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Abstract. This work reports an investigation of some issues found in an implementation of the 

Indirect version of the Boundary Element Method (IBEM) for three-dimensional elastostatic and 

elastodynamic problems. Two different Green’s functions, or auxiliary states, are used in the 

implementations. Numerical results show that the IBEM presents a much slower convergence rate 

with respect to the number of boundary elements than the Direct-BEM counterpart. The numerically 

synthesized non-singular dynamic auxiliary states is computationally much more demanding and 

expensive, but are much more versatile in terms of incorporating non-isotropic behavior and general 

linear viscoelastic models. These trade offs, which oppose computational efficiency and modeling 

abilities are addressed. Finally, it is investigated whether the discontinuity observed in the traction 

components in diagonal terms of the influence matrix S constrains the applicability of IBEM to open 

domains. 
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1  INTRODUCTION 

 

The Boundary Element Method (BEM) is part of the group of numerical methods to 

approximate the solution of differential equations which involve some discretization. A 

remarkable feature of this particular method is that, under the application of a proper Green’s 

function, it only requires the boundary of the problem to be discretized. 

One of the characteristics of the Indirect version of BEM (IBEM) is that it allows the 

application of non-singular Green’s functions, which considerably reduces the mathematical 

effort required by the method. In many other aspects, however, the IBEM resembles the 

formulation of its Direct-BEM (DBEM) counterpart. Both versions involve the integration of 

an auxiliary state or Green’s function for the operator modeling the behavior of the medium 

that is being treated, and both are especially well-suitable for the study of infinite domains. In 

the DBEM, a final set of linear algebraic equations relates physically meaningful 

displacements and tractions at the prescribed boundary. Conversely, the IBEM relates actual 

tractions and displacements through a set of fictitious stresses. 

This work reports an investigation of some issues found in a typical implementation of 

IBEM. Particularly, the computational cost and convergence rate of the method are compared 

with Direct-BEM implementations. Rajapakse and Shah (1986) point out that the 

discontinuity of some stress components that naturally arise in the formulation of IBEM 

constraints the application of the method to unbounded domains or static problems. This 

constraint is also investigated in the present work. 

 Two different Green’s functions are used in the implementations, regarding the 

behavior of elastostatic and elastodynamic problems. These non-singular Green’s functions 

are synthesized by the integration of classical fundamental solutions for concentrated loads 

applied in unbounded domains. Three-dimensional static and dynamic fundamental solutions 

are considered. For the elastodynamic case, a third non-singular Green’s function is 

presented, which is numerically synthesized using a double Fourier integral. 

 

2 NON-SINGULAR GREEN’S FUNCTIONS 
 

Green’s functions play a fundamental role in both Direct and Indirect formulations of 

BEM. They represent the response of an auxiliary state, usually an unbounded full-space, to a 

loading applied to the interior of that full-space. The boundary element application is based 

on the superposition of these solutions throughout the discretized boundary of the real 

problem. The nature of the medium of the auxiliary state and the loading to which it is 

subjected should correspond to the ones in the boundary element application. 

In the classical Direct version of BEM, singular Green’s functions are used. Equation 

(1) shows an example of such solution, which corresponds to the displacements of a given 

point x in an isotropic, elastic three-dimensional full-space due to a static concentrated 

loading applied at a point x0 (Kane, 1994) (see Fig. 1a). 
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 In Eq. (1), m and n stand respectively for the direction in which the displacement occurs 

and the direction in which the loading of intensity pn(x0) is applied, (m,n=1,2,3). δmn 

represents the Kroenecker Delta, and R is the distance between x and x0. 
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(a) 

 
(b) 

Figure 1: Examples of Green’s functions of the displacement field of a 3D space, due to (a) 

concentrated and (b) distributed loads. 

 

An analogous solution corresponding to the application of a dynamic loading with 

circular frequency ω is given by Kitahara (1985) as: 
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In Eq. (2), k
2

P=ω2ρ/(λ+2µ) and k
2

S=ω2ρ/µ are the pressure and shear wave numbers, 

respectively; λ and µ are Lamé constants and ρ is the mass density of the medium. 

The stress response in both static and dynamic cases can be obtained from Eq. (1) and 

(2) through the stress-strain relationship, Hmnp(x, x0) = λδmnGkp,k + µ(Gmp,n + Gnp,m), in which 

Hmnp is the stress component σmn due to a loading in the direction of p (m,n,p=1,2,3). 

Both solutions can be extended to represent also viscoelastic isotropic 3D full-spaces. 

This can be obtained by Christensen’s elastic-viscoelastic correspondence principle 

(Christensen, 2003), in which the Lamé’s elastic parameters µ and λ from Eqs. (1) and (2) are 

written as complex variables µ*=µelastic(1+iη), λ*=λelastic(1+iη). The parameter η encloses the 

medium’s material damping. 

The use of such solutions for concentrated loadings on DBEM brings along the 

inconvenient need to deal with singularities in the integrands. Conversely, IBEM allows the 

use of non-singular Green’s functions in its formulation. A practical way of obtaining these 

functions is by integration of the singular ones over an area. A non-singular Green’s function 

corresponding to Eqs. (1) and (2) can be given by: 
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Equation (3) represents the responses of displacements of a medium subjected to a static 

or dynamic loading distributed over a rectangular area of sides 2A×2B (see Fig. 1b). Its 

integrands present integrable singularities and therefore its integrals can be performed, for 

example, by ordinary Gaussian Quadrature. 
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Another technique for obtaining non-singular Green’s function is based on the solution 

of the general Navier’s equilibrium equations, i.e., µ*ui,jj+(λ*+µ*)uk,ki=−ω2ρui (i,j=x,y,z), in 

which ρ is the medium’s density. This solution results in a series of generalized expressions 

for displacements and stress. The Green’s functions are obtained when specific boundary 

conditions are applied to this series of expressions. These boundary conditions correspond to 

the loading applied in the interior of the full-space which is being treated. If distributed loads 

are taken as boundary conditions, then non-singular Green’s functions are obtained. 
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Figure 2. Comparison of Romanini’s, Adolph’s and Kitahara’s solution of the component 

σXY for ω=5.0, ρ=µ=1.0, η=0.001, ν=0.25, Y=1.1, Z=0.5, A=2B=1.0, x ∈ [−4, 4]. 

 

This second technique is more versatile than the first one because it allows the 

incorporation of general viscoelastic models, to deal with non-isotropic media and even to 

treat transient problems. One trade-off is that it usually results in computationally expensive 

final equations. 

Romanini (1993) used this technique to synthesize a solution for a 3D isotropic medium 

subjected to a harmonic load. The load was uniformly distributed over a rectangular area of 

sides 2A×2B, immersed in the interior of the full-space. Fourier transforms were used to bring 

Navier’s equation to a more convenient coordinate space whenever necessary. His final 

expressions involve double indefinite integrations to be performed numerically, which are 

computationally expensive.  

Adolph (2006) developed a Green’s function for the same problem. Radon transforms 

were used along with Fourier transforms. Adolph aimed to reduce the computational cost of 

the solution by eliminating one of the final indefinite integrals.  

Figure 2 examples a validation of Romanini’s and Adolph’s solutions against a non-

singular Green’s function. This Green’s function was obtained by the integration of 

Kitahara’s solution (1985) (see Eq. 2) according to Eq. (3). In this particular validation, the 

numerical integration of Adolph’s and Romanini’s solutions took up to two orders of 

magnitude longer than the double integration of Kitahara’s solution. 
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3 INDIRECT VERSION OF BEM 

 

The displacement response of a physical problem can be written as a linear combination, 

or superposition, of the proper Green’s function according to Eq. (4). 
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 In Eq. (4), Gmn(x, x0) represent the Green’s function – given by Eqs. (1) or (2), for 

example. The influence of each of these terms is weighted by the so-called fictitious stress 

qn(x0), applied to the point x0 in the direction of n, to compose the real displacement that 

occur at x. The repeated indices in Eq. (4) should be interpreted according to Einstein 

summation convention, with m,n=x,y,z. 

In a physical problem discretized by boundary elements, Eq. (4) can be taken to 

represent the relation between two boundary element points (nodes) x and x0. A certain load is 

applied at a source-point x0 in one element resulting in a displacement at a field-point x in 

another. For a problem discretized by N boundary element nodes, the following equation can 

be assembled: 
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The upper indices i,j (i,j=1,N) indicates the N boundary element nodes in which the 

fictitious stresses q
j
n are being applied and the resulting displacements u

i
m are being read. 

Each of the terms G
ij

mn are 3×3 submatrices of G. 

Analogously to Eq. (4), the stress response of a physical problem can be written as: 
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The response in terms of traction can also be written as Eq. (7), in which n is the normal 

vector pointing outward the domain at the point x. 
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Analogously to Eq. (5), Eq. (7) can be written in matrix form as: 

 

=t Sq  (8) 

 

Equations (5) and (8) furnish, respectively, the displacements u and tractions t at each of 

the N boundary element points (nodes) due to fictitious loadings q applied to those nodes. 

These two equations represent the final expressions in the formulations of the indirect version 

of BEM (IBEM). They are constructed based on a set of non-singular auxiliary states 

expressed by the influence matrices S and G. 

One way of expressing the traction-displacement relation from these equations is by 

putting them together as u=G⋅q=G(S
−1

t)=G⋅S−1
t. However, this technique involves the 
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computationally expensive inversion of the matrix S. In the present work, we use a different 

strategy presented by Labaki, Mesquita and Adolph (2008). 

 

3.1 Diagonal terms of S 

 

The diagonal terms of the influence matrix S require special attention. These terms 

contain results of Green’s functions for the case in which the source-point equals the field-

point, or x=x0, so that R=0. In other words, the responses of stress and displacements are 

being measured in the same point that the load is being applied. 

In this situation, three particular components of stress, σXZX, σYZY and σZZZ, are 

discontinuous. They present different values if the point where they are measured approaches 

the loading surface from negative or positive values of the coordinate z. 

The discontinuity between the values of these components right above and right below 

the loading surface equals the loading pn(x0), i.e., σmnp(0,0,z=0
+
)−σmnp(0,0,z=0

−
)=pn(x0). 

In the implementation of IBEM, it is necessary to set up explicitly which value these 

discontinuous components of stress should assume in this case. In the present implementation, 

the values referring to z=0
+
 were chosen, because positive values of z represent the interior 

portion of the domain of the problem. The intensity 0.5 is set up, because unitary load 

pn(x0)=1 was assumed in the formulation of the Green’s functions (see Eq. (1) and (2)). 

Another consequence of this discontinuity of stresses concerns the application of IBEM 

to dynamic problems with closed domain. Rajapakse and Shah (1987) have shown that, in that 

type of problems, and because of the discontinuity of stresses, a term regarding the inertia 

force of the domain of the problem should be included in the formulation to satisfy the 

equilibrium of forces. If this term is disregarded, the formulation of IBEM is constrained to 

problems with open domains. Static problems with closed domains can also be treated, 

because in that case there are no inertia forces. 

 

The present formulation of IBEM was implemented in Fortran programming language 

under an ordinary procedural programming paradigm. Non-singular Green’s functions based 

on the integrations of Eqs. (1) and (2) were used. The program was used to analyze 3D 

elastostatic and elastodynamic problems, and the results are shown in the next section. 

 

 

4 NUMERICAL RESULTS 

 

The present implementation was used to analyze simple but representative prismatic 

elastic members subjected to longitudinal loads. Nine models were analyzed, whose 

dimensions LX, LY and LZ are listed in Table 1 (see Fig. 3a). In all the models, the boundary 

conditions were: the bars were clamped at one end and loaded with a uniformly distributed 

load with unitary intensity (see Fig. 3b). The material parameters are: Poisson’s ratio ν=0.25; 

Lamé’s constant µ=1.0; Young’s modulus E=2.5. 

Constant rectangular boundary elements were used in different numbers of elements per 

face (Nf). All the elements of a given face of the bars had the same dimensions, and all the 

faces had the same number of elements. Figure 3a shows an example in which Nf=25 

elements per face were used. 

The first IBEM application in this work used a non-singular static load Green’s function 

based on the double integration of Eq. (1) according to Eq. (3). This application is proper to 

analyze three-dimensional elastostatic problems. Its results are compared in this work with a 
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classical DBEM solution implemented by Dominguez (1993) for elastostatic and 

elastodynamic problems discretized by constant rectangular boundary elements. 

Due to the boundary conditions applied, a static reaction F’=T=1 should be observed in 

the clamped surface of the bars. The resulting static displacement in the loaded surface should 

approach the analytical solution of displacement of bars as the discretization is refined. This 

analytical solution is given by u’=T⋅LY/(ELXLZ), in which E is the material’s Young’s 

modulus. Table 1 also lists these expected results for the nine models analyzed. 

 

 
Figure 3. (a) Dimensions and example of discretization with Nf=25 elements per face of a 

prismatic bar and (b) boundary conditions. 

 

Table 1. Dimensions of the models of bar. 

 

Model m1 m2 m3 m4 m5 m6 m7 m8 m9 

LX 1 2 3 1 1 1 2 2 2 

LY 1 2 3 1 2 2 1 1 2 

LZ 1 2 3 2 1 2 1 2 1 

u’ 0.4 0.2 0.133 0.2 0.8 0.4 0.2 0.1 0.4 

 

Tables 2 and 3 show, respectively, the results of the program for the static displacement 

u at the tip of the bars and the static reaction F at their clamped surface.  

 

Table 2. Convergence of the solution of displacements at the tip of the bars for increasing 

numbers of elements. 

 
Nf →→→→ 1 4 9 16 25 36 49 64 81 100 

m1 1.2231 1.1861 1.1629 1.1450 1.1316 1.1213 1.1130 1.1063 1.1007 1.0960 

m2 1.2231 1.1861 1.1629 1.1450 1.1316 1.1213 1.1130 1.1063 1.1007 1.0960 

m3 1.2200 1.1831 1.1600 1.1421 1.1288 1.1185 1.1103 1.1036 1.0980 1.0932 

m4 1.1845 1.1517 1.1382 1.1271 1.1182 1.1111 1.1052 1.1003 1.0961 1.0925 

m5 1.8669 1.5059 1.3730 1.3071 1.2650 1.2352 1.2128 1.1953 1.1811 1.1694 

m6 1.5266 1.3218 1.2523 1.2144 1.1888 1.1701 1.1558 1.1444 1.1352 1.1274 

m7 1.1845 1.1517 1.1382 1.1271 1.1182 1.1111 1.1052 1.1003 1.0961 1.0925 

m8 1.1318 1.1160 1.1137 1.1098 1.1057 1.1018 1.0983 1.0952 1.0925 1.0900 

m9 1.5266 1.3218 1.2523 1.2144 1.1888 1.1701 1.1558 1.1444 1.1352 1.1274 
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These tables show the numerical results u and F divided by the expected analytical 

result, i.e., u/u’ and F/F’=F, so that the convergence of the results towards the analytical 

results can be observed as the discretization gets finer. 

 

Table 3. Convergence of the solution of tractions at the clamped surfaces of the bars for 

increasing numbers of elements. 

 
Nf →→→→ 1 4 9 16 25 36 49 64 81 100 

m1 1.2070 1.1495 1.1130 1.0922 1.0787 1.0690 1.0618 1.0562 1.0516 1.0478 

m2 1.2070 1.1495 1.1130 1.0922 1.0787 1.0690 1.0618 1.0562 1.0516 1.0478 

m3 1.2058 1.1484 1.1119 1.0911 1.0776 1.0680 1.0608 1.0551 1.0505 1.0468 

m4 1.1096 1.0995 1.0805 1.0674 1.0581 1.0513 1.0460 1.0418 1.0384 1.0356 

m5 1.5657 1.3442 1.2566 1.2104 1.1796 1.1577 1.1412 1.1282 1.1179 1.1093 

m6 1.3186 1.2242 1.1706 1.1403 1.1199 1.1052 1.0942 1.0856 1.0786 1.0729 

m7 1.1096 1.0995 1.0805 1.0674 1.0581 1.0513 1.0460 1.0418 1.0384 1.0356 

m8 1.0637 1.0757 1.0627 1.0524 1.0450 1.0396 1.0355 1.0322 1.0294 1.0272 

m9 1.3186 1.2242 1.1706 1.1403 1.1199 1.1052 1.0942 1.0856 1.0786 1.0729 

 

A very slow convergence rate is observed in these results. An unusually fine 

discretization (for BEM standards) of 100 elements per face is necessary to obtain an error of 

around 9% and 4% in the solutions of displacements and tractions, respectively. It is also 

observed that the models m5, m6 and m9 present an even slower convergence rate. These 

models are the ones in which the ratios length/(transversal area) are the largest. 

Table 4 shows the results for the same problems obtained by Dominguez’ DBEM 

program (Dominguez, 1993). A much faster convergence rate is observed in this case. 

 

Table 4. Convergence of the solution of tractions and displacements of the bars, for increasing 

numbers of elements, obtained by a classical DBEM program. 

 
 F/F’ u’/u 

Nf →→→→ 1 9 25 1  9 25 

m1 0.9980 1.0046 1.0021 1.0111 1.0217 1.0435 

m2 0.9917 0.9988 0.9968 1.0016 1.0038 1.0130 

m3 0.9804 0.9880 0.9862 0.9911 0.9911 0.9983 

m4 0.9975 1.0054 1.0027 0.9890 1.0235 1.0431 

m5 0.9934 0.9979 0.9970 1.4129 1.0592 1.0424 

m6 0.9924 0.9993 0.9975 1.2063 1.0317 1.0292 

m7 0.9984 1.0055 1.0025 0.9895 1.0236 1.0430 

m8 0.9979 1.0052 1.0023 0.9629 1.0158 1.0340 

m9 0.9933 0.9994 0.9973 1.2068 1.0318 1.0289 

 

Moreover, it was observed that the IBEM application is more computationally 

expensive than its DBEM counterpart. For instance, Dominguez’ program obtains the solution 

for the cases Nf=1, Nf=9 and Nf=25 3.1, 9.4 and 12.6 times faster than the present IBEM 

implementation, respectively. 

The second IBEM application in this work used a non-singular dynamic load Green’s 

function based on the double integration of Eq. (2) according to Eq. (3). This application is 

proper to analyze three-dimensional elastodynamic problems. Its results are compared in this 

work with an implementation of DBEM presented by Carrion, Mesquita and Romanini (2001) 

for elastostatic and elastodynamic problems discretized by rectangular boundary elements. 

This second program was used to study an elastic three-dimensional half-space 

discretized in its flat surface by square constant boundary elements. Two discretizations of 
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this problem were considered, with 5×5 and 11×11 elements. In both discretizations, the 

elements have dimensions 1×1. The central element in the mesh is loaded with a dynamic 

vertical load whose frequency varies. The vertical displacement of the loaded element was 

measured for frequencies ω=0 (static case) to ω=2 (see Fig. 4). The material parameters are: 

Poisson’s ratio ν=0.25; Lamé’s constant µ=1.0; Young’s modulus E=2.5. 
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(b) 

Figure 4. Vertical displacement of the central point at the surface of a half-space discretized 

by a (a) 5×5 and a (b) 11×11 square boundary elements mesh. 

 

The program was also used to analyze the problem of a bounded domain shown in 

Figure 5a.  
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Figure 5. Dynamic analysis of a (a) problem with bounded domain; (b) Displacements at the 

tip of the bar. 

 

The problem consists of a long 3D bar, discretized by 30 square boundary elements. 

One of its ends is clamped, and the other end is subjected to a uniformly distributed harmonic 

load of unitary intensity. The material parameters are: Poisson’s ratio ν=0.25; Lamé’s 

constant µ=1.0; Young’s modulus E=2.5. 

The results of displacement at the tip of this bar are shown in Figure 5b for different 

frequencies of loading. The results are compared with the DBEM program (Carrion, Mesquita 

and Romanini, 2001). It is observed that there is a disagreement between the two results. One 

explanation for this disagreement is that, in the present IBEM implementation, the inertia 

Mecánica Computacional Vol XXIX, págs. 4389-4398 (2010) 4397

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

10 

force of the domain of the problem was disregarded. Rajapakse and Shah (1986) pointed out 

that, for this reason, the present program is not capable of solving problems with bounded 

domain properly (see Section 3.1). 

 

5. CONCLUDING REMARKS 

 

The present article described a formulation of the Indirect version of the Boundary 

Element Method (IBEM) based on non-singular Green’s functions. Two different non-

singular Green’s functions were obtained by double-integrating classical Green’s function for 

concentrated loads. These Green’s functions allow the present implementation of IBEM to 

deal with elastostatic and elastodynamic problems. 

It was observed that the IBEM solution presents a slower convergence rate than a 

classical Direct-BEM program. It is also more computationally expensive than its DBEM 

counterpart. 

The application of the IBEM to elastodynamic problems with bounded domain is 

conditioned to the inclusion of a term regarding the inertia forces of the domain. This 

condition arises from the discontinuity of the stress Green’s functions that occur in the 

diagonal of the influence matrix S. 

The IBEM has shown to be conveniently free from strong singularities. A large variety 

of problems with unbounded domains can be dealt with this method. Its computational cost 

can be reduced by using parallel computing techniques. 
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