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Abstract. This paper presents a numerical model for three dimensional elastoplastic 

analysis of bearing capacity problems in shallow foundation using a displacement 

formulation of the finite element method (FEM). The non-linear equation solution 

strategies and the stress integration algorithm are presented and discussed. The soil 

foundation is modeled as a non-associative elastoplastic Mohr-Coulomb material. The 

ultimate bearing capacity factor obtained numerically for various friction and dilatancy 

angles is compared to solutions by using limit equilibrium, limit analysis, and other three 

dimensional FEM analyses. Good agreement is observed between them. A parametric 

study is conducted in order to verify the influence foundation roughness on the ultimate 

bearing capacity. The results show that there is no significant difference in the ultimate 

bearing capacity factor.  
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1 INTRODUCTION 

An application of the finite element method (FEM) for non-linear elastoplastic 

analysis of shallow foundation under three-dimensional strain condition is presented 

in this paper. 

The Modified Mohr-Coulomb criterion suggested by Sloan & Booker (1986) and 

Abbo & Sloan (1995), which includes treatment of the singularities of the original 

Morh-Coulomb criterion, is used for modeling the foundation soil. A general 

formulation that considers associative and non-associative elastoplastic models for 

soil was adopted and used to investigate the influence of the dilatancy angle on the 

bearing capacity of the shallow foundation.  

A parametric study considering different friction and dilatancy angles, shape and 

roughness of footing, and loading condition (displacement or force control) was 

conducted using the code ANLOG – Non Linear Analysis of Geotechnical Problems 

(Zornberg 1989; Nogueira 1998; Oliveira 2006, Nogueira et al 2007, Nogueira et al 

2008).  

2 FINITE ELEMENT EQUATIONS 

In considering an incremental formulation using FEM, the algebraic equation 

system that represents the static equilibrium for the soil represented by its elemental 

volume edV  can be written as: 

 extint FF    (1) 

where extF  represents the external force increment and,  

 
eV

e

T

int dVσBF   (2) 

represents the internal force incremental of internal force. B is a kinematic operator 

that describes the relationship between the strain increment ( ε ) and the nodal 

displacement increment ( û ) in each element. 

 uBε ˆ  (3) 

The operator B depends on the type of element adopted. The negative sign in Eq. 

(3) is a conventional indicator of positive compression. The stress increment ( σ ) is 

obtained using the incremental constitutive equation: 

 εDσ  t  (4) 

where Dt is the constitutive matrix defined in terms of the elastoplasticity formulation 

as: 

 pet DDD   (5) 
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where De is the elastic matrix and Dp is the plastic parcel of the constitutive matrix 

defined as: 

 
H
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aDbD
D  (6) 

In which, H is the hardening modulus, a is the gradient of the yield function 

( )h,(F σ ) and b is the gradient of the potential plastic function ( )h,(G σ ), where h is 

the hardening parameter. In the case of perfect plasticity, where hardening is not 

considered, )(FF σ , )(GG σ  and H equals zero. 

Starting from an equilibrium configuration (Figure 1 ) where the displacement field 

and the strain and stress states are all known, a new equilibrium configuration, in 

terms of displacements, can be obtained using the modified Newton Raphson 

procedure with automatic load increment (Nogueira 1998). For a selected tolerance, 

and at each increment, the iterative scheme satisfies the global equilibrium, 

compatibility conditions, boundary conditions and constitutive relationships. Yet 

attention must be given to the stress integration scheme adopted to obtain the stress 

increments, Eq. (4), in order to guarantee the Kuhn-Tucker conditions and the 

consistency condition. Figure 1 illustrates the described process. 

 

Figure 1: Scheme for solving the non linear equilibrium equation (Yang 2009) 

The finite element adopted in this study is the quadratic cubic isoparametric 

element (C20). This element has three degrees of freedom, u, v and w, in the x, y and 

z directions, respectively. The stress and strain vectors are defined as: 
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  zxyzxyzyx

T σ  (7) 

  zxyzxyzyx

T ε  (8) 

The kinematic operator B can be written as: 
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where Ni is the i node shape function by the finite element C20 (Bathe 1982).  

To describe the stress-strain relationship, a perfectly elastoplastic model with non-

associative plasticity was adopted. The plastic parcel of the constitutive matrix is 

obtained using the modified Mohr-Coulomb criterion proposed by Sloan & Booker 

(1986) and Abbo & Sloan (1995) (Figure 2). The modified version of the Mohr-

Coulomb model involves removal of the singularities at the edges ( 6  ) and the 

apex of the original model. Its yield function is written as: 

        coscsin3Isina)(KIF 1

22

D2   (10) 

where 

        ]6/;6/[II35.1sin31
2/3

D2D3

1  
  (11) 

1I  is the first invariant of the stress tensor D2I  is the second invariant of the deviator 

stress tensor, 
D3I  is the third invariant of the deviator stress tensor, c and  are the 

material cohesion and internal friction angle, respectively. A transition angle ( T ) was 

introduced to define the )(K   function for Eq. (10). Sloan & Booker (1986) suggest a 

T  value range from 25 to 29. For the case in which T  , 

  3sinBA)(K   (12) 

where 

      sin)3tantan3)((signal313tantan3cos31A TTTTT   (13) 

And 

       sincos31sin)(signal3cos31B TTT   (14) 

Or, for the case in which T   

  sinsin)31(cos)(K   (15) 
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The parcel asin was introduced to prevent the singularity related to the surface 

apex. The potential plastic function (G) can be written the same way as the yield 

function (F) but using the dilatancy angle () instead of the friction angle (). 
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Figure 2: Mohr-Coulomb yield function (Adapted from Abbo & Sloan 1995) 

An important step in a non linear analysis using FEM relates to the integration of 

the constitutive equation. This equation defines a set of ordinary differential 

equations for which the integration methodology can be either implicit or explicit. In 

this paper an explicit process with sub increments, as proposed by Sloan et al. (2001), 

was adopted. This methodology uses the modified Euler scheme that determines the 

size of the sub increment automatically evaluating the local error induced during 

integration of the parcel stress plasticity (Oliveira 2006).  

Starting from an equilibrium configuration where the stress and strain states ( nσ  

and nε ) are known, the elastic predict stress state can be evaluated doing: 

 σσσ  n

*

1n  (16) 

The stress increment σ  in Eq. (15) is evaluated using the elastic constitutive matrix 

as the tangent constitutive matrix. The yield function is evaluated for this new trial 

stress state and if 0)(F *

1n σ , then an elastic response is observed and the strain 

increment   generates just elastic stress increment. However, if 0)(F *

1n σ , there 

will be a plastic flux and the increment of stress must be reevaluated. In this case, 

three possibilities can occur (Figure 3): 
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Figura 3: Trial stress state (Oliveira 2006) 

Case I – the stress state was initially elastic and during the deformation path, the 

stress state changes from elastic to plastic, that is, 0)(F n σ  and 0)(F *

1n σ . 

Case II - the stress state was initially plastic and during the deformation path, the 

stress state remains plastic, that is 0)(F n σ  and 0)(F *

1n σ . 

Case III - the stress state was initially plastic and the deformation path includes an 

elastic unloading followed by a plastic loading. 

Because of arithmetic precision, an approximated condition is used to verify the 

yield condition, that is  

 FTOL)(F *

1n σ  (17) 

where FTOL is a small positive tolerance which Sloan et al. (2001) has suggested be 

no higher than 10-6 and no lower that 10-9. With this approximation, the elastic to 

plastic transition will occur if FTOL)(F n σ  and FTOL)(F *

1n σ . 

In Cases I and III, the strain increment has two parcels: elastic and plastic, that need 

to be determined since Euler’s modified integration process will be applied just to the 

plastic parcel of the strain. So to obtain the elastic parcel of strain to integrate it in 

the strain increment, the following equation must be evaluated: 

 0)(F n  σσ   (18) 

where  is a scalar that varies between 0 to 1. If  is equal to zero, the strain 

increment is completely plastic (Case II) and if  is equal to 1, the strain increment is 

completely elastic (Case I). Case III occurs when the angle between na  and σ  is 

higher than 90° and FTOL)(F *

1n σ .) 

After solving the Eq. (18) the elastic and plastic parcels of the strain increment are 

obtained doing: 

 εε  e , (19) 

 εε  )1(p  . (20) 
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And the stress limit at the yield surface that defines the elastic region ( intσ ) is so 

obtained by doing: 

 eenint εDσσ  . (21) 

The integration process begins from the intσ  stress state, dividing the plastic parcel 

of strain increment, Eq. (20), into k sub-increments with   ε 1Tk  magnitudes, 

where kT  depends on the error committed during the stress evaluation. 

To each strain sub-increment the integration process starts calculating two 

approximation values for the stress increments: 

  εDσ  )1(T)( k1kt1  σ , (22) 

  εDσ  )1(T)~( kkt2  σ . (23) 

For the first sub-increment (T=0), the first estimation of the stress increment 1σ  is 

evaluated considering the limit stress, int1k σσ  , and for the second estimation, the 

stress increment is evaluated considering the stress state at the end of the first 

estimation 11kk
~ σσσ    (Euler scheme). The stress state kσ  at the end kth

 sub-

increment is obtained according to the modified Euler scheme as: 

  212
1

1kk σσσσ     (24) 

The local error committed can be defined as the difference between the stress 

states obtained by the Euler scheme ( k
~σ ) and the stress states obtained by the 

modified Euler scheme ( kσ ) that is: 

  122
1

kk
~ σσσ  σ  (25) 

Sloan et al. (2001) has suggested the following expression for the relative error for 

the current sub-increment: 

 kkkk
~R σσσ   (26) 

This current sub-increment would be accepted, if the relative error kR  is lower than 

the tolerance STOL, otherwise the process will restart by assigning another value to 

the sub-increment kT  evaluated, taking into consideration the local error and the 

tolerance adopted as: 

 k1k TqT    (27) 

In which, 

 kRSTOL9.0q   (28) 

This integration process automatically controls the number of sub-increments in 

terms of the magnitude of the plastic deformation and the adopted tolerance STOL. 
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3 SHALLOW FOUNDATION ANALYSES IN 3D STRAIN CONDITION 

The analyses presented in this study involve a smooth and rough, flexible and rigid 

square footing foundation (2B width) subjected to vertical loading acting on the 

ground surface. The problem is analyzed under three dimensional strain conditions 

(taking into account the geometric symmetry) and is modeled as both a flexible and 

rigid foundation using load and displacement controls respectively (Figure 4). The 

rough foundation was modeled prescribing null horizontal displacement for the 

nodal points on the surface beneath the foundation while they were made free for 

smooth foundation. The foundation soil is considered weightless. 
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Figure 4: 3D analyses of shallow foundation – fem mesh for smooth and rough, flexible and rigid 

square footing. 

As mentioned, the soil is considered as an elastic perfectly plastic material 

described by a non-associative modified Mohr-Coulomb model. The following 

parameters were adopted: E=100MPa; =0.30; c=10kPa; a=15%; T=28o. Both the 

friction and dilatancy angle were varied to assess their influence on the bearing 

capacity factor of the shallow foundation.  

The tolerance used at global level during the Newton-Raphson iterative process 

was 10-4 while the tolerance used at Gauss level during the stress integration scheme 

was STOL of 10-6 and FTOL of 10-6. 

Numerical results are presented in terms of the  factor which is a normalized 

stress defined as: 

   c/qc/A/Q   (29) 

in which Q is the reaction force at the foundation, defined as: 

  

















n

Ve

Q
1e

eedVTσB  (30) 
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The reaction force is evaluated as the sum of the internal force’s vertical 

components equivalent to the elements’ stress state ( eσ ) right beneath the 

foundation. The cohesion is adopted to normalize the results. For pure frictional soil, 

the atmospheric pressure of 1atm substitutes the cohesion in Eq. (29). 

Figure 5 presents the  factor versus normalized settlement (/B) curves obtained 

by ANLOG for flexible and rigid smooth foundations and for different values of 

friction and dilatancy angles.  
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Figure 5: Normalized load-displacement curves – smooth shallow foundation. 

The bearing capacity of the shallow foundation is related to the ultimate bearing 

capacity factor (ult) which has been differently defined by several authors. Trautmann 

and Kulhawy (1988) adopted the tangent method that defines ult as the  factor at 

the intersection point between the elastic and plastic tangents of the normalized 

load-displacement curve. Briaud and Jean (1994) suggested as ult the  factor for a 

normalized displacement of 10%. Table 1 shows the ultimate bearing capacity factor 

obtained in this study considering the tangent method. 

Houlsby (1991) presented a study about the influence of dilatancy on soil bahavior. 

He concluded that dilatancy plays an important role in geotechnical problems where 

the soil has movement restrictions, such as shallow foundations, slope stability and 

tunnels. 

(o) ψ(o) smooth rough  
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flexible rigid flexible rigid 

10 
0 9.08 10.31 5.82 6.91 

10 9.65 10.67 5.87 7.32 

20 
0 20.13 21.92 16.10 16.70 

20 22.84 23.85 16.90 21.5 

30 
0 44.83 48.60 20.20 21.30 

30 49.68 51.30 22.30 23.60 

Table1: Ultimate bearing capacity factor ult  for flexible and rigid, rough and smooth shallow 

foundation. 

Analyses conducted in this study show that when the friction angle was decreased 

to 10°, the ultimate bearing capacity factor was slightly affected by the dilatancy 

angle. For a friction angle of 30°, the associate plasticity analysis (=) provided the 

highest ultimate bearing capacity factor and the lowest displacement at failure. 

Zienkiewicz et al. (1975) observed a similar response for friction angles of 40°. 

Monahan & Dasgupta (1995) reported such behavior for friction angles higher than 

25°.  

As expected, the ult value obtained for a rigid foundation is higher than that 

obtained for a flexible foundation. The difference in normalized ultimate bearing 

capacity values was approximately 10% for both non-associate and associate 

plasticity; independently of its roughness.  

Table 2 presents a comparison between results obtained using ANLOG (by 

considering a rigid, smooth foundation and associate plasticity) and those from a 

classical solution from equilibrium limit by Terzaghi (1943), limit analyses solution by 

Chen (1975), and others 3D analysis using FEM by Michalowski (2001) and Yang et al 

(2003).  

=(°) This study 
Terzaghi 

(1943) 

Chen 

(1975) 

Michalowski 

(2001) 

Yang et al 

(2003) 

10 10.67 10.86 9.98 12.66 9.77 

20 23.85 19.29 20.10 31.84 19.47 

30 51.3 39.18 49.30 104.01 42.07 

Table2: Ultimate bearing capacity factor ult  for rigid smooth square footing. 

Good agreement is observed between the results provided by this study and 

Terzaghi (1943). Nevertheless, the equilibrium limit theory underestimates the 

ultimate bearing capacity factor for highest friction angle. Results differ from each 

author due to the method used to define the ultimate bearing capacity factor; but in 

general, they show good agreement. 

In order to verify the influence of the foundation size, a parametric study was 

conducted by varying the L/B ratio (length/width) of a smooth and rigid foundation. 
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Figure 6 shows the FEM mesh used and the normalized load-displacement curve for 

different L/B ratios. The tangent of the normalized load-displacement becomes 

steeper as the L/B ratio decreases. For L/B ratio equal to 5, the ultimate bearing 

capacity factor reaches 35.63 (Table 3), which is very close to 32.4 value obtained by 

Oliveira (2006) for a rigid smooth strip footing foundation. So the plane strain 

condition can be observed for an L/B ratio higher than 5. 
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Figure 6: Normalized load-displacement curves L/B=variable. 

L/B 1 2 3 5 

ult 51.30 44.60 39.10 35.63 

Table3: Ultimate bearing capacity factor ult  - smooth rigid foundation - L/B=variable. 

An undrained analysis was conducted considering the same FEM mesh presented 

in Figure 4 and adopting =0o; =0.49 and Su=100kPa. Figure 7 shows the normalized 

load-displacement curves for smooth and rough, rigid and flexible foundations. As 

expected, the ult value obtained for a rigid and rough foundation is higher than that 

obtained for a flexible and smooth foundation.  
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Figure 7: Normalized load-displacement curves – undrained analysis. 
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Table 4 shows the ultimate bearing capacity factor obtained in this study and by 

Potts and Zdravkovic (2001), Yang et al (2003) and Michalowski (2001). Good 

agreement is observed between them.  

 

 

foundation This study 

Potts e 

Zdravkovic 

(2001) 

Yang et al 

(2003) 

Michalowski 

(2001) 

rigid 
smooth 5.69 5.72 - - 

rough 6.42 6.37 6.174 6.830 

Table3: Ultimate bearing capacity factor ult  - undrained analysis. 

4 CONCLUSIONS 

This paper presented a numerical simulation using FEM to analyze the bearing 

capacity of shallow foundations under three dimensional conditions. The 

implementation of the explicit integration stress algorithm proposed by Sloan et al 

(2001) was needed in order to obtain good performance of the Newton Raphson 

algorithm at the global level.  

The numerical results confirmed that the ultimate bearing capacity factor of a rigid 

and rough shallow foundation is higher than that on a flexible and smooth shallow 

foundation. The ultimate bearing capacity factor of rigid foundations obtained 

numerically shows good agreement with the results obtained by equilibrium limit 

theory (Terzaghi 1943), limit analysis (Chen 1975) and others 3D FEM analyses (Potts 

and Zdravkovic 2001, Yang et al 2003 and Michalowski 2001). 

The ultimate bearing capacity factor was slightly affected by the dilatancy angle 

when the friction angle is low but was highly affected for comparatively high friction 

angles. Therefore, for a high friction angle the normalized ultimate bearing capacity 

factor values are a little high in the case of associative plasticity. In general, the non-

associative plasticity provides higher settlement at failure. Results presented in this 

paper agree with the results provided by Monahan & Dasgupta (1995) and 

Zienkiewics et al (1975). 

The plane strain condition is a particular one verified for L/B ratio higher than 5. 
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