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Abstract. The main purpose of this article is to approximate an elliptic problem coupling classical
Galerkin and H(div) formulations.

As a model problem we consider the Laplace equation on two or three dimensional domain. The
domain is split into two non-overlapping subdomains. On the first one, the problem is approximated
using classical Galerkin method. On the other one, the mixed formulation is applied. On the interface,
the continuity of flux and pressure is imposed strongly using the transmission condition. The resulting
formulation is a saddle point problem which is analysed for stability, existence and uniqueness using
Brezzi’s theory.
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1 INTRODUCTION

In the present paper we consider a technique for the combination of different finite element
formulations in different parts of the domain. As a test case we consider the Darcy problem
which basically consists of mass conservation equation augmented with Darcy’s law relating the
average velocity of the fluid in a porous medium with the gradient of a potential field through
the hydraulic conductivity tensor.

The basic idea is to split the domain into two non overlapping sub-domains and approximate
the problem on the first one using the classical Galerkin method and, on the other one, apply a
mixed formulation.

2 VARIATIONAL FORMULATIONS
2.1 Basic notation

Let €2 be a domain with Lipschitz boundary 0f2, whose outer unit normal vector is denoted
by 1. We shall used the following vector spaces and norms.

LX) ={f: /Q [f(@)* < oo}, [Ifll= (/Q Iflzdw)% (D

[NIES

M) = € Q)00 € Q) Wl = | X [ rf@Pir] @

la|<m
with oo f
I G
Hy(Q) = {p € H(Q) : plon = 0} 3)
H (div;Q) = {v € L*(Q)" : div (v) € L* (Q) }, 4)
and norm
||'U||§1(dw;ﬂ) = ||U||%2(Q) + ||div(v)||%2(ﬂ) &)
Hy (div; Q) = {v € H (div; Q) : v - n)sq = 0} (6)

Consider a partition of the domain €2 into two non-overlapping sub-domains €2; and €2, and
let I' = €23 N s, as described the Figure 1. We introduce the spaces

H sanon, (%) = {g € H(Q) : qlognon, =0}, i=1,2 (7)

HO,BQOBQi (dz’v; Ql> = {U - H (di?]; Ql) N A ’l’]‘anQi = O}, 1, = 1, 2. (8)
1

HE(T) ={ue H2(T): Ru € H2(9Q)} 9)

where Ru denotes an extension of u to 9.
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s

Figure 1: partition of domain {2

1 1
For each function ¢ € Hg(T') and o € (HG(T)), (¢, q) = J.tqds denotes the duality
pairing between HZ (T') and (HE(T'))'. Moreover, if & € H 2(09) is a extension by zero to JS
1
of the u € H(I") then

U 1 < 1
I3y < Il 3 ) (10)
2.2 The model problem
Consider the model problem
u = KVpinQ
—div(u) = finQ
u-n = 0indQy (1D
P =D in 8QD

where K is the hydraulic conductivity tensor, p is the hydraulic potential (or pressure), and u is
the velocity field of the fluid.

Consider a partition of €2 as describe in Figure 1, and suppose that 0Q2p C 91, 0Q2x C 08s.
We reformulate the problem (11) in the multi-domain decomposition (see Quarteroni and Valli
(1999)) as:

—div(KVp) = fin(y (12)
p1 = P indQp (13)
uy - =— KVpy-mp inl (14)
and
U = KVp2 in QQ (15)
—dZU<UQ) = f in QQ (16)
U -T2 = 0 in 6QN (17)
pr = p2inT (18)

Equations (14) and (18) indicate the transmission condition on I', expressing the continuity of
the pressure and mass conservation.
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2.3 Weak Formulation

The classical weak formulation for (12-14) reads

Jqdx = KVp, - Vgidr — / q1(uz - mo)ds Vg, € H&,aQﬂan (1) (19)
O 971 r

Using the mixed formulation for (15-18) we obtain

/ Auy - vodr — / podiv(vy)dx + /pl(UQ -ma)ds =0, Yus € Hyponoa, (div;Qs) (20)
Qo Qo T

where A = K1,
Defining the bilinear and linear forms,

Loc(, ) HY (@) x H' (1) — R, (p,q) = Jo, KVp- Vqdu;

2. £ : L2 () — R, g+ [, fqdxforall g € L*(Q);

3. et Hp(T) x Hp(TY — R, (q,) — [ qibds;

4. a(-,-) : H(div; ) x H(div; Q) — R, (u,v) — fQQ Au - vdz;
5. 0(,+)  H(div, Q) x L*(Q), (u,p) = [, pdiv(u)dz;

6. fy: L?(Q) — IR, g — [, fqdz forall g € L*(Qy);

the problem reduces to: Find p; € H'(;) and (uz, p2) € Hoaanon, (div, ) x L*(s) such
that

c(p1, q1) — cr(qu, u2) = fi(q1) Ya € Hjponpo, (1)
CL(’U,Z, '02) + CF(pl, ’Uz) - b('v2,p2> = 0 Vo, € HO,BQQ&QQ (div; Qg) 21
—b(g2, u2) = f2(q2) Vo € L*(Q9)

The next step is to prove the existence of solution for (21). Let us introduce vectorial space
M = H'(Q) x H(div; ) with the graph norm

(g, WP == llallF ) + 1o, - (22)
Let w = (p1, us), ¥ = (q1, v2), and define
aMxM — R
(w,v) — c(p1,q1) + a(uz, v2) — cr(qr, uz) + cr(p1, v2) (23)
f:L2(0) x H(div; Q) x L2(Q) — R

(g1, (v2,q2)) +— faqdr — f qdz
o 0y

b(-,-) :Mx L*(Q) — IR

(w,q) —/ ¢z div(ug)dx
Qo
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Thus the problem (21) can be written as: Find @ € M and p, € L? () such that

{ a(W,0) + b(D,pz) =0 Vo eM o4
q

Lemma 2.1 The bilinear form l~)(-, -) is continuous and satisfies the inf-sup condition. That is,
forall p € L*(Q) exist (u,q) € M x L*(;) and 3 > 0 such that

b(p; (u, q)) = BIll(w, @) l]llpll 22 () (25)

Proof: We begin showing that b is continuous.

6((u, q), p)|

| [ pdiv(uyaa]

Pl 2@l | div(w) ||| 22 (o)
||p||L2(Q)||uHH(div;Q)
2l 2@l (2, @) || mx 22020 (26)

IA A IA

Now, for p € L?(Q) let ¢ be the solution of the problem

ANy = p on )
g—@; = 0 ondQNoN, (27)
w = 0 onl

If u = —Vo, thus div(u) = p. Thatis, u € Hy ga,ns0(S22) and

[ullz2@2 = IVell2 @) < Clipllz -
Consequently ||| gaiv,) < Col[p||r2(0,)- Setting ¢ = 0 we have that

b((u,q),p)

/ pdiv(u)dz
Qo

= HPH%?(%)
> Cy M|ull raivo) Pl 2@s)
= 02_1||(Ua Q)||MxL2(Q)||P||L2(92)-

Thus the inf-sup condition is verified with 3 = C *.

For each of the bilinear forms @ and b we associate the linear operators,

)A:M—M
(Aw,v) = a(w, )

ii) B:M — L?(Q,) and BT : L?(Q,) — M’ such that

<BQI7,(]2> = <'lbvBTq2> MxM' — B(ﬁ%%)

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar



4622 D. DE SIQUEIRA, P. DEVLOO

Thus, setting w = (ug, p1) € M and py € L?(),), the system (24) can also be written as
A BT\ [ w 0
Z = = 28
(5 0) ()= (F) =

Lemma 2.2 The bilinear form a(-, -) defined by (23) is coercive on Ker( B).

Proof: Let @ = (uy,p) € Ker(B), such that Jo ardiv(us)da = 0 for all ¢ € L*(Q2). Getting
¢1 = div(ue) it follows that div(us) = 0. Therefore, using Poincaré inequality we have that

a(w,w) = c(p1,p1) + alug, us)

/Q A I .

> Csllpillm ) + || vl Hdivo,)
> min{Cs, 1}||w[/m

Thus the coercive property holds with & = min{Cs, 1}.

U
As a consequence of Lemma 2.1 and Lemma 2.2 and the application of classical results from
Brezzi and Fortin (1991), we obtain

Proposition 2.1 Given f € ImB, there exist unique w € M, and p € L*(Q,) solution of the
problem (24).

3 CONCLUSIONS

In this present paper we present analytical aspects about coupling classical Galerkin and
Mixed formulation for a specific model problem. On the interface between continuous formula-
tion and mixed formulation a transmission condition is defined resulting in a well posed saddle
point problem. In the future the formulation will be integrated in a finite element program and
numerical tests performed.
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