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Abstract. In the present work, numerical frequency domain formulations are developed for the 
prediction of the acoustic behavior inside a three dimensional perfectly rigid enclosure in the presence 
of a point source. In these formulations the Boundary Element Method (BEM) and the Method of 
Fundamental Solutions (MFS) are used with appropriate Green’s functions that allow to reduce the 
number of discretized surfaces. The aim here is to find numerical strategies that may allow to reduce 
computational cost and improve accuracy. These models will further permit for an analysis in higher 
frequencies as less computer resources are required due to reduced discretization. The possibility of 
assigning different absorption properties to the interfaces and of assuming different room shapes by 
inclining some of the interfaces is also here addressed. 
A detailed analysis on the behavior of the models for different cases is performed highlighting 
accuracy, efficiency and stability of the numerical strategies here proposed. Simulations are displayed 
for the simple case of a small room where low frequency domain responses regarding sound pressure 
level have been computed and the results obtained are compared with experimental results.  
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1 INTRODUCTION 

During the last three decades, the Boundary Element Method (BEM) has established itself 
as one of the preferred methods to be used for acoustics and vibro-acoustics engineering 
analysis. In fact, the BEM has a number of advantages over other numerical methods that 
contribute to its success (Brebbia (1984)): (i) it only requires the discretization of the problem 
boundaries, and thus only involves a more compact description of the environment; (ii) it has 
a very good accuracy, since it is based on the use of Green’s functions, which are, themselves, 
a solution of the governing equation; (iii) it is very well suited to the analysis of infinite or 
semi-infinite domains, as the far-field radiation conditions are automatically satisfied. Some 
of these advantages are even more pronounced when a 3D analysis in an infinite/semi-infinite 
domain is considered, for which alternative methods frequently require millions of degrees of 
freedom, together with a truncation of the propagation domain and the use of approximate 
absorbing boundary conditions. 

Through the years, many researchers have used the method in acoustic analysis of different 
systems. Many resources for the BEM can be found, such as the excellent book by Wu, 
(2000), which describes the principles of the boundary element method for acoustic analysis. 
Interesting developments can be found in many scientific papers, such as the early works of 
Lacerda et al. (1997), in which a dual BEM formulation is used to analyze the 2D sound 
propagation around acoustic barriers, over an infinite plane, considering both the ground and 
the barrier to be absorptive. Later, the 3D propagation of sound around an absorptive barrier 
has been studied by the same authors (Lacerda et al. (1998)), introducing a dual boundary 
element formulation that allowed the barrier to be modeled as a simple surface.  

An interesting feature of the BEM is that it can be adapted to include more complex 
Green’s functions, accounting for the presence of specific features of the propagation medium. 
It is the case of the works of Godinho et al. (2001) and Tadeu et al. (2007), analyzing the 
specific case of 2D configurations subject to the effect of a 3D pressure source, using the 
BEM to study the effect of acoustic barriers and of thin screens coupled to a building façade in 
the reduction of traffic noise. In those studies, both the rigid ground and the rigid façade are 
taken into account by using the image-source method, thus avoiding their discretization. 
Additionally, those authors synthesize the 3D sound field as a summation of simpler 2D 
problems (also known as a 2.5D formulation), with much lower computational cost. 

In the last years, several researchers have been focusing their attention on another class of 
methods, the meshless methods, with the goal of reducing computation time and the time 
consuming task of mesh generation that complex geometries require. The Method of 
Fundamental Solution is one of these methods that have been applied with success to solve 
acoustic problems. The mathematical formulation of MFS is quite simple requiring the 
knowledge of fundamental solutions. Fairweather et al. (2003) described and reviewed the 
MFS and related methods for the numerical solution of scattering and radiation problems in 
fluids and solids. Alves and Valtchev (2005) compared the plane waves method and the MFS 
for acoustic wave scattering. Chen et al. (2002) employed the boundary collocation method 
using radial basis functions for the acoustic eigen-analysis of three-dimensional (3D) cavities. 

In this work the three dimensional sound field generated by a point source placed inside a 
parallelepipedic space is here analyzed using frequency domain formulations based on the 
Boundary Element Method and on the Method of Fundamental Solution. The models here 
developed make use of adequate Green’s functions therefore requiring the discretization of a 
limited number of surfaces. The main objective of this paper is to analyze the advantages of 
incorporating these functions in models based on these methods. The possibility of assigning 
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absorption properties and assuming inclined interfaces is here discussed. The behavior of the 
numerical approaches is discussed by analyzing stability, accuracy and efficiency. Finally an 
application is displayed where frequency domain responses are computed for a room and 
compared with experimental results. 

2 PROBLEM FORMULATION 

The propagation of sound within a three-dimensional space can be mathematically given in 
the frequency domain by the Helmholtz partial differential equation, 

 2 2
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The boundary conditions for the problem are given by: 
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where ( )xZ  is the surface impedance of the absorbing material, which is assumed to be a 
known quantity. Equation (2a) stands for Neumann condition and equation (2b) stands for 
Robin or mixed boundary condition. 
Considering that a point source is placed within this propagation domain, at x0, it is possible 
to establish the fundamental solution for the sound pressure at a point x, which can be written 
as 
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3 NUMERICAL FORMULATION 

3.1 BEM Formulation 

According to Green’s Second Identity, Eq. (1) can be transformed into the following 
boundary integral equation: 
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where S S Sυ Ζ= ∪  refers to the discretized interfaces and ( , )G ξ x  is the fundamental solution; 

( )p x  and ( )nv x  represent the acoustic pressure and the normal derivative of the acoustic 

pressure, respectively. The coefficient ( )C ξ  depends on the boundary geometry at the source 
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point. 
In order to solve Equation (4), the Boundary Element Method may be used, requiring 
discretization of all surfaces, if appropriate fundamental solutions are not employed. Here, the 
previously described wave propagation problem using the BEM is solved using two different 
Green’s functions that satisfy specific boundary conditions allowing for reduction of boundary 
discretization. Two BEM models are defined: the first one makes use of a fundamental 
solutions valid for a space defined by three orthogonal planes, therefore three surfaces need to 
be discretized (BEM - Model 1, as displayed in Figure 1a); the second BEM model (BEM - 
Model 2, displayed in Figure 1b) makes use of a fundamental solution valid for a space 
defined by five orthogonal planes, therefore only one interface is discretized. Details on these 
functions will be given in a subsequent section. 
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Figure 1: Geometry of the BEM models: a) BEM - Model 1; b) BEM - Model 2. 

Since the appropriate Green’s function are used, introducing Equations (2) into Equation 
(4) and assuming BNE  constant elements with linear geometry at the discretized interfaces, by 

applying the collocation method to the integral equation, in terms of an intrinsic coordinate ,η  
the following equations can be obtained: 
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where pξ  refers to the functional node p with p ranging from 1 to BNE ; J  is the Jacobian, 

( )qp x is the unknown acoustic pressure at the boundary element qx ; ( , )ξ xp qG  refers to the 

fundamental solution whose details will be given in a subsequent section; ( , )ξ ξf
k pG  is the 

incident field regarding the pressure generated by the real source k  placed at position ξ f
k . 

Equation (5a) is applied if the discretized surfaces are perfectly rigid, whereas equation (5b) is 
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employed if assigning absorption to the discretized surfaces. For both cases we obtain a 
system of B BNE NE×  equations, which after solving it makes it possible to obtain the acoustic 

pressure at any point of the domain by applying the boundary integral equation. 

3.2 MFS formulation 
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Figure 2: Geometry of the MFS models: a) MFS - Model 1; b) MFS - Model 2. 

Using the Method of Fundamental Solutions the frequency domain response inside a three 
dimensional enclosure is computed as a linear combination of fundamental solutions for a set 
of NVS virtual sources, with amplitude lA  (with 1,..., )l NVS= , placed outside the domain of 
interest, to avoid singularities. Thus, the pressure field inside the parallelepipedic space is 
given by, 

 ( )
2 2 2

0 0 0-i ( ) ( ) ( )

2 2 2
1 0 0 0

e
( , ) , ,

4 ( ) ( ) ( )

k x x y y z zNVS

l l
l
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− + − + −

=
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where the coefficients lA  are unknown amplitudes which are computed by imposing the 

appropriate boundary conditions at a set of NCP points (collocation points) placed along the 
virtual interfaces S S Sυ Ζ= ∪  and ( ),lG ξ x  is the fundamental solution at point x  for a virtual 

source ξl . In this work an equal number of collocation points and virtual sources are assumed 

which allows to obtain a NVS x NVS system. This system is built by prescribing at the virtual 
boundaries of the parallelepiped space the following conditions: expression (2a), if the virtual 
discretized interfaces are assumed perfectly rigid or expression (2b) if assigning absorption to 
the virtual discretized interfaces. Here again two models were developed: in the first model 
(MFS – Model 1) only three virtual interfaces need to be assumed, whereas in the second 
model only a virtual interface needs to be considered (MFS – Model 2), as displayed in Figure 
2. 
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3.3 Green’s functions 
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Figure 3: Geometry of the Green’s functions: a) Half-space; b) Quarter space; c) 3 surfaces; d) 5 surfaces. 

In an acoustic analysis, the presence of perfectly reflecting plane surfaces can be taken into 
account by using the well-known image-source method. In this technique, the effect of a point 
source in the presence of a given plane surface can be simulated by considering an additional 
virtual source, positioned in a symmetrical position with respect to the reflecting plane. Thus, 
following, for example, Godinho et al. (2001), if such plane is defined by 0z =  (see Figure 
3a), the corresponding Green’s function can be written as 
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This approach can be further extended to incorporate more surfaces. Considering, for 
example, a “quarter-space” defined by two orthogonal planes, one located at 0z =  and the 
other at 0x =  (see Figure 3b), the corresponding Green’s function can be written as 
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with 2 2 2
2 0 0 0( ) ( ) ( )= + + − + −r x x y y z z ; 2 2 2

3 0 0 0( ) ( ) ( )= + + − + +r x x y y z z . 

Following the described procedure, if we consider a space defined by two vertical 
orthogonal planes and a horizontal plane, all perfectly rigid, placed at 0x = , 0y =  and 0z = , 
respectively, as displayed in Figure 3c, the corresponding Green’s function can be expressed 
as: 
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with 2 2 2
4 0 0 0( ) ( ) ( )r x x y y z z= − + + + + ; 2 2 2

5 0 0 0( ) ( ) ( )r x x y y z z= − + + + − ; 

2 2 2
6 0 0 0( ) ( ) ( )r x x y y z z= + + + + −  and 2 2 2

7 0 0 0( ) ( ) ( )r x x y y z z= + + + + + . 

If we assume a space defined by five planes four vertical orthogonal planes ( 0x = , xx L= , 

0y = , yy L= ) and one horizontal plane, placed at 0z = , as defined in Figure 3d, the 

corresponding Green’s function can be expressed as: 
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where NSX and NSY represent the number of sources used in the x  and y  directions 

respectively, for the correct definition of the signal, and ( ) ( ) ( )
2

2 2
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( )01
2 yy y y L n= + + ; ( )1 0z z z= + ; ( )2 02 2x xx x L x L m= − − − ; ( )02

2 2y yy y L y L n= − − − ; 

( )3 02 2x xx x L x L m= + − + ; ( )03
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( )04
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The above defined functions can be incorporated within numerical methods to avoid the 
full discretization of the simulated surfaces, and thus considerably reducing the computational 
cost of such methods. 

4 BEHAVIOUR OF THE BEM AND MFS MODELS 

In order to verify the proposed BEM and MFS models, consider a parallelepipedic space, 
with dimensions of 1.3 mxL = , 1.4 myL =  and 1.5 mzL = , filled with air, with a density of 

1.22 kg/m3 and allowing a sound propagation velocity of 340 m/s. Consider that all the 
surfaces of this space are rigid, with null normal particle velocities, and that within the space a 
point source is located, at (x, y, z)=(0.9m, 1.0m, 0.5m), oscillating with an angular frequency 

2 fω = π . 
For the above defined configuration, it becomes possible to establish an analytical solution 

in the form of an infinite series of image sources, reproducing the reflections at the various 
walls of the space. A detailed description of this solution can be found in António et al. 
(2008). It is important to note that, in theory, the number of sources required to reproduce the 
sound field in such a closed space tends to be very high, and thus the series converges slowly 
to the correct solution. However, the convergence of the series is greatly improved if a 
damped system is considered, making use of complex frequencies of the form c iω = ω − ξ∆ω , 

where ξ  is a damping coefficient and 2 f∆ω = π∆ , with f∆  being the frequency step. With 
the aim of verifying the proposed method, this frequency increment and the damping factor 
were fixed at 4 Hz and 0.7ξ = , respectively. Those values allow just considering image 

sources within a distance of 1 340m / s 85 m4 Hz× =  from the analyzed domain, since 
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sources placed further away are greatly damped and will not influence the response 
significantly. 

The same configuration was modeled using the 3D BEM and MFS models described in the 
previous section. The number of boundary elements was obtained through a relation (R) 
between the incident wavelength and the size of the boundary, which is previously fixed. As 
for the MFS a similar relation between the incident wavelength and the distance between 
collocation points was adopted. Besides, the distance between fictitious sources and the 
interface was set by defining a relation (D) between this distance and the distance between 
collocation points. 

Figure 4a illustrates the pressure computed at a receiver located at (x, y, z) = (0.4m, 0.4m, 
0.5m), for frequencies between 100 Hz and 300 Hz, using the analytical solution, BEM - 
Model 1 assuming a relation R=15 and BEM - Model 2 with a relation R=5. In this plot, it is 
clear that the agreement between the analytical and the BEM solutions is excellent, and that 
the method was properly implemented. As for the MFS solutions, Figure 4b displays a similar 
response using MFS - Model 1 with R=12 and D=5 and MFS - Model 2 with R=2 and D=1.5 
and the analytical solutions. Analysis of this plot confirms a good agreement among curves. 
These responses allows further conclusion that when using the approach where the three 
surfaces need to be discretized (corresponding to BEM and MFS model 1) more elements/ 
fictitious sources need to be assumed, in order to obtain an accurate response. Moreover when 
using the MFS models a lower relation R (in relation to the BEM models), may be assumed. 
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Figure 4: Pressure response obtained using the analytical solution and: a) BEM – Model 1 and BEM - Model 2; 
b) MFS – Model 1 and MFS – Model 2. 
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One of the advantages of these models in relation to analytical solutions is to have the 
possibility of computing the responses for a broader range of configurations. The models were 
therefore used to calculate the response for a similar configuration but assuming that the top 
surface has an inclination of 4.08º performed by increasing the size of the interface placed at 

0 mx =  to 1.6 mzL = . Figure 5 displays the responses for the receiver position (0.4m, 0.4m, 

0.5m). Analysis of these plots reveals good agreement among curves. 
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Figure 5: Pressure response obtained assuming the discretized top interface with a 4.08 º inclination using: a) 
BEM – Model 1 and MFS Model 1; b) BEM – Model 2 and MFS Model 2. 

As mentioned in the previous section, the models allow to incorporate absorption to a 
discretized interface by defining the surface impedance of the absorbing material, which is 
assumed to be a known quantity. In order to understand the behavior of the models when 
assuming that the fictitious interface may display absorption, a number of tests were 
performed. A response was computed for the parallelepipedic space, assigning the surface 
impedance of the rockwool (which was previously measured in an experimental setup which 
makes use of an impedance tube, meaning that impedance varies with frequency) to the 
discretized interface. The response provided by the MFS was compared with that obtained 
using BEM assuming the same properties of the rockwool. Figure 6 displays the results 
computed using BEM – Model 2 and MFS - Model 2. Here a relation R=5 was defined for the 
BEM - Model 2 and relations of R=3 and D=1.5 were set for the MFS - Model 2. The results 
show an excellent agreement. Note that similar results were obtained when using both BEM- 
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Model 1 and MFS – Model 1 (not displayed). 
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Figure 6: Pressure response obtained using the BEM – Model 2 and MFS – Model 2, assuming Robin condition 

in the discretized interface. 

In many practical applications in building acoustics it may be required to apply different 
surface impedance properties to a specific interface, namely when materials with different 
absorption properties are applied in the same wall. The models were therefore used to 
compute an example of this case, assigning the surface impedance properties of two different 
materials to the discretized interface (by assuming that these materials are applied with the 
same surface area) and the responses computed again using all numerical models. The MFS – 
Model 2 and BEM – Model 2 results are displayed in Figure 7. The displayed results were 
computing setting a relation R=5 the BEM - Model 2 and relations of R=3 and D=1.5 to the 
MFS - Model 2. Again a good agreement between solutions was achieved. Similar results 
were also obtained when using both BEM - Model 1 and MFS - Model 1. The responses allow 
the conclusion that all models are suitable for modeling rooms with a surface displaying 
absorption. 
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Figure 7: Pressure response obtained using the BEM – Model 2 and MFS – Model 2, assuming Robin condition 

in the discretized interface. 

In order to assess the accuracy of the models the relative error was computed for increasing 
number of boundary elements/fictitious sources. Figure 8 displays these results obtained when 
computing the response at the above mentioned receiver position for a frequency f=100Hz, 
using the four models. From the analysis of this plot we find that, as expected, when 
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increasing the discretization or number of fictitious sources and collocation points the 
accuracy of the response increases. Moreover, above a 50 collocation points the MFS provides 
a better accuracy in relation to the BEM. We may also observe that the models which require 
less discretization (BEM – Model 2 and MFS – Model 2) provide a more accurate response.  

 
Figure 8: Relative error provided by the MFS and BEM models for a frequency of 100 Hz. 

In order to analyze the performance of the models concerning to computational effort, the 
computation time provided by the models was obtained for a frequency of 100 Hz. The 
responses were computed in a computer with an AMD Turion (tm) 64 mobile technology ML-
34 processor, with a clock frequency of 1.79GHz, and 1 GB of RAM. To ensure comparable 
results, those computation times were performed for a similar relative error of 10-3. Following 
this demand in BEM - Model 1 and BEM – Model 2, 256 and 49 boundary elements per 
interface were assumed, respectively. In the MFS models this requirement is obtained 
assuming 64 collocation points per interface in MFS - Model 1 and 4 collocation points per 
interface in the MFS – Model 2. Table 1 displays the corresponding results. 

Models  
NEL (BEM) or NPoints 

(MFS) per interface 
Computation time (s) 

BEM – Model 1  256 125.89 
BEM – Model 2 49 7123.78 
MFS – Model 1 64 0.34 
MFS – Model 2 4 5.23 

Table 1: Computation time for a frequency f=100 Hz 

The analysis of this table allows to conclude that the MFS models require less 
computational effort than the BEM ones, as the formulation is also more simple and does not 
require computation of integration schemes. When comparing BEM Model 1 with BEM 
Model 2 computation times we find that BEM –Model 2 is more time consuming even when 
much less elements are required. In fact, the Green’s function used in BEM - Model 2, which 
is given by expression (10), requires a significant number of terms to attain convergence 
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leading to higher computation times. The same feature may be observed in the MFS - Model 1 
and MFS – Model 2 efficiency. 

The stability of the MFS with regards to the position of the fictitious sources was assessed 
by computing the pressure at receiver (0.4m, 0.4m, 0.5m), for frequencies between 100 Hz 
and 300 Hz, using the analytical solution and the MFS - Model 2 for varying relations (D) 
between the distance of the fictitious sources to the boundaries and the distance between 
collocation points. As for the relation R, in MFS – Model 1 a fixed relation of R=12 was 
assumed, and in MFS – Model 2 a relation R=2 was set.  

Figure 9 plots the responses obtained for several distances D. In these plots it is possible to 
observe that when using MFS - Model 1 (see Figure 2a), for a small relation (D=0.5) the MFS 
does not provide an accurate response. However as the relation (D) increases the responses 
predicted by the MFS approach the analytical one, denoting that the model tends to display a 
stable behavior for increasing distances. When looking to the responses predicted by the MFS 
– Model 2 (see Figure 2b), again it is possible to observe that for a lower relation D, the model 
is not providing a proper response. For increasing relations the MFS displays a good 
agreement with the analytical response, however in a limited range of relations D. In fact, for 
a relation D=10, the MFS displays discrepancies in relation to the analytical solution, mainly 
in the lower frequencies. 
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b) 

Figure 9: Pressure response obtained using the analytical solution, MFS – Model 1 (a) and MFS – Model 2 (b) 
for varying relations (D) between the distance of the fictitious sources to the interface and the distance between 

collocation points. 
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5 NUMERICAL RESULT VS. EXPERIMENTAL RESULT 

Taking into account the results obtained in the previous section, the MFS - Model 2 was 
used to compute the low frequency sound pressure field obtained inside a small room with 
dimensions 1.3mx1.4mx1.5m which corresponds to a reduced size acoustic chamber that 
exists in the Department of Civil Engineering of the University of Coimbra (picture of this 
chamber is displayed in Figure 10). In one of its faces, a 0.5x0.5 m2 opening is inserted, 
allowing access to its interior. Experimental tests were also performed to obtain the pressure 
field in this chamber and the results were compared with predictions. Inside this chamber, a 
dodecahedrical sound source (B&K Omni Power 4292) has been placed, 0.40m from its front 
wall, and 0.40 m from its right side wall; sound levels were registered at a microphone (type 
40AF from Gras Sound & Vibration), located at a symmetrical position with relation to the 
source, and 0.5 m above the floor. Time responses were acquired using a dBBati32 system, 
from 01dB, and then transformed to the frequency domain by means of FFT. 

This system has also been modeled numerically, making use of the above described MFS – 
Model 2, considering all surfaces to be rigid. These results are displayed in Figure 11, together 
with marks at the positions of predicted normal modes for an exact paralellepipedic rigid 
chamber. These modes may be estimated using the following expression (L. Beranek, 1960): 

 
2 2 2

, , 2 2 22n m k
x y z

c n m k
f

L L L
= + + , (Hz) (11) 

where n, m and k are the order number of the eigenmodes along three orthogonal directions 
(x, y and z), xL , yL  and zL  are the dimensions of the acoustic space along the same directions 

and c  is the speed of sound.  

 
Figure 10: Picture of the test chamber. 

Comparing the curves of Figure 11, it is clear that they follow very similar trends, in spite 
of visible amplitude differences. It is important to note that the numerical result has been 
computed considering rigid surfaces, while in the experimental model a small amount of 
acoustic absorption exists, influencing the results. More importantly, the peak positions of the 
two curves match, in general, very well, and also correspond to the analytical normal modes 
prediction. However, the peak occurring at 220 Hz in the experimental result is not so well 
reproduced by the numerical results, and appears slightly shifted to the right. It is important to 
note that the difference is even larger for the analytical solution, indicating that the presence 
of the irregularity and of a plate in the front wall may be introducing some modifications in 
the dynamic behavior. 
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Figure 11: Pressure field provided by numerical model and by experimental tests. 

6 CONCLUSIONS 

This paper has addressed the use of frequency domain formulations using the Boundary 
Element Method and the Method of Fundamental Solution in the prediction of the three 
dimensional sound pressure field generated inside a parallelepiped space. The proposed 
formulations make use of Green’s functions that allow to avoid the discretization of parts of 
the domain. The advantages of using this procedure have been investigated. The performed 
analysis allowed the conclusion that all numerical formulations are suitable in the analysis of 
the physical problem. The proposed models allowed to adequate compute the sound field 
assuming more generic geometries. It was possible to conclude that good results were 
obtained when assuming perfectly rigid spaces but also when assigning absorption to some of 
the interfaces.  

When using the MFS approach the analysis allowed further conclusion that accuracy 
increases in relation to the BEM approach. Moreover, the models that require less 
discretization provide also better accuracy. As for efficiency the MFS models were found to 
be more efficient than the BEM ones, although the MFS model that requires less discretization 
of the domain displayed greater computation times. This behavior was found to be due to 
convergence of the Green’s function used. The stability of the MFS with regards to the 
position of source points allowed the conclusion that the models are stable in a limited range 
of positions of source points, meaning that a primary analysis of source position is required 
when computing a sound pressure field problem.  

Finally the MFS was used to compute the low frequency sound pressure field inside a 
reduced size acoustic chamber that exists in the Department of Civil Engineering of the 
University of Coimbra and the results were compared with experimental measurements. The 
obtained results allowed to observe a reasonable agreement between results. 
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