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Abstract.
This work proposes a new residual local projection stabilized finite element method for

the incompressible Navier-Stokes equations. The method adds to the Galerkin formulation new
fluctuation terms which are symmetric and easily computableat the element level. The method
is proved to be well-posed for the linearized model using thepair of spacesP1/Pl, l = 0, 1
with continuously and discontinuously pressure interpolations. Next, we establish a new hier-
archical a posteriori error estimator, and introduce a cheap strategy to recover a locally mass
conservative velocity field in the discontinuous pressure case, a property usually neglected in
the stabilized finite element context. Several numerical tests illustrate theoretical results.
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1. INTRODUCTION

The steady incompressible Navier-Stokes problem consistsof finding the velocity and pres-
sure(u, p) as the solution of

(∇u) u − ν ∆u + ∇p = f , ∇·u = 0 in Ω , (1)

u = 0 on∂Ω ,

whereν ∈ R
+ is the fluid viscosity andf is a given regular data inΩ. Adopting standard

notations for Sobolev spaces, the weak form associated to (1) reads: Find(u, p) ∈ H1
0 (Ω)2 ×

L2
0(Ω) such that

A((u, p), (v, q)) = (f , v)Ω for all (v, q) ∈ H1
0 (Ω)2 × L2

0(Ω) , (2)

where

A((u, p), (v, q)) := ((∇u) u, v)Ω + ν (∇u,∇v)Ω − (p,∇ · v)Ω + (q,∇ · u)Ω . (3)

Stabilized finite element methods for the incompressible Navier-Stokes equations handle
two numerical difficulties: the first is the well known inf-sup condition (see Girault and Raviart
(1986)), which prevents some of the most interesting and easy to use low order pairs of finite
elements from being used by the Galerkin method. Also, boundary layers ought to be accuratly
captured if we want to avoid non-physical spurious oscillations on solutions. In general, sta-
bilized finite element methods add extra terms to the Galerkin formulation to circumvent both
cited shortcomings.

Recently, a new family of residual-based stabilized methods, called RELP (Residual Local
Projection), has been casted and analyzed in Barrenechea and Valentin (2010a,b). As a result
of a Petrov-Galerkin enrichment (see Barrenechea et al. (2007, 2009); Franca et al. (2009)
for the idea applied to the Darcy problem), a new kind of fluctuation term arises as part of a
static condensation procedure, which prevents additionaldegrees of freedom. Consequently,
the RELP method allows us to adopt low order polynomials for velocity and pressure while
keep fluctuations contributions element-wise computable.

This work aims at extending the RELP method proposed in Barrenechea and Valentin
(2010b) to the incompressible Navier-Stokes equations adopting the pair of spacesP2

1/Pl, l =
0, 1. Afterwards, we introduce a newa posteriorierror estimator based on a hierarchical strat-
egy which, when combined with the RELP method, produces oscillatory-free numerical solu-
tions.

The plan of the paper is as follows. In§2. we introduce the RELP method, and we revisit
main theoretical results for the linearized Navier-Stokesequations in§3.. Next in§4., we in-
troduce the hierarchicala posterioriestimator. In§5. several numerical results attest the good
performance of our method and conclusions lay in§6..

1.1 Notations

Let {Th}h>0 be a family of regular triangulations ofΩ, built up using trianglesK with
boundary∂K and characteristic lengthhK := diam(K), andh := max{hK : K ∈ Th}. For
simplicity, we suppose the boundary ofΩ to be polygonal. Associated to this triangulation, the
discrete space for the velocityVh is the usual space of vector-valued piecewise linear continu-
ous functions with zero trace on∂Ω. To approximate the pressure we useQl

h, l = 0, 1, the space
of piecewise polynomial functions of degreel with zero mean value onΩ. If l = 1, the space
of pressures may contain continuous or discontinuous functions. The set of internal edgesF
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of the triangulation is denotedEh with hF = |F |. We denote byn the normal outward vector
on ∂K; also,[v] stands for the jump ofv acrossF , andΠS, whereS ⊂ R

2, is the orthogonal
projection onto the constant space, i.e.,ΠS(q) := (q,1)S

|S|
.

2. THE METHOD

We extend the RELP method introduced in Barrenechea and Valentin (2010b) to the non-
linear incompressible Navier-Stokes equations as follows: Find (u1, pl) ∈ Vh × Ql

h such that

B((u1, pl), (v1, ql)) = F(v1, ql) ∀(v1, ql) ∈ Vh × Ql
h . (4)

The weak formsB(., .) andF(.) are split into the Galerkin contributions and the additional
terms over elements and internal edges, i.e.,B(., .) := A(., .) + BT (., .) + BE(., .), where

BT ((u1, pl), (v1, ql)) :=
∑

K∈Th

αK

ν
(χh(pl + x· (∇u1) ΠKu1), χh(ql + x· (∇v1) ΠKu1))K

+
γK

ν
(χh(u1·x∇·u1), χh(u1·x∇· v1))K

BE((u1, pl), (v1, ql)) :=
∑

F∈Eh

τF (ΠF ([ν ∂nu1 + plI·n]), ΠF ([ν ∂nv1 + qlI·n]))F ,

andF(v1, ql) := (f , v1)Ω + FT (v1, ql), where

FT (v1, ql) :=
∑

K∈Th

αK

ν
(χh(x· f), χh(ql + x· (∇v1) ΠKu1))K ,

andχh := I − ΠK is the fluctuation operator. The positive piecewise constantsαK andγK are
given by

αK := max {1, P eK}−1 and γK := max

{

1,
P eK

24

}−1

, (5)

wherePeK := |u1|KhK

18 µ
and|u1|K :=

‖u1‖0,K

|K|
1

2

.

We adapt the stabilization parameter from Barrenechea and Valentin (2010b), given once
and for all byτF = hF

12 ν
if ‖u1‖0,F = 0, else,

τF =
1

2‖u1‖0,F
−

1

‖u1‖0,FPeF
+

1

‖u1‖0,F (ePeF − 1)
, (6)

where, forF = K+ ∩ K− ∈ Eh,

PeF =
‖u1‖0,F hF

ν
. (7)

Remark:For largePeF we can approximateτF as follows

τF ≈
1

2‖u1‖0,F
−

1

‖u1‖0,FPeF
. (8)

This simplified form helps to avoid overflows in the dominatedconvection regime (i.e., when
PeF is large).�
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Remarks:

1. The stabilizing terms in (4) include those used in Dohrmann and Bochev (2004) to sta-
bilize the Stokes problem plus terms meant to stabilize the convection. These convective
terms are different from those used in the LPS method (see, for example, Braack and
Burman (2006)), and this fact appears as the main differencebetween the present method
and previously existing alternatives, such as He and Li (2008) and Ge et al. (2009), for
the Navier-Stokes equations.

2. Furthermore, the shape of the fluctuation terms allows us to compute them in an easy way
at the element level, without the need of an enrichment of thefinite element space as in
Ganesan et al. (2008), or any patch-wise computation as in Becker and Braack (2001).

3. When the pressure is approximated by piecewise constant functions, the stabilization of
the inf-sup deficiency of theP2

1 × P0 pair relies on the jump term
∑

F∈Eh
τF ([p0], [q0])F ,

since(χh(p0), χh(q0))K vanishes. In the case of linear discontinuous pressures, the jump
terms present a minimal stabilization needed to control a norm of the pressure.

4. The discrete velocityu1 itself is not locally mass conservative, but there is an easyway
to post-process it to build a locally mass conservative velocity field. To this end, letϕF

be the local basis function for the lowest order Raviart-Thomas finite element space given
by ϕF (x) = ± hF

2|K|
(x− xF ) , andxF is the node opposite to the edgeF . Let alsounc be

the Raviart-Thomas field given by

unc :=
∑

F⊆∂K∩Ω

τF ΠF ([ν ∂nu1 + plI·n]·n)ϕF . (9)

Then,
∇ · (u1 + unc)

∣

∣

∣

K
= 0 ,

in eachK ∈ Th. We remark also that, once the discrete solution(u1, pl) is computed, the
computation ofunc does not involve any further computational cost.

5. The method, as well as the analysis presented below, may benaturally extended to cover
affine quadrilateral meshes and three-dimensional problems.

6. The method (4) is based on the one presented in Araya et al. (2009) now modified to
handle high Reynolds number flows.�

3. WELL-POSEDNESS

Theoretical aspects of the RELP method for the linearized Navier-Stokes equations us-
ing the pairs of interpolationP1/P0 is revisited in this section (see Barrenechea and Valentin
(2010b) for further details). It is seen as the model to be solved in a Newton iterative algorithm.
It is worth mentioning that similar results may be proved to the others pair of spaces.

First, we recall that the linearized Navier-Stokes or Oseenproblem reads: Find(u, p) such
that

(∇u) a− ν ∆u + ∇p = f , ∇·u = 0 in Ω , (10)

u = 0 on∂Ω ,

where, to avoid unnecessary technicalities, we suppose that a|K ∈ R
2 for all K ∈ Th, and that

[a · n] = 0 for eachF ∈ Eh.
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Let ‖ · ‖h be the mesh-dependent norm given by

‖(v, q)‖h :=
[

ν |v|21,Ω +
∑

K∈Th

αKh2
K

ν

[

‖(∇v) a + ∇q‖2
0,K +

γK h2
K‖a‖0,K

ν
‖∇· v‖2

0,K

]

+
∑

F∈Eh

τF ‖ΠF ([ν∂nv + qI·n])‖2
0,F

]1/2

, (11)

for all (v, q) ∈ Vh × Q0
h. The method (4) applied to the weak form of the Oseen problem (10)

is well-posed thanks to the following result.

Lemma 1 There exits a positive constantC, independent ofh andν anda, such that, for all
(v1, q0) ∈ Vh × Q0

h, it holds

B((v1, q0), (v1, q0)) ≥ C ‖(v1, q0)‖
2
h , (12)

and thus(4) has an unique solution.

Proof: The demonstration follows closely Barrenechea and Valentin (2009, 2010b)�.

4. AN A POSTERIORI ERROR ESTIMATOR

In what follows, we sketch some of the main results of Araya etal. (2011) which is a work
in progress. First, let us denote

‖(v, q)‖Ω :=

{

ν |v|21,Ω +
1

ν
‖q‖2

0,Ω

}1/2

,

and, for eachK ∈ Th andF ∈ Eh, we define the following residuals

RK :=
(

f + ν∆u1 − (∇u1)u1 −∇p0

)
∣

∣

∣

K
, (13)

RF := [ν∂nu1 + p0I·n]
∣

∣

∣

F
. (14)

Next, thea posterioriestimator is given by

η :=

{

∑

K∈Th

η2
K +

∑

K∈Th

h2
K

ν

[

‖(∇u1)χh(u1)‖
2
0,K + ‖∇ · u1 ΠKu1‖

2
0,K

}
1

2

, (15)

where,

η2
K :=

h2
K

ν
‖RK‖2

0,K +
1

2

∑

F∈Eh

hF

ν
‖RF‖

2
0,F + ν ‖∇·uh‖

2
0,K . (16)

The following result establishes the correspondence between the error and the estimator.

Theorem 2 Let (u, p) be the solution of(1) and(u1, p0) the solution of(4) . Then, the follow-
ing a posteriori error estimates hold

‖(u − u1, p − p0)‖Ω ≤ C1 max

{

1,
‖u1‖1,Ω

ν

}

η (17)

ηK ≤ C2 ‖(u − u1, p − p0)‖ωK
, (18)

whereη andηK are defined, respectively, in(15) and (16), and the positives constantsC1 and
C2 are independent onh andν, but can depend onu andp.
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5. NUMERICAL VALIDATIONS

5.1 An analytical solution

Here we considerΩ = (0, 1)× (0, 1), ν = 10−2 and we setf , and the boundary conditions
such that the exact solution reads

u(x, y) =

(

1−ey/ν

1−e1/ν

1−ex/ν

1−e1/ν

)

, p(x, y) = x − y . (19)

In Figure 1 we observe optimal convergence histories for theP1/P0 element and for all the vari-
ables, a result which anticipates theoretical a priori estimates to be presented in a forthcoming
work. Figure 2 points out that thea posterioriestimator stays close to the true error as the total
of degree of freedom (d.o.f) increases. Moreover, Figure 3 shows that the estimator drives the
mesh refinement toward the sharp gradient regions.

|u− uh|1,Ω

‖u− uh‖0,Ω

‖p− ph‖0,Ω

h2

h

log h

lo
g

e
r
r
o
r

10.10.010.001

100

10

1

0.1

0.01

0.001

0.0001

Figure 1: Convergence history for the RELP method.

5.2 The lid-driven cavity problem

This test uses the same domain of the previous section, we setf = 0, and the boundary
conditions areu = 0 on [{0} × (0, 1)] ∪ [(0, 1) × {0}] ∪ [{1} × (0, 1)] andu = (1, 0)t on
(0, 1) × {1}. Here the viscosity is set asν = 1

5000
. In Figures 4 and 5 we depict the adapted

mesh and the streamlines of the solution, respectively, using theP1/P0 element. The use of the
new method along with thea posterioriestimator predicts the regions where the mesh must be
refined in order to achieve oscillatory-free solutions.
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η
‖(u − uh, p − ph)‖

d.o.f

er
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r
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0.01

Figure 2: Comparison between the index of effectivity and the error, with respect to the degree of
freedom.

6. CONCLUSION

A new parameter-free stabilized method has been developed for the incompressible Navier-
Stokes equations. The method recovered stability for the equal order linear interpolation pairs
as well as for the simplest element, while induced the right dose of numerical diffusion to
capture boundary layers. In addition, we introduce a sharpa posteriorierror estimate for the
fully non-linear Navier-Stokes model. Thereby, the combination of the RELP method and the
newa posteriorierror estimator made the approach a simple low cost and locally conservative
alternative to solve the Navier-Stokes equations. Numerical tests validated theoretical results.
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INITIAL ADAPTED

Figure 4: The initial (left) and the adapted (right) meshes.

INITIAL ADAPTED

Figure 5: Streamlines using the initial (left) and the adapted (right) meshes
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