2
cos(φ)(∇σ1 −∇σ2),

∂Φ3

∂σ
= N3 = −

(
sin(φ)(∇σ2 −∇σ3)

2
+

(∇σ2 +∇σ3)

2

)
tan(φ)− 1

2
cos(φ)(∇σ2 −∇σ3).

4.2 Drucker-Prager

4.2.1 Drucker-Prager yield criterion

This criterion is a smooth approach of the Mohr-Coulomb criterion. It may be understood
as a modification of the Von-Mises yield criterion, where the pressure sensitivity is introduced.
Due to the material isotropy, it may be represented by the principal invariants.√

J2 + ηp = c̄,

where η and c̄ are material parameters. For η = 0 the Von-Mises cilinder is recovered. The
Drucker-Prager cone is shown in Figure 2.

Figure 2: Drucker-Prager yield function Souza Neto et al. (2008)

A convenient way to define the Drucker-Prager yield criterion as a potential function:

Φ(σ, c) =
√
J2 + ηp− ξc,

where c is the cohesion. The parameters ξ and η may be related to the equivalent Mohr-
Coulomb parameters as given below:
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To circumscribe Mohr-Coulomb yield function,

η =
6 sen φ√

3(3− sen φ)
, ξ =

6 cos φ√
3(3− sen φ)

,

and to inscribe,

η =
6 sen φ√

3(3 + sen φ)
, ξ =

6 cos φ√
3(3 + sen φ)

.

4.2.2 Drucker-Prager flow rule

The plastic flow rule in case of associativity is,

N =
1

2
√
J2

∇J2 +
η

3
∇I1

5 INVARIANTS, LODE ANGLE AND EIGENVALUES

The matrix representation of a second order tensor depends on the chosen basis. A more
objective manner (and therefore observer-independent) of measuring stress and strain relies on
the tensor invariants:

I1(A) = tr (A),

I2(A) =
1

2
[(tr A)2 − tr (A2)],

I3(A) = det (A).

The deviatoric tensor is defined by:

S(A) = A− 1

3
tr(A)I

and its respective invariants are:
J1 = 0

J2 =
1

2
[(tr S)2 − tr (S2)]

J3 = det(S)

This work requires the evaluation of the derivatives of the invariants I1, J2 and J3:

∇I1 = I,

∇J2 = S(A),

∇J3 = det(A)A−T − 1

3
det(A)tr(A−1)I.
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The tree principal stresses or the eigenvalues of the stress tensor can be obtained analytically
in function of the principal invariants and of the Lode angle(Chen and Han (1988)). The Lode
angle is equal to:

θ =
1

3
arccos

(
3
√

3

2

J3

J
3
2
2

)
, (0 ≤ θ ≤ π

3
).

The eigenvalues are equal to:

σ1 =
I1

3
+

2√
3

√
J2 cos(θ),

σ2 =
I1

3
+

2√
3

√
J2 cos(θ − 2π

3
),

σ3 =
I1

3
+

2√
3

√
J2 cos(θ +

2π

3
).

6 IMPLEMENTATION

In this section is described the object oriented implementation of the template elastoplastic
framework.

6.1 Class TPZPlasticStep

This is the main class and is designed to be as general as possible. It gathers the hole logic
of the elastoplastic problem and perform the advancement of one step of plastification using the
Newton’s Method to solve the non-linear elastoplastic problem and its constructor has the shape
TPZPlasticStep<YieldCriterion , TPZElasticResponse , TPZThermoForceA>.

It receives as parameter the following template objects:

• TPZThermoForceA: is a generic argument to inform the evolution model of the isotropic
thermodynamic force according whit the evolution of the damage variable α during the
yield whit hardening or softening.

• TPZElasticResponse: is a generic argument for the aggregation of a behaviour of a elastic
regime or elasticity law.

• YieldCriterion: template argument that implements the yield criterion Φ(σ,A) and the
flow direction N(σ,A). In case that the model require the implementation of a yield
surface, rupture or beginning of behaviour of material softening, the implementations has
to be done on this class. This class may also be generic, which facilitated the assemble of
associative or non-associative models.

6.2 Class TPZTensor

The constructor is TPZTensor<T>. These class implements a second order symmetric tensor
3x3. The generic argument tha can be, for example, a number. These class store the tensor in
its vector shape. The class implements some basic functionalities of a tensor, as the calculation
of the principal invariants and its derivatives.
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6.3 Class TPZPlasticState

The constructor is TPZPlasticState<T>. These class implements a concept of plastic state
variables, useful for the algorithms of the main class. The class represents one aggregation of:

• fEpsT : that is a tensor of the type TPZTensor<T> to store the state of total deformation
ε;

• fEpsP : that is a tensor of the type TPZTensor<T> to store the state of plastic deformation
εp;

• fAlpha: that is a scalar of type T to store the damage variable k.

6.4 Class TPZPlasticIntegrMem

During the integration of the elastoplastic problem can be necessary the sub incrementation
of the total imposed deformation. It is necessary store the history of the intermediate solutions
of the sub incrementation steps, this task is realised by a object vector of the class TPZPlas-
ticIntegrMem. This is not a generic class because is known the type will be used will always be
a real type. This class aggregates the following data:

• fPlasticState: an object of the type TPZPlasticState<REAL> to store the yield state of the
material;

• fk : a REAL to store the step k of the incrementation, being 0 < k < 1;

• fLambda: a REAL to store the result λls of a analysis of line search;

• fDelGamma: a REAL vector to store the plastic yield multipliers ∆λ, to each yield func-
tion;

7 RESULTS

In this section the results of this work are exposed. The results will be divided in two sections.
The first section will show the results of a uni-axial loading cycle in a material point, and, in
the second part will be shown the results of the integration of the plastic models whit the Finite
Element Method is shown.

1. A loading-unloading cycle applied to a material point with the elastoplastic model of
Drucker-Prager. A uni-axial load is applied in each step, and its corresponding strain is
computed. The result is shown in Figure 3.

2. In this test a Finite Element analysis is performed. A equilibrated distributed forces is
applied to the faces of the hexagonal domain. A rotation is applied to the domain to
verify the consistency of the code. The forces applied exceeded the elastic range so
that was possible to verify the elastoplastic integration as well. As shown in Figure 4,
the original domain is compared with the rotated in order to check the invariance of the
observer.
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Figure 3: Uniaxial stress-strain test result

Figure 4: non rotated and rotate elements

8 CONCLUSIONS

In this paper the approach was based on the object oriented design philosophy and observa-
tions on similarity of most incremental elastoplastic material models. Based on this approach
we have shown that new elastoplastic material models can be created by combining small num-
ber of building blocks. This has an added benefit of allowing an easy implementation of other
elastoplastic material models based on the object oriented design principles.
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