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Abstract. In the present work, numerical frequency domarmulations are developed for the
prediction of the acoustic behavior inside a thdieeensional perfectly rigid enclosure in the presen

of a point source. In these formulations the Boupdaement Method (BEM) and the Method of
Fundamental Solutions (MFS) are used with appropi@reen’s functions that allow to reduce the
number of discretized surfaces. The aim here fmtbnumerical strategies that may allow to reduce
computational cost and improve accuracy. These lmadd further permit for an analysis in higher
frequencies as less computer resources are reqiuieedio reduced discretization. The possibility of
assigning different absorption properties to thterfiaces and of assuming different room shapes by
inclining some of the interfaces is also here askid.

A detailed analysis on the behavior of the modeis different cases is performed highlighting
accuracy, efficiency and stability of the numeristithtegies here proposed. Simulations are disglaye
for the simple case of a small room where low festpy domain responses regarding sound pressure
level have been computed and the results obtaiedoapared with experimental results.
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1 INTRODUCTION

During the last three decades, the Boundary Elefdethod (BEM) has established itself
as one of the preferred methods to be used forséiceuand vibro-acoustics engineering
analysis. In fact, the BEM has a number of advadagver other numerical methods that
contribute to its success (Brebbia (1984)): (Dnty requires the discretization of the problem
boundaries, and thus only involves a more compestription of the environment; (ii) it has
a very good accuracy, since it is based on thetu&seen’s functions, which are, themselves,
a solution of the governing equation; (iii) it iery well suited to the analysis of infinite or
semi-infinite domains, as the far-field radiatioonditions are automatically satisfied. Some
of these advantages are even more pronounced wBBraaalysis in an infinite/semi-infinite
domain is considered, for which alternative methiveguently require millions of degrees of
freedom, together with a truncation of the propagatiomain and the use of approximate
absorbing boundary conditions.

Through the years, many researchers have useddti®diin acoustic analysis of different
systems. Many resources for the BEM can be foundh s the excellent book by Wu,
(2000), which describes the principles of the bamaelement method for acoustic analysis.
Interesting developments can be found in many séiepapers, such as the early works of
Lacerda et al. (1997), in which a dual BEM formigatis used to analyze the 2D sound
propagation around acoustic barriers, over anitefiplane, considering both the ground and
the barrier to be absorptive. Later, the 3D propagaof sound around an absorptive barrier
has been studied by the same authors (Lacerda €98I8)), introducing a dual boundary
element formulation that allowed the barrier tonb@deled as a simple surface.

An interesting feature of the BEM is that it can &#apted to include more complex
Green’s functions, accounting for the presenceetiic features of the propagation medium.
It is the case of the works of Godinho et al. (908dd Tadeu et al. (2007), analyzing the
specific case of 2D configurations subject to tffect of a 3D pressure source, using the
BEM to study the effect of acoustic barriers anthari screens coupled to a building facade in
the reduction of traffic noise. In those studiesthbthe rigid ground and the rigid facade are
taken into account by using the image-source metktmags avoiding their discretization.
Additionally, those authors synthesize the 3D sofiatil as a summation of simpler 2D
problems (also known as a 2.5D formulation), witlictm lower computational cost.

In the last years, several researchers have beesifg their attention on another class of
methods, the meshless methods, with the goal afcred computation time and the time
consuming task of mesh generation that complex g&wes require. The Method of
Fundamental Solution is one of these methods thet lbeen applied with success to solve
acoustic problems. The mathematical formulationMFS is quite simple requiring the
knowledge of fundamental solutions. Fairweathealet(2003) described and reviewed the
MFS and related methods for the numerical solutibscattering and radiation problems in
fluids and solids. Alves and Valtchev (2005) congplathe plane waves method and the MFS
for acoustic wave scattering. Chen et al. (2002pleyed the boundary collocation method
using radial basis functions for the acoustic eigealysis of three-dimensional (3D) cavities.

In this work the three dimensional sound field gatexl by a point source placed inside a
parallelepipedic space is here analyzed using &ecy domain formulations based on the
Boundary Element Method and on the Method of Furetdat Solution. The models here
developed make use of adequate Green’s functi@rsftre requiring the discretization of a
limited number of surfaces. The main objectivelo$ paper is to analyze the advantages of
incorporating these functions in models based esdlmethods. The possibility of assigning
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absorption properties and assuming inclined intedas here discussed. The behavior of the
numerical approaches is discussed by analyzinglistabccuracy and efficiency. Finally an
application is displayed where frequency domairpoases are computed for a room and
compared with experimental results.

2 PROBLEM FORMULATION

The propagation of sound within a three-dimensi@palce can be mathematically given in
the frequency domain by the Helmholtz partial défgial equation,

NS
D?p+k*p=-> QA(E, &), (1)
k=1
, 0%  98° 0% . : a o .
where [ —?+a—y2+g, p is the acoustic pressurk=w/a; w=2mf; f is the

frequency;a is the sound propagation velocity within the atimumiedium;NSis the number
of sources in the domainQ, is the magnitude of the existing sourcg§ located at

(x 1 y{f); € is a domain point located &x,,y,) and O(&! &) is the Dirac delta generalized

function.
The boundary conditions for the problem are givgn b
V. (X) :?(x) =0 in interfaces, (2a)
n
p(X) = Z(X)V,(X) in interfacesS, (2b)

where Z(x) is the surface impedance of the absorbing matesiaich is assumed to be a

known quantity. Equation (2a) stands for Neumanndden and equation (2b) stands for
Robin or mixed boundary condition.
Considering that a point source is placed withis gropagation domain, ab, it is possible
to establish the fundamental solution for the sopregsure at a poirtt which can be written
as

-ikr

G(&X) = jm ,

with 1= (x=% 2+ (Y- Y, )+ (2-2,)%. 3)

3 NUMERICAL FORMULATION
3.1 BEM Formulation

According to Green’s Second Identity, Eq. (1) can ttansformed into the following
boundary integral equation:

aG(ﬁ X)

C (&) P(&) = =i pw] G(& X)V,()dS ~ [ p(x)ds+szG<<:k ), (4)

whereS=S, S, refers to the discretized interfaces &b, x) is the fundamental solution;
p(x) and v, (x) represent the acoustic pressure and the normalatiee of the acoustic
pressure, respectively. The coefficigd() depends on the boundary geometry at the source
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point.

In order to solve Equation (4), the Boundary Elembfethod may be used, requiring
discretization of all surfaces, if appropriate famtental solutions are not employed. Here, the
previously described wave propagation problem usiiegBEM is solved using two different
Green’s functions that satisfy specific boundangditions allowing for reduction of boundary
discretization. Two BEM models are defined: thestfione makes use of a fundamental
solutions valid for a space defined by three ortimag) planes, therefore three surfaces need to
be discretized (BEM - Model 1, as displayed in Fegia); the second BEM model (BEM -
Model 2, displayed in Figure 1b) makes use of ad@umental solution valid for a space
defined by five orthogonal planes, therefore omig interface is discretized. Details on these
functions will be given in a subsequent section.

Receiverk T
L, | vz [

L | v Dtk .
PR
///Sourca L1 L1 ///Source- RN
06 ¥ez) |47 (%:Y:2)
///
Lx < Ly Lx LY
> >
X X
a) b)

Figure 1: Geometry of the BEM models: a) BEM - Mbleb) BEM - Model 2.
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Since the appropriate Green’s function are usddydaocing Equations (2) into Equation
(4) and assumindNE, constant elements with linear geometry at thereliszed interfaces, by

applying the collocation method to the integralaeun, in terms of an intrinsic coordinape
the following equations can be obtained:

NEs ., 1 OG , NS .
CEp)PG) =2 ], j_l%p(xq)pmdr/z +> QGE( &), (52)

C&,IPE,) = -1pwY. [ [ B8, x)P(x)) Z0x) 3] drlr, -

1 0G(E . X,) (5b)

1 NS
R L + G '
;J-—l.[—l an p )(q |)]| dl '¢2 ;Qk gc gp
where &, refers to the functional node p with p rangingnfra to NE; ; |J| is the Jacobian,
p(x,) is the unknown acoustic pressure at the boundamesitx ; G(§,,x,) refers to the

fundamental solution whose details will be givenairsubsequent sectio® (&, &,) Is the

incident field regarding the pressure generatedhiyreal sourcex placed at positiorg, .
Equation (5a) is applied if the discretized suréaaee perfectly rigid, whereas equation (5b) is
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employed if assigning absorption to the discretizedfaces. For both cases we obtain a
system ofNE; x NE; equations, which after solving it makes it possiiol obtain the acoustic

pressure at any point of the domain by applyingahendary integral equation.

3.2 MFS formulation

i Receivers » o Virtual Sources
Receiverk L (xvy,2) [ e Collocation Points
Lz (xv.2) 2 <
g ///Source- BN
_-~ Sources T (kyz) N
(%, Y:,2) :
L L
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Figure 2: Geometry of the MFS models: a) MFS - Mddd) MFS - Model 2.

Using the Method of Fundamental Solutions the fezqy domain response inside a three
dimensional enclosure is computed as a linear coatibn of fundamental solutions for a set
of NVS virtual sources, with amplitudg (with 1=1,..,NvS), placed outside the domain of

interest, to avoid singularities. Thus, the presdigld inside the parallelepipedic space is
given by,

NVS e—ikJ(x—xo)2+( y-Yo) 2+(z-29) 2

PEX) =3 AG (5 X) +

2 2 2’ (6)
AT (X =% ) + (Y~ Yo )2 + (- Z,)

where the coefficientsh are unknown amplitudes which are computed by inmgoshe

appropriate boundary conditions at a set of NCRtpd(collocation points) placed along the
virtual interfacesS=S, 0S, andG(§,,x) is the fundamental solution at pointfor a virtual

sourceg, . In this work an equal number of collocation psiand virtual sources are assumed

which allows to obtain a NVS x NVS system. Thistegs is built by prescribing at the virtual
boundaries of the parallelepiped space the follgvaionditions: expression (2a), if the virtual
discretized interfaces are assumed perfectly vgidxpression (2b) if assigning absorption to
the virtual discretized interfaces. Here again twodels were developed: in the first model
(MFS — Model 1) only three virtual interfaces ndedbe assumed, whereas in the second
model only a virtual interface needs to be conseidéMFS — Model 2), as displayed in Figure
2.
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3.3 Green’s functions

z

a) b)

X X
c) d)

Figure 3: Geometry of the Green'’s functions: a)fidphce; b) Quarter space; c) 3 surfaces; d) acest

In an acoustic analysis, the presence of perfeetlgcting plane surfaces can be taken into
account by using the well-known image-source methothis technique, the effect of a point
source in the presence of a given plane surfacdeaimulated by considering an additional
virtual source, positioned in a symmetrical positwith respect to the reflecting plane. Thus,
following, for example, Godinho et al. (2001), dch plane is defined by =0 (see Figure

3a), the corresponding Green’s function can beevrias

e—ikr e—ikr1
+

4 4

Gyg (&%) = L With 1, =/ (X=X, )2 + (Y = Yo )2 + (2+ 25)? (7)

This approach can be further extended to incorpomabre surfaces. Considering, for
example, a “gquarter-space” defined by two orthofjghanes, one located &=0 and the
other atx =0 (see Figure 3b), the corresponding Green’s funatam be written as

ke dkr, {kr, ke
Goex) =+ S €,
4 4m, 4, 4

(8)

with 1, =) + (Y= Vo) +(2=20)7 5 1y = (X %) +(y = yo) + (2427
Following the described procedure, if we considespace defined by two vertical
orthogonal planes and a horizontal plane, all p#kfeigid, placed atx=0, y=0 and z=0,
respectively, as displayed in Figure 3c, the cpwading Green’s function can be expressed
as:
e—ikr 7 e—ikri

Gys(€,X) = Anr + e , (9)
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with fy = (X= %) 2+ (Y +Yo) 2 +(2+20) ry =y (X %) + (Y +Yo) 2 +(2-29) %

Iy SO X)” +(Y+Yo)* + (2297 andr, =J(x+%,)° + (Y + ) +(2+2)°.

If we assume a space defined by five planes fortica orthogonal planesx(=0, x=L,,
y=0, y=L,) and one horizontal plane, placed at0, as defined in Figure 3d, the
corresponding Green’s function can be expressed as:

0D DI B 3o LAl | Do ﬂ

4711 (S~ j:147tl’0j0 m=0i=1_475rioo o ,-:147trij0

g Moor  NSY( 4 ooy NSX 4 _e—ikrm NSy (4 g7k
)| DR P W B NP2
Tloo1  n=0\ j=1 nrojl m=0i=1| 4Tlig; n=o\ j=1 nrijl

where NSX and NSY represent the number of soursesl in thex and y directions

, (10)

respectively, for the correct definition of the rsady and ri,j,o=\/(5i)2+(zj)2+(go)2,

ri,j,1=\/(z<i)2+(z,.)2+(zi)2 with  x,=(x=%), ¥,=(Y=¥%): z=(z2-%); X =(x+x+2Lm);
=(y—2Ly—yO—2Lyn);

v, =(y+yor2Ln); oz =(z+3); % =(x-2L-%-2,m);
X; = (x=2L, +x,—2L,m);

X, =(x+2L, — %, +2L,m); Xs=(y+2Ly—yO+2Lyn);
Y, =(y—2Ly +Y, —2Lyn).
The above defined functions can be incorporatetiimibumerical methods to avoid the

full discretization of the simulated surfaces, d#mas considerably reducing the computational
cost of such methods.

Y,
2

4 BEHAVIOUR OF THE BEM AND MFS MODELS

In order to verify the proposed BEM and MFS modetssider a parallelepipedic space,
with dimensions ofL, =1.3m, L, =1.4 mand L, =1.5 m, filled with air, with a density of

1.22 kg/ni and allowing a sound propagation velocity of 348.nConsider that all the
surfaces of this space are rigid, with null norpetticle velocities, and that within the space a
point source is located, at, {y, 2=(0.9m, 1.0m, 0.5m), oscillating with an angulegguency
w=2mf .

For the above defined configuration, it becomesibs to establish an analytical solution
in the form of an infinite series of image souraeproducing the reflections at the various
walls of the space. A detailed description of te@dution can be found in Anténio et al.
(2008). It is important to note that, in theorye thumber of sources required to reproduce the
sound field in such a closed space tends to behighy and thus the series converges slowly
to the correct solution. However, the convergentdhe series is greatly improved if a
damped system is considered, making use of confpgguencies of the fornw, = w-i{Aw,

where ¢ is a damping coefficient andw=2mAf , with Af being the frequency step. With

the aim of verifying the proposed method, this frerocy increment and the damping factor
were fixed at 4 Hz and =0.7, respectively. Those values allow just considenimgge

sources within a distance o 4|_|Z><340m/s= 85n from the analyzed domain, since
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sources placed further away are greatly damped waitid not influence the response
significantly.

The same configuration was modeled using the 3D BlBMMFS models described in the
previous section. The number of boundary elemerds wbtained through a relation (R)
between the incident wavelength and the size obthendary, which is previously fixed. As
for the MFS a similar relation between the incideravelength and the distance between
collocation points was adopted. Besides, the distdpetween fictitious sources and the
interface was set by defining a relation (D) betwéds distance and the distance between
collocation points.

Figure 4a illustrates the pressure computed ateiver located atx(y, z2) = (0.4m, 0.4m,
0.5m), for frequencies between 100 Hz and 300 Kmguthe analytical solution, BEM -
Model 1 assuming a relation R=15 and BEM - Modeglith a relation R=5. In this plot, it is
clear that the agreement between the analyticaltemdBEM solutions is excellent, and that
the method was properly implemented. As for the MBlaitions, Figure 4b displays a similar
response using MFS - Model 1 with R=12 and D=5 M6 - Model 2 with R=2 and D=1.5
and the analytical solutions. Analysis of this ptonfirms a good agreement among curves.
These responses allows further conclusion that wisng the approach where the three
surfaces need to be discretized (correspondingBbdl Bnd MFS model 1) more elements/
fictitious sources need to be assumed, in ordebtain an accurate response. Moreover when
using the MFS models a lower relation R (in relatio the BEM models), may be assumed.

1.6

| | | |
| I —— Analytical Solution
|
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o
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o
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Figure 4: Pressure response obtained using thgtimahkolution and: a) BEM — Model 1 and BEM - Mo @;
b) MFS — Model 1 and MFS — Model 2.
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One of the advantages of these models in relaboanglytical solutions is to have the
possibility of computing the responses for a broadege of configurations. The models were
therefore used to calculate the response for dasimonfiguration but assuming that the top
surface has an inclination of 4.08° performed layaasing the size of the interface placed at
x=0m to L, =1.6 m. Figure 5 displays the responses for the recqigsition (0.4m, 0.4m,

0.5m). Analysis of these plots reveals good agre¢m@m@ong curves.
1,61 | | | |

I I
[ I —— BEM - MODEL 1 - Relation 15
Lo [ — @ -MFS - MODEL 1 - D=5.0 - Relation 12 -

I
N
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o o -
> ®w B

o
~

o
)

o

100 120 140 160 180 200 220 240 260 280 300
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1-8’7777T 77777777777777777777 L A R
|
1

161 ———Ltooo o
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144 -9~

--@-- MFS - MODEL 2 - D=1.5 - Relation 03

Pressure (Pa)

100 120 140 160 180 200 220 240 260 280 300
Frequency (Hz)

b)

Figure 5: Pressure response obtained assumingsitretized top interface with a 4.08 © inclinatigsing: a)
BEM — Model 1 and MFS Model 1; b) BEM — Model 2 avi&S Model 2.

As mentioned in the previous section, the moddiswalo incorporate absorption to a
discretized interface by defining the surface ingrext of the absorbing material, which is
assumed to be a known quantity. In order to undedsthe behavior of the models when
assuming that the fictitious interface may displaysorption, a number of tests were
performed. A response was computed for the pagglieédic space, assigning the surface
impedance of the rockwool (which was previously sugad in an experimental setup which
makes use of an impedance tube, meaning that impedaaries with frequency) to the
discretized interface. The response provided byMI was compared with that obtained
using BEM assuming the same properties of the rockwFigure 6 displays the results
computed using BEM — Model 2 and MFS - Model 2.é¢Harrelation R=5 was defined for the
BEM - Model 2 and relations of R=3 and D=1.5 wesefsr the MFS - Model 2. The results
show an excellent agreement. Note that similarlt®svere obtained when using both BEM-
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Model 1 and MFS — Model 1 (not displayed).

164

| | | |
— BEM - MODEL 2 - Relation 05

,,,,,,,,, —® -MFS - MODEL 2 - D=1.5 - Relation 03 -

I

124

[N
L

Pressure (Pa)
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Figure 6: Pressure response obtained using the BEMdel 2 and MFS — Model 2, assuming Robin coaditi
in the discretized interface.

In many practical applications in building acoustit may be required to apply different
surface impedance properties to a specific inteffaamely when materials with different
absorption properties are applied in the same Wdile models were therefore used to
compute an example of this case, assigning thasimpedance properties of two different
materials to the discretized interface (by assuntingg these materials are applied with the
same surface area) and the responses computeduagagrall numerical models. The MFS —
Model 2 and BEM — Model 2 results are displayedrigure 7. The displayed results were
computing setting a relation R=5 the BEM - Modedr®] relations of R=3 and D=1.5 to the
MFS - Model 2. Again a good agreement between isoisitwas achieved. Similar results
were also obtained when using both BEM - Model d si#S - Model 1. The responses allow
the conclusion that all models are suitable for efiod rooms with a surface displaying
absorption.

164 |

| | |
— BEM - MODEL 2 - Relation 05
L4 -1~

,,,,,,,,, ~® -MFS - MODEL 2-D=15 - Relation 03 -

Pressure (Pa)

Frequency (Hz)

Figure 7: Pressure response obtained using the BEMdel 2 and MFS — Model 2, assuming Robin coaditi
in the discretized interface.

In order to assess the accuracy of the modelsthtve error was computed for increasing
number of boundary elements/fictitious sourcesufe@ displays these results obtained when
computing the response at the above mentionedvexcposition for a frequency f=100Hz,
using the four models. From the analysis of thist phe find that, as expected, when
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increasing the discretization or number of fictiso sources and collocation points the
accuracy of the response increases. Moreover, abbecollocation points the MFS provides
a better accuracy in relation to the BEM. We mayp albserve that the models which require
less discretization (BEM — Model 2 and MFS — MoBleprovide a more accurate response.

0

0 e ————— s SO s OO s B
-- BEM - Model 1: F100

- BEM - Model 2: F100 ]

- MFS - Model 1: F100; D=5.0

- Model 2: F100: D=25

Relative Error
=]

0 £0 100 150 200 250 300 350 400
MEL{BEM) OR NPaints(MF3)

Figure 8: Relative error provided by the MFS andvBmodels for a frequency of 100 Hz.

In order to analyze the performance of the modefgerning to computational effort, the
computation time provided by the models was obthifr a frequency of 100 Hz. The
responses were computed in a computer with an AMiom (tm) 64 mobile technology ML-
34 processor, with a clock frequency of 1.79GHz] arGB of RAM. To ensure comparable
results, those computation times were performeé fsimilar relative error of 19 Following
this demand in BEM - Model 1 and BEM — Model 2, 2&&d 49 boundary elements per
interface were assumed, respectively. In the MFSleaisothis requirement is obtained
assuming 64 collocation points per interface in MABodel 1 and 4 collocation points per
interface in the MFS — Model 2. Table 1 displays ¢brresponding results.

Models N%'Még)Eye)r?;t’\elﬁggs Computation time (s)
BEM — Model 1 256 125.89
BEM — Model 2 49 7123.78
MFS — Model 1 64 0.34
MFS — Model 2 4 5.23

Table 1: Computation time for a frequency =100 Hz

The analysis of this table allows to conclude thia¢ MFS models require less
computational effort than the BEM ones, as the tdation is also more simple and does not
require computation of integration schemes. Whemparing BEM Model 1 with BEM
Model 2 computation times we find that BEM —Modelk2nore time consuming even when
much less elements are required. In fact, the Ggdanction used in BEM - Model 2, which
is given by expression (10), requires a significanimber of terms to attain convergence
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leading to higher computation times. The same featnay be observed in the MFS - Model 1
and MFS — Model 2 efficiency.

The stability of the MFS with regards to the pasitof the fictitious sources was assessed
by computing the pressure at receiver (0.4m, 0@&m), for frequencies between 100 Hz
and 300 Hz, using the analytical solution and thHeSM Model 2 for varying relations (D)
between the distance of the fictitious sourcesh® lhoundaries and the distance between
collocation points. As for the relation R, in MFSMedel 1 a fixed relation of R=12 was
assumed, and in MFS — Model 2 a relation R=2 was se

Figure 9 plots the responses obtained for sevestrttes D. In these plots it is possible to
observe that when using MFS - Model 1 (see Figajefar a small relation (D=0.5) the MFS
does not provide an accurate response. Howevdreaselation (D) increases the responses
predicted by the MFS approach the analytical orepting that the model tends to display a
stable behavior for increasing distances. Whenifapto the responses predicted by the MFS
— Model 2 (see Figure 2b), again it is possibleliserve that for a lower relation D, the model
is not providing a proper response. For increagiglgtions the MFS displays a good
agreement with the analytical response, howeverlimited range of relations D. In fact, for
a relation D=10, the MFS displays discrepancieselation to the analytical solution, mainly
in the lower frequencies.
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Figure 9: Pressure response obtained using thgteahkolution, MFS — Model 1 (a) and MFS — Mo@&dglb)
for varying relations (D) between the distancehef fictitious sources to the interface and theadist between
collocation points.
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5 NUMERICAL RESULT VS. EXPERIMENTAL RESULT

Taking into account the results obtained in thesipres section, the MFS - Model 2 was
used to compute the low frequency sound pressal@ @ibtained inside a small room with
dimensions 1.3mx1.4mx1.5m which corresponds todmaed size acoustic chamber that
exists in the Department of Civil Engineering oé tbniversity of Coimbra (picture of this
chamber is displayed in Figure 10). In one of #sek, a 0.5x0.5 fopening is inserted,
allowing access to its interior. Experimental testse also performed to obtain the pressure
field in this chamber and the results were compavitd predictions. Inside this chamber, a
dodecahedrical sound source (B&K Omni Power 42@2)lieen placed, 0.40m from its front
wall, and 0.40 m from its right side wall; soundédés were registered at a microphone (type
40AF from Gras Sound & Vibration), located at a syatrical position with relation to the
source, and 0.5 m above the floor. Time respons#s acquired using a dBBati32 system,
from 01dB, and then transformed to the frequenceyao by means of FFT.

This system has also been modeled numerically, mgakse of the above described MFS —
Model 2, considering all surfaces to be rigid. Thessults are displayed in Figure 11, together
with marks at the positions of predicted normal e®dor an exact paralellepipedic rigid
chamber. These modes may be estimated using tbeviioy expression (L. Beranek, 1960):

f =C n + m + K’ (Hz) (11)
n,m,k 2 LX2 Ly2 LZZ !

where n, m and k are the order number of the eigeesialong three orthogonal directions
(x, yand z),L,, L, andL, are the dimensions of the acoustic space alongeaime directions

and c is the speed of sound.

Figure 10: Picture of the test chamber.

Comparing the curves of Figure 11, it is clear thaty follow very similar trends, in spite
of visible amplitude differences. It is importamt mote that the numerical result has been
computed considering rigid surfaces, while in thk@ezimental model a small amount of
acoustic absorption exists, influencing the resbltsre importantly, the peak positions of the
two curves match, in general, very well, and alsgaspond to the analytical normal modes
prediction. However, the peak occurring at 220 kizhe experimental result is not so well
reproduced by the numerical results, and appeigtslyl shifted to the right. It is important to
note that the difference is even larger for thelyaital solution, indicating that the presence
of the irregularity and of a plate in the front Wwaday be introducing some modifications in
the dynamic behavior.
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Figure 11: Pressure field provided by numerical ei@hd by experimental tests.

6 CONCLUSIONS

This paper has addressed the use of frequency ddimenulations using the Boundary
Element Method and the Method of Fundamental Smiutn the prediction of the three
dimensional sound pressure field generated insidearallelepiped space. The proposed
formulations make use of Green’s functions thaivalto avoid the discretization of parts of
the domain. The advantages of using this proceldave been investigated. The performed
analysis allowed the conclusion that all numerfoaiulations are suitable in the analysis of
the physical problem. The proposed models allovee@dequate compute the sound field
assuming more generic geometries. It was possibleonclude that good results were
obtained when assuming perfectly rigid spaces lsat\@hen assigning absorption to some of
the interfaces.

When using the MFS approach the analysis allowethdu conclusion that accuracy
increases in relation to the BEM approach. Moreowbe models that require less
discretization provide also better accuracy. Asdfficiency the MFS models were found to
be more efficient than the BEM ones, although ti€SMinodel that requires less discretization
of the domain displayed greater computation tinféss behavior was found to be due to
convergence of the Green’s function used. The lgtalnf the MFS with regards to the
position of source points allowed the conclusicat tihe models are stable in a limited range
of positions of source points, meaning that a prinanalysis of source position is required
when computing a sound pressure field problem.

Finally the MFS was used to compute the low fregyesound pressure field inside a
reduced size acoustic chamber that exists in theaiment of Civil Engineering of the
University of Coimbra and the results were comparétli experimental measurements. The
obtained results allowed to observe a reasonalbé=agent between results.
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